用户名: 密码: 验证码:
弹性胶泥阻尼器的振动与冲击实验研究及动力学建模分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻尼器是缓和冲击的必备装置。桥梁、车辆、航空航天设备、军事装备等都需要阻尼器保护设备不被损坏。围绕现有阻尼器不能同时满足减振抗冲能力的需求,提出固体颗粒和流体耦合减振抗冲新思路,研究固体颗粒的加入对阻尼器性能的提高具有重要的理论指导意义。
     本文的研究工作受到国家自然科学基金No.10872132“多场耦合阻尼器减振抗冲机理及实验研究”的资金支持。通过实验与理论相互结合的方法,进行了振动与冲击实验,并且分别建立动力学模型及辨识参数。具体的研究内容如下:
     (1)对胶泥阻尼器进行振动实验,设计了双出杆间隙式胶泥阻尼器,并且在阻尼器的套筒内部加入不同体积含量的颗粒用于实验分析。在振动实验中,对实测阻尼力信号进行了成分分析从而选择一定的滤波处理得到真实的阻尼力信号,研究了颗粒的含量以及位移的振幅与频率对各弹性胶泥阻尼器阻尼力-位移滞回曲线的影响。
     (2)在冲击实验中,测量了各种阻尼器在不同高度下的冲击情况,分析了纯硅油流体介质以及不同颗粒含量固液耦合作用下阻尼器的阻尼性能,具体研究其冲击过程中的加速度-时间曲线、阻尼力-速度曲线和阻尼力-位移曲线。
     (3)对于振动下的阻尼器建模分析,建立了Bouc-Wen滞回模型,利用模型中部分参数的不敏感性,将Bouc-Wen微分形式的非线性表达式的参数辨识问题转化为线性问题,从而可靠的简化了辨识的计算过程。另外,根据弹性胶泥阻尼器滞回环的具体特性以及原有模型存在的缺陷,在改进型的Bouc-Wen中引入了速度阻尼项,使得辨识结果更加真实的体现本阻尼器的滞回曲线。在冲击过程中,利用了硅油的非牛顿流体的特性建立了速度相关型的方程,通过对方程的线性化并进行参数辨识,得到各阻尼器的阻尼力方程。
     研究结果表明,本文的分析研究对于研究在固液耦合下胶泥阻尼器的冲击与振动性能及阻尼器动力学建模与参数辨识有理论指导意义。
Dampers are the essential equipments for reducing the shock. Bridges, vehicles, aircrafts and military equipments all need dampers to protect themselves from damage. Concerning the status that the dampers can not satisfy the demand of reducing the vibration and shock at the same time, we provide a new method of using the coupling of the solid particles and fluid to reduce the vibration and shock, research on the improvement of the damping characteristics by adding solid particles has important theoretical meaning.
     The research is financially supported by National Natural Science Foundation (No.10872132). Combining the experiments and theories, we conducted the vibration and shock experiments, and built the dynamics models and identified the parameters for each experiment. The details of this research are as follow:
     (1) Out of the demand of the experiments, double-acting damper with gap was designed and different volume percentages of solid particles were added into the cylinder of the damper for the incoming experiments. In the vibration experiments of the elastomer damper, we analyzed the components of the experimental signal in order to choose the appropriate filters to get the real damping force singal. Then we studied the influence of the damping force– displacement hysteresis curves under different volumes of particles and different amplitude and frequency of the displacement.
     (2) During the shock experiments, we measured the shock results of different dampers at different shock heights and analyzed the damping performance of the testing dampers, which contained pure silicone oil or silicone oil with different volume percentages of particles in it. In the analysis, we emphasized on the curves of acceleration-time, damping force-velocity and damping force-displacement of the dampers.
     (3) In the modeling of the vibration, we built the Bouc-Wen hysteresis model. Meanwhile, we utilized the un-sensitiveness of some parameters of Bouc-Wen model to transfer the non-linear parameter identification problem into linear parameter identification problem, so the process of the calculation for the identification will be reasonably simplified. Moreover, concerning the character of hysteresis curve of the elastomer damper and the weakness of Bouc-Wen model, we added a velocity dampering term into the former model in order to make the identification results represent the real curve of dampers more accurately.In the modeling of the shock, we utilized the non-newton fluid character of the silicone oil to build the mathematical velocity related model and indentify the parameters by linearization of the equation, and successfully get the damping force equations for each damper.
