粉末活性炭/膜组合工艺处理低温微污染水的效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国北方地区尤其是东北地区,冬季的低温微污染水处理困难,常规处理工艺对低温微污染水中的有机物、氨氮等的处理效果非常有限。因此,开发一种经济高效、环境友好、易于操作的低温微污染水处理技术具有重要意义。
     本研究利用粉末活性炭对有机物的吸附作用、生物活性炭对氨氮的良好去除效果,以及膜对微生物、病毒和粉末活性炭的优异分离性能,构建了粉末活性炭/膜组合工艺,以解决低温条件下,微污染水中有机物和氨氮等的处理问题;并通过对膜污染机理的研究,提出了有效减轻膜污染的新方法。
     本课题研究主要从以下三个方面展开:粉末活性炭/膜组合系统的构建与运行参数的确定;处理效能与影响因素;膜污染的影响因素、控制技术及膜污染机理。通过以上三方面对粉末活性炭/膜组合工艺处理低温微污染水进行了系统和深入的研究,为我国东北地区低温微污染水处理提供了可资借鉴的新思路。
     通过粉末活性炭静态吸附腐殖酸的实验和微滤膜连续流处理低温微污染水试验,对二者各自处理低温(10oC)微污染水的性能进行研究。结果表明:粉末活性炭非常适合在低温条件下吸附腐殖酸;微滤膜对低温微污染水中的浊度去除率非常好。结合二者处理低温微污染水的优点,构建粉末活性炭/膜组合系统,并对系统的运行参数,包括粉末活性炭投加量、水力停留时间(HRT)和曝气量等进行确定。结果表明:粉末活性炭投加量为50g/L;HRT为2h;以30min为一个过滤周期,前29.5min以16.6L/(m~2·h)的膜通量进行过滤,之后30s以115L/(m~2·h)的膜通量进行反洗;曝气量为0.25m3/h;运行100天后需要换炭,换炭量为每天2.5%换炭。
     采用膜组合工艺连续流处理低温微污染水试验,考察其稳定运行后对低温微污染水的处理效能,及原水水质、启动方式和温度对膜组合工艺处理微污染水效能的影响。结果表明:氨氮平均去除率为95%;DOC、UV_(254)、TOC和高锰酸盐指数平均去除率分别为70.8%、88.4%,76.3%和58.9%;三卤甲烷生成势(THMFP)平均去除率为81.7%;浊度去除率在99%以上。膜组合工艺处理效能受原水中氨氮、有机物和浊度浓度变化的影响较小。投加200mL生物粉末活性炭混合浆液可以缩短整个低温启动周期至25天,即膜组合工艺已具备良好的消化能力,可是对有机物的去除效能变差,而且不可逆膜污染更严重。虽然低温会降低微生物的活性,但高浓度粉末活性炭可以为微生物提供适宜的生存环境以抵御恶劣的外界条件(低温),此时的氨氮去除率仅比常温时低4%;粉末活性炭吸附有机物为放热反应,因而低温时对有机物去除率略高于常温时。
     利用红外光谱分析、原子力显微镜和扫描电镜等分析手段对经不同化学溶液清洗后的膜表面进行表征,阐述膜组合工艺处理低温微污染水的膜污染机理。结果表明:在总膜污染中,化学可逆膜污染占83%,其中有机污染物主要为蛋白质、多糖和腐殖酸,无机污染物主要为Ca~(2+)和Fe~(3+);依次经NaOH、NaClO、HCl和H_2O_2清洗后,污染膜表面的形态和亲水性基本恢复到新膜程度,膜污染得到有效控制。
     通过对跨膜压差(TMP)及膜阻力分布和混合浆液的性质的分析,研究膜污染影响因素(包括启动方式、温度和换炭量)并提出膜污染控制技术(包括曝气、去离子水反洗和进水中投加Ca~(2+))。结果表明:当膜组合工艺内高浓度粉末活性炭失效后不换炭或每天1%换炭量时,和投加200mL生物粉末活性炭混合浆液两种情况,会加重不可逆膜污染,因为粉末活性炭混合浆液中溶解性微生物产物(SMP)含量增加。低温使混合浆液平均粒径尺寸有减小的趋势,而且混合浆液中SMP含量也有所增加,从而也会加重不可逆膜污染。去离子水反洗可以恢复有机物与膜表面之间的排斥力,有效减轻在膜污染缓慢增长期的不可逆膜污染;通过调节适当的曝气量与在进水中投加Ca~(2+),可以控制粉末活性炭混合浆液平均粒径尺寸与SMP含量,从而减轻在膜污染快速增长期的不可逆膜污染。
In northern China,especially the Northeast,it’s difficult to treat micro-pollutedwater at low temperature in Winter. Remval efficiency of organic matters andammonia nitrogen in micro-polluted water at low temperature is extremely limited,which is treated by traditional water treatments. So,it’s particularly important todevelp a cost-effective,environment-friendly and easy-to-operate technology totreat micro-polluted water at low temperature.
     A high concentration powdered activated carbon (PAC)/microfiltration (MF)hybrid process was established to treat organic matters and ammonia nitrogen inmicro-polluted water at low temperature,taking advantage of adsorption of organicmatters onto PAC,excellent removal efficiency of ammonia nitrogen by biologicalactivated carbon (BAC),outstanding separation of microbes, virus and PAC. Newmethods of mitigating membrane fouling was brought out by the research onmechanisms of membrane fouling.
     The research mainly includes three parts: establishment of high concentrationPAC/membrane hybrid process and determination of operational parameters,removal efficiency and influencing factors, and influencing, control techniques andmechanism of membrane fouling. The aim of the research is to provide a newmethod of treating micro-polluted water at low temperature for northest China.
     Humic acid (HA) adsorbed by PAC and micro-polluted water treated by MF atlow temperature (10oC) were studied to investigate the performance of the separatetechnology. The results showed that: PAC was ideal to adsorb HA at lowtemperature and the removal efficiency of turbidity by MF was excellent at lowtemperature. High concentration PAC/membrane hybrid process was established andthe operational parameters were also determined as: PAC dosage of50g/L,HRT of2h,29.5-min-filtraiton with16.6L/(m~2·h) and then0.5-min-backwash with115L/(m~2·h),aeration rate of0.25m3/h and everyday2.5%PAC bulk replacementafter100days operation.
     Performance and influencing factors (characteristics of the feed water, start-upmethods and temperature) of membrane hybrid process were studied. The results showed that: removal efficiency of ammonia nitrogen was95%, removal rate ofdissolved organic carbon (DOC), ultraviolet adsorption at254nm (UV_(254)), totalorganic carbon (TOC) and permanganate index was70.8%,88.4%,76.3and58.9%,respectively, removal efficiency of trihalomethane formation potential (THMFP)was81.7%and removal rate of turbidity was above99%. Characteristics of the feedwater (ammonia nitrogen, organic matters and turbidty) had little effect on theperformance of the hybrid membrane process.The start-up time at low temperaturecould be shortened to25days by inoculating with200mL biological PAC (BPAC)bulk from other reactors, however, removal efficiency reduced and irreversiblemembrane fouling increased. Low temperature reduced the activity of the microbes,however, removal efficiency of ammonia nitrogen at low temperature was4%lowerthan that at room temperature, because high concentration of PAC provide theconvenient environment for microbes to resist the bad conditions (low temperature).The reaction of organic matters adsorbed by PAC was exothermic, so removal rateat low temperature was higher than that at room temperature.
     Membrane fouling in hybid membrane process for treating micro-pollutedwater at low temperature was elaborated, using attenuated total reflection fouriertransform infrared spectroscopy (ATR-FTIR), atomic force microscope (AFM),scanning electron microsope analysis to observe characteristics of membranesurface after different chemical cleaning. The results showed that: chemicalreversible membrane fouling accounted for83%of total membrane fouling. Themain organic fouling matters were protein, polysaccharide and humic acid, and themain inorganic fouling matters were Ca~(2+)and Fe~(3+). The shape and hydrophilicitiy offouled membrane returned to the extent of the new membrane after chemicalcleaning in turn (NaOH, NaClO, HCl and H_2O_2) and membrane fouling obtainedeffective control.
     Influencing factors (start-up methods, temperature and replacement of PACbulk) were investigated by analysis of trans-membrane pressure (TMP), distributionof membrane fouling resistance and characteristics of the bulk, and new techniques(aeration, backwash with deionized water and input with Ca~(2+)in the feed water) tomitigate membrane fouling was brought up. The results showed that: when highconcentration of PAC in the reactor lost adsorption ability, no PAC bulk replacement or everyday1%PAC bulk replacement and input with200mL BPACbulk, would increase irreversible membrane fouling, because the concentration ofSMP in PAC bulk increased. Average particle size distribution decreased and SMPin PAC bulk increased at low temperature, accelerating irreversible membranefouling. Backwash with deionized water could restore the repulsion betweenorganic matters and membrane surface and then reduce irreversible fouling withinthe slow growth period. Particle size distribution of PAC bulk could be increasedand concentration of SMP could be reduced through input with Ca~(2+)in the feedwater, lead to mitigation of irreversible fouling during the rapid growth period.
引文
[1] Sudhakar O, Neela Rani P, Venugopal G, et al. Algal indices as indicators ofeutrophication of Freshwater Lake[J]. Pollution Research,2012,31(4):697-700.
    [2]黄传灵,魏翔.湖泊富营养化过程中内源性营养盐释放规律的分析[J].安徽工程科技学院学报(自然科学版),2010,25(2):7-9.
    [3] Barbieri E, Doi S A. Acute toxicity of ammonia on juvenile cobia(Rachycentron canadum, Linnaeus,1766) according to the salinity[J].Aquaculture International,2012,20(2):373-382.
    [4] Zhang L, Xiong D M, Li B, et al. Toxicity of ammonia and nitrite to yellowcatfish (Pelteobagrus fulvidraco)[J]. Journal of Applied Ichthyology,2012,28(1):82-86.
    [5] Chuang Y H, Lin A Y C, Wang X H, et al. The contribution of dissolvedorganic nitrogen and chloramines to nitrogenous disinfection byproductformation from natural organic matter[J]. Water Research,2013,47(3):1308-1316.
    [6] Kingsbury R S, Singer P C. Effect of magnetic ion exchange and ozonation ondisinfection by-product formation[J]. Water Research,2013,47(3):1060-1072.
    [7] Rodríguez F J, Marcos L A, Nú ez L A. Influence of preozonation on theformation of chlorination disinfection by-products-a case study: Theúzquiza reservoir water[J]. Ozone: Science and Engineering,2012,34(3):213-224.
    [8] Zhang Y, Zhou L, Zeng G, et al. Impact of total organic carbon and chlorine toammonia ratio on nitrification in a bench-scale drinking water distributionsystem[J]. Frontiers of Environmental Science and Engineering in China,2010,4(4):430-437.
    [9] Gupta S, Kumar P. Study of nitrate in ground water of Jhunjhunu district ofRajasthan: A causative agent of methemoglobinemia[J]. International Journalof Chemical Sciences,2013,11(1):231-236.
    [10] De ermenci N, Ata O N, Yildiz E. Ammonia removal by air stripping in asemi-batch jet loop reactor[J]. Journal of Industrial and EngineeringChemistry,2012,18(1):399-404.
    [11] Li Q, Sun S, Guo T, et al. Short-cut nitrification in biological aerated filterswith modified zeolite and nitrifying sludge[J]. Bioresource Technology,2013,136:148-154.
    [12] Reddy G B, Forbes D A, Phillips R, et al. Demonstration of technology totreat swine waste using geotextile bag, zeolite bed and constructed wetland[J].Ecological Engineering,2013,57:353-360.
    [13] Zhang J, Zhang Y, Liu W, et al. Evaluation of removal efficiency for acutetoxicity and genotoxicity on zebrafish in anoxic-oxic process from selectedmunicipal wastewater treatment plants[J]. Chemosphere,2013,90(11):2662-2666.
    [14] Ge S, Zhu Y, Lu C, et al. Full-scale demonstration of step feed concept forimproving an anaerobic/anoxic/aerobic nutrient removal process[J].Bioresource Technology,2012,120:305-313.
    [15] Li J, Tao T, Li X B, et al. Effect of anaerobic time on biological nitrogenremoval in a modified SBR[J]. Desalination and Water Treatment,2013,51(19-21):3691-3699.
    [16] Wong F S, Fang W, Moy Y P, et al. A combined UASB-MBR with shortcutnitrification-denitrification for energy reduction in wastewater reclamation[J].Water Science and Technology,2011,63(9):1887-1893.
    [17] Gong L, Jun L, Yang Q, et al. Biomass characteristics and simultaneousnitrification-denitrification under long sludge retention time in an integratedreactor treating rural domestic sewage[J]. Bioresource Technology,2012,119:277-284.
    [18] Tao Y, Gao D W, Wang H Y, et al. Ecological characteristics of seeding sludgetriggering a prompt start-up of anammox[J]. Bioresource Technology,2013,133:475-481.
    [19] Hu Y, Wang X C, Zhang Y, et al. Characteristics of an A2O-MBR system forreclaimed water production under constant flux at low TMP[J]. Journal ofMembrane Science,2013,431:156-162.
    [20] Tao Y, Gao D W, Fu Y, et al. Impact of reactor configuration on anammoxprocess start-up: MBR versus SBR[J]. Bioresource Technology,2012,104:73-80.
    [21] Wang Z, Xu X, Gong Z, et al. Removal of COD, phenols and ammonium fromLurgi coal gasification wastewater using A2O-MBR system[J]. Journal ofHazardous Materials,2012,235-236:78-84.
    [22] Li J, Yang F, Liu Y, et al. Microbial community and biomass characteristicsassociated severe membrane fouling during start-up of a hybrid anoxic-oxicmembrane bioreactor[J]. Bioresource Technology,2012,103(1):43-47.
    [23]周玲玲,张永吉,叶河秀,等.强化混凝对腐殖酸和富里酸去除对比研究[J].环境科学,2012,33(8):2680-2684.
    [24]周晓霞,孙亚兵,朱洪标,等.城市景观水体中腐殖酸的臭氧氧化去除[J].环境保护科学,2010,36(5):10-13.
    [25]刘锐,程家迪,余彬,等. O3/BAC工艺深度处理某工业园区废水的效果[J].中国给水排水,2012,28(15):16-20.
    [26]李银磊,苑宏英,王少坡,等. O3-BAC组合工艺深度净化MBR出水的中试研究[J].环境工程学报,2011,5(6):1237-1240.
    [27]吴伟,赵雅萍. TiO2光催化降解腐殖酸的实验研究[J].华东师范大学学报(自然科学版),2011,2(2):119-125.
    [28] Sen Kavurmaci S, Bekbolet M. Photocatalytic degradation of humic acid inthe presence of montmorillonite[J]. Applied Clay Science,2013,75-76:60-66.
    [29] Lu X, Jiang J, Sun K, et al. Surface modification, characterization andadsorptive properties of a coconut activated carbon[J]. Applied SurfaceScience,2012,258(20):8247-8252.
    [30] Matsui Y, Nakao S, Taniguchi T, et al. Geosmin and2-methylisoborneolremoval using superfine powdered activated carbon: Shell adsorption andbranched-pore kinetic model analysis and optimal particle size[J]. WaterResearch,2013,47(8):2873-2880.
    [31] Solangi I B, Memon S, Bhanger M I. An excellent fluoride sorption behaviorof modified amberlite resin[J]. Journal of Hazardous Materials,2010,176(1-3):186-192.
    [32] Wang J, Zhou Y, Li A, et al. Adsorption of humic acid by bi-functional resinJN-10and the effect of alkali-earth metal ions on the adsorption[J]. Journal ofHazardous Materials,2010,176(1-3):1018-1026.
    [33] Moussavi G, Talebi S, Farrokhi M, et al. The investigation of mechanism,kinetic and isotherm of ammonia and humic acid co-adsorption onto naturalzeolite[J]. Chemical Engineering Journal,2011,171(3):1159-1169.
    [34] Gardo ová K, Urík M, Littera P, et al. The effect of pH on the sorption ofhumic acids on bentonite[J]. Fresenius Environmental Bulletin,2012,21(10):2977-2980.
    [35] Leodopoulos C, Doulia D, Gimouhopoulos K, et al. Single and simultaneousadsorption of methyl orange and humic acid onto bentonite[J]. Applied ClayScience,2012,70:84-90.
    [36]黄廷林,栾新晓,解岳,等.增效澄清池处理低温低浊水的中试研究[J].中国给水排水,2009,25(1):78-81.
    [37]李桂兰,张守德,陈海霞,等.机械搅拌澄清池处理低温低浊水的应用研究[J].工业水处理,2012,32(12):89-92.
    [38]刘善培,王启山,樊雪红,等.华北地区微污染水的气浮和沉淀工艺处理[J].吉林大学学报(工学版),2008,38(1):245-248.
    [39]田珍,李梅,由振华,等.浮沉池技术在低温低浊水处理中的应用[J].山东建筑大学学报,2010,25(1):62-65.
    [40]范海燕,张勇,迟炳章,等.浮沉池工艺在给水处理中的应用研究[J].供水技术,2009,3(4):14-17+21.
    [41]张燊,张克峰,王永磊,等.浮滤池工艺在微污染水源水处理中的应用[J].净水技术,2010,29(6):20-23.
    [42]张声,刘洋,郭振通,等.活性炭深床浮滤池处理不同水质原水的效果研究[J].中国给水排水,2008,223(11):68-71.
    [43]李诚,孙世群.不同预氧化工艺强化处理低温低浊水对比试验研究[J].供水技术,2007,1(3):11-13.
    [44]傅金祥,梁建浩,杨涛,等.臭氧预氧化与混凝联用工艺处理低温微污染水的试验研究[J].沈阳建筑大学学报(自然科学版),2005,25(5):121-124.
    [45]马军,江进,杨友强,等.机械旋转格网强化混凝处理低温低浊水研究[J].中国给水排水,2012,28(17):5-8.
    [46]周志伟,杨艳玲,李星,等.粉末碳与污泥回流强化混凝低温低浊水及残余铝[J].哈尔滨商业大学学报(自然科学版),2012,28(2):153-157.
    [47]郑萌璐,杨静,蒋轶锋,等.低温下沸石曝气生物滤池预处理微污染原水研究[J].水处理技术,2012,38(9):59-63.
    [48] Karnik B S, Davies S H, Baumann M J, et al. The effects of combinedozonation and filtration on disinfection by-product formation[J]. WaterResearch,2005,39(13):2839-2850.
    [49] Lee N, Amy G, CrouéJ P, et al. Morphological analyses of natural organicmatter (NOM) fouling of low-pressure membranes (MF/UF)[J]. Journal ofMembrane Science,2005,261(1-2):7-16.
    [50] Fane A G. Membranes for water production and wastewater reuse[J].Desalination,1996,106(1-3):1-9.
    [51] Ratajczak M J, Exall K N, Huck P M. Factors affecting coagulation as apretreatment to ultrafiltration membranes[J]. Water Quality Research Journalof Canada,2012,47(2):103-116.
    [52]许航,陈卫,孙敏,等.两种膜的前端处理技术减缓膜污染的试验研究[J].土木建筑与环境工程,2012,34(1):108-112.
    [53]姜薇,陶涛,郭五珍,等.几种超滤膜组合工艺处理北江原水中试研究[J].给水排水,2011,37(9):129-133.
    [54] Huang H, Spinette R, O'melia C R. Direct-flow microfiltration of aquasols. I.Impacts of particle stabilities and size[J]. Journal of Membrane Science,2008,314(1-2):90-100.
    [55] Huang H, Cho H H, Jacangelo J G, et al. Mechanisms of membrane foulingcontrol by integrated magnetic ion exchange and coagulation[J].Environmental Science and Technology,2012,46(19):10711-10717.
    [56]陶润先,陈立,刘景艳,等.在线混凝/超滤工艺处理低温、低浊源水的研究[J].中国给水排水,2011,27(9):67-70.
    [57]李凯,梁恒,叶挺进,等.在线混凝对浸没式超滤膜出水水质和膜污染的影响[J].北京工业大学学报,2013,39(2):287-291.
    [58] Howe K J, Clark M M. Effect of coagulation pretreatment on membranefiltration performance[J]. Journal/American Water Works Association,2006,98(4):133-146+112.
    [59] Wang S, Liu C, Li Q. Impact of polymer flocculants oncoagulation-microfiltration of surface water[J]. Water Research,2013,47(13):4538-4546.
    [60] Tran T, Gray S, Naughton R, et al. Polysilicato-iron for improved NOMremoval and membrane performance[J]. Journal of Membrane Science,2006,280(1-2):560-571.
    [61] Tian J Y, Ernst M, Cui F, et al. KMnO4pre-oxidation combined with FeCl3coagulation for UF membrane fouling control[J]. Desalination,2013,320:40-48.
    [62] Howe K J, Marwah A, Chiu K P, et al. Effect of coagulation on the size of MFand UF membrane foulants[J]. Environmental Science and Technology,2006,40(24):7908-7913.
    [63] Kit Chan W, Jou t J, Heng S, et al. Membrane contactor/separator for anadvanced ozone membrane reactor for treatment of recalcitrant organicpollutants in water[J]. Journal of Solid State Chemistry,2012,189:96-100.
    [64] Ho H L, Chan W K, Blondy A, et al. Experiment and modeling of advancedozone membrane reactor for treatment of organic endocrine disruptingpollutants in water[J]. Catalysis Today,2012,193(1):120-127.
    [65] Kim J, Davies S H R, Baumann M J, et al. Effect of ozone dosage andhydrodynamic conditions on the permeate flux in a hybrid ozonation-ceramicultrafiltration system treating natural waters[J]. Journal of MembraneScience,2008,311(1-2):165-172.
    [66] Schlichter B, Mavrov V, Chmiel H. Study of a hybrid process combiningozonation and microfiltration/ultrafiltration for drinking water productionfrom surface water[J]. Desalination,2004,168(1-3):307-317.
    [67] Lee C O, Howe K J, Thomson B M. Ozone and biofiltration as an alternativeto reverse osmosis for removing PPCPs and micropollutants from treatedwastewater[J]. Water Research,2012,46(4):1005-1014.
    [68]刘婷,陈忠林,沈吉敏,等.臭氧预氧化/MBR工艺处理微污染原水的研究[J].中国给水排水,2010,26(11):34-38.
    [69]刘婷,陈忠林,沈吉敏,等.臭氧预氧化/MBR工艺的膜污染研究[J].中国给水排水,2011,27(7):37-41.
    [70] He Y, Wang X, Xu J, et al. Application of integrated ozone biological aeratedfilters and membrane filtration in water reuse of textile effluents[J].Bioresource Technology,2013,133:150-157.
    [71] Lin T, Li L, Chen W, et al. Effect and mechanism of preoxidation usingpotassium permanganate in an ultrafiltration membrane system[J].Desalination,2012,286:379-388.
    [72] Lin T, Pan S, Chen W, et al. Role of pre-oxidation, using potassiumpermanganate, for mitigating membrane fouling by natural organic matter inan ultrafiltration system[J]. Chemical Engineering Journal,2013,223:487-496.
    [73] Liang H, Gong W, Li G. Performance evaluation of water treatmentultrafiltration pilot plants treating algae-rich reservoir water[J]. Desalination,2008,221(1-3):345-350.
    [74] Kim J, Cai Z, Benjamin M M. Effects of adsorbents on membrane fouling bynatural organic matter[J]. Journal of Membrane Science,2008,310(1-2):356-364.
    [75] Cai Z, Kim J, Benjamin M M. NOM removal by adsorption and membranefiltration using heated aluminum oxide particles[J]. Environmental Scienceand Technology,2008,42(2):619-623.
    [76] Kim J, Deng Q, Benjamin M M. Simultaneous removal of phosphorus andfoulants in a hybrid coagulation/membrane filtration system[J]. WaterResearch,2008,42(8-9):2017-2024.
    [77] Koh L C, Ahn W Y, Clark M M. Selective adsorption of natura l organicfoulants by polysulfone colloids: Effect on ultrafiltration fouling[J]. Journalof Membrane Science,2006,281(1-2):472-479.
    [78] Tian J Y, Chen Z L, Nan J, et al. Integrative membrane coagulation adsorptionbioreactor (MCABR) for enhanced organic matter removal in drinking watertreatment[J]. Journal of Membrane Science,2010,352(1-2):205-212.
    [79] Tian J Y, Chen Z L, Liang H, et al. Comparison of biological activated carbon(BAC) and membrane bioreactor (MBR) for pollutants removal in drinkingwater treatment[J]. Water Science and Technology,2009,60(6):1515-1523.
    [80] Ma C, Yu S, Shi W, et al. High concentration powdered activatedcarbon-membrane bioreactor (PAC-MBR) for slightly polluted surface watertreatment at low temperature[J]. Bioresource Technology,2012,113:136-142.
    [81] Kim K Y, Kim H S, Kim J, et al. A hybrid microfiltration-granular activatedcarbon system for water purification and wastewater reclamation/reuse[J].Desalination,2009,243(1-3):132-144.
    [82] Markarian A, Carrière A, Dallaire P O, et al. Hybrid membrane process:Performance evaluation of biological PAC[J]. Journal of Water Supply:Research and Technology-AQUA,2010,59(4):209-220.
    [83] Tang S, Wang X M, Yang H W, et al. Haloacetic acid removal by sequentialzero-valent iron reduction and biologically active carbon degradation[J].Chemosphere,2013,90(4):1563-1567.
    [84] Liao X, Chen C, Wang Z, et al. Changes of biomass and bacterialcommunities in biological activated carbon filters for drinking watertreatment[J]. Process Biochemistry,2013,48(2):312-316.
    [85] Song K Y, Park P K, Kim J H, et al. Coupling effect of17β-estradiol andnatural organic matter on the performance of a PAC adsorption/membranefiltration hybrid system[J]. Desalination,2009,237(1-3):392-399.
    [86] Lee H C, Park J Y, Yoon D Y. Advanced water treatment of high turbid sourceby hybrid module of ceramic microfiltration and activated carbon adsorption:Effect of organic/inorganic materials[J]. Korean Journal of ChemicalEngineering,2009,26(3):697-701.
    [87] Chu H, Zhang Y, Zhou X, et al. Bio-enhanced powder-activated carbondynamic membrane reactor for municipal wastewater treatment[J]. Journal ofMembrane Science,2013,433:126-134.
    [88] Filloux E, Gallard H, Croue J P. Identification of effluent organic matterfractions responsible for low-pressure membrane fouling[J]. Water Research,2012,46(17):5531-5540.
    [89] Leveille S, Carriere A, Charest S, et al. PAC membrane bioreactor as analternative to biological activated carbon filters for drinking watertreatment[J]. Journal of Water Supply: Research and Technology-AQUA,2013,62(1):23-34.
    [90] Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UFsystem[J]. Water Research,2002,36(16):4137-4143.
    [91] Mozia S, Tomaszewska M, Morawski A W. Application of anozonation-adsorption-ultrafiltration