     These works have theoretically significant guidance and reference to research on the shock and vibration characteristics of the elastomer dampers under coupling, dynamics modeling and parameter identification of the dampers.
引文
[1]汪玉,华宏星.舰船现代冲击理论及应用.科学出版社:北京, 2005.
    [2] A. Rittweger, J. Albus,e. Hornung P, Mourey. Passive damping devices for aerospace structures. Acta astronautica, 2002, 50(10):597–608.
    [3]寇发荣,方宗德.汽车可控悬架系统的研究进展.汽车工程, 2007, 29(5):426-432.
    [4] M.R. Duncan, C.R. Wassgren, C.M. Krousgrill.The damping performance of a single particle impact damper. Journal of Sound and Vibration, 2005, 286:123-144.
    [5] A.Q. Liu, B. Wang, Y.S. Choo, K.S. Ong. The effective design of bean bag as a vibroimpact damper, Shock and Vibration, 2000, 7(6):343-354.
    [6] Zhiwei Xu, Yu Wang, Tianning Chen, Particle damping for passive vibration suppression, numerical modelling and experimental investigation, Journal of Sound and Vibration,2005,279:1097–1120.
    [7] S.E. Olson.An analytical particle damping model. Journal of Sound and Vibration, 2003, 264: 1155 - 1166.
    [8]傅旭东,王光谦.低浓度固液两相流颗粒相本构关系的动理学分析.清华大学学报(自然科学版), 2002,42(4):560-563
    [9]张振森.城市轨道交通车辆[M].北京:中国铁道出版社, 1998.
    [10]李克兴.国外客车缓冲器综述[J].国外铁道车辆,1996,33(6):1-5.
    [11]李克全译.俄罗斯货车用弹性胶泥缓冲器的研究[J].国外铁道车辆, 2000, 37(1): 23-25.
    [12]李克兴,戴家骥.弹性胶泥减震器在国内外的研究和应用(下)[J].铁道车辆,1995, 33(7):17-19.
    [13]付高嵩,陶友传.舰船电子设备结构的隔振缓冲技术及其设计.舰船电子工程. 1999.6.P60-63.
    [14]李克兴,戴家骥.弹性胶泥减震器在国内外的研究和应用(上)[J].铁道车辆,1995,33(6):32-35.
    [15]胡敬文,张金换,黄世霖.汽车模拟碰撞用液压缓冲器的动态仿真.力学与实践, 2003, 25(4): 17-20.
    [16]焦素娟,刘成良,苗中华,华宏星.并联阻尼结构液压缓冲器冲击波形仿真.振动与冲击, 2007, 26(9):27-29.
    [17] D. H. KIM, J. W. PARK, G. S. LEE, K. I. LEE. Active impact control system design with a hydraulic damper. Journal of Sound and Vibration,2002,250(3): 485-501.
    [18]郝鹏飞,张锡文,何枫.小型液压缓冲器的动态特性分析.机械工程学报, 2003,39(3):155-158.
    [19]贾九红,沈小要,杜俭业等.粘弹性阻尼器的力学特性分析.振动与冲击, 2007, 26(10), 101-103.
    [20]郑华,潘安徽,吴智强.弹性胶泥的应用及其特性研究.特殊橡胶制品,2007,28(2):28-31.
    [21]朱闰平,杨军.弹性胶泥的特性及其减震器的工作原理.橡胶工业,2005,52(7):427-429.
    [22] Chatterjee A, Statistical origins of fractional derivatives in viscoelasticity, Journal of sound and vibration, 2005, 284, 1239-1245
    [23]杨挺青, 2004,黏弹性理论与应用,科学出版社,北京.
    [24] Jiuhong Jia, Xiaoyao Shen, Hongxing Hua. Viscoelastic behavior analysis and application of fractional derivative Maxwell Model. Journal of Vibration and Control, 2007, 13(4): 385-401
    [25]杨礼康,姜少飞,潘双夏,段福斌,王维锐,冯培恩.复合结构磁流变减振器设计与特性分析.农业机械学报, 2006,37(7):116-120.
    [26]杨平.随机激励时多介质耦合型减振器求解的一种近似方法.工程力学,2006,23(7):170-175
    [27]汪大洋,周云,王烨华,丁鲲.粘滞阻尼减震结构的研究与应用进展.工程抗震与加固改进, 2006, 26(4):22-31
    [28]姚熊亮,邓忠超,张明.船用智能抗冲击隔离器动力学数值试验分析.哈尔滨工程大学学报, 2007, 28(2):128-132.
    [29] C.V. Suciu, T. Iwatsubo, K. Yaguchi, M. Ikenaga. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel. Journal of Colloid and Interface Science,2005,283: 196-214.
    [30] C.V. Suciu, T. Iwatsubo, S. Deki. Investigation of a colloidal damper. Journal of colloid and interface science. 2003,239:62-80.
    [31] Venkata K, Punyamurtula, Yu Qiao. Infiltration of pressurized promoter solutions in a mesoporous silica. Microporous and mesoporous materials.2007,103:35-39.
    [32]丁建华,结构的粘滞流体阻尼减振系统及其理论与试验研究,哈尔滨工业大学, 2001.
    [33] Soong T T and Dargush G F, Passive energy dissipation systems in structural engineering, England, John Wiley and Sons Ltd,1997
    [34] Makris N,Constantinou M C and Dargush G F, Analytical model of viscoelastic fluid dampers, J. Engrg. Mech., ASCE, 1993, 119(11),3310-3325
    [35]王济,胡晓. Matlab在振动信号处理中的应用.北京,中国水利水电出版社, 2006.
    [36]陈大林.迟滞非线性支承结构的系统辨识[D].中国工程物理研究院硕士学位论文, 2001.
    [37] Bouc R. Forced Vibration of Mechanical System with Hysteresis[J]. Abstract, Proceedings of 4th Conference on Nonlinear Oscillation, Prague, 1967.
    [38] Wen Y K, Equivalent Linearization for Hysteretic System Under Random Excitation. Transactions of the ASME, APM, 1980, 47(1):150-154.
    [39] M.Yar and J.K.Hammond. Parameter estimation for hysteretic systems. Journal of Sound and Vibration, 1987, 117,161-172.
    [40]张向慧.迟滞非线性系统参数辨识方法的研究[J],噪声与振动控制, 2001.3.
    [41]白鸿柏.迟滞振动系统及其工程应用北京科学出版[M]. 2002.
    [42] Haochuan Z. Parameter Identification and Sensitivity Analysis of the Differential Model of Hysteresis, University of California, Berkeley, 2001.
    [43]周传勇. Bouc-Wen滞回模型的参数辨识及其在电梯振动建模中的应用.上海交通大学硕士论文, 2008.
    [44] Tinker,M L,Cutchins,M A.1992. Damping Phenomena In a Wire Rope Isolation System. Journal of Sound and Vibration 157,pp.7~18.
    [45] Hoon Wee, Yoon Young Kim, Haeil Jung, Gwang Nam Lee. Nonlinear rate-dependent stick-slip phenomena: modeling and parameter estimation.International Journal of Solids and Structures. 38(2001), 1415-1431.
    [46] Spencer B F Jr, Dyke S J, Sain M K, Carlson J D. Phenomenological Model for Magnetor heological Dampers[J], J.Engineering Mechanics.1997,123(3):230-238.
    [47]侯保林, Ahmadian M,冲击载荷作用下磁流变阻尼器的建模与分析,机械工程学报, 2006, 42, 173-178
    [48] Lee D and Taylor D P,viscous damper development and future trends,the structural design of rall buildings, 2001,10:311-320
    [49]贾九红.胶泥缓冲器的耗能机理研究与设计.上海交通大学博士论文, 2008.
    [50] Sorace S and Terenzi G,Non-linear dynamic modeling and design procedure of FV spring-dampers for base isolation,Engineering Structures,2001,23:1556–1567
    [51] Taylor D P,History,design,and applications of fluid damp in structural engineering, http://www.taylordevices.com/papers/history/design.Htm, 2007
    [52] Housner G W,Bergman L A and Caughey T K, Structural control:past,present and future,Journal of Engineering Mechanics,1997,123(9),897-909
    [53] Makris N,Roussos Y,Whittaker A S,et al,Viscous heating of fluid dampers.Ⅱ:Large-amplitude motions,Journal of Engineering Mechanics,1998,124(11), 1217-1223
    [54]赵玫,周海亭.机械振动与噪声学.北京,科学出版社, 2004.
    [55]傅志方,华宏星.模态分析理论与应用.上海,上海交通大学出版社, 2000.
    [56]张少实和庄茁,复合材料与粘弹性力学,北京,机械工业出版社, 2005.
    [57]李庆扬,王能超.数值分析.武汉,华中科技大学出版, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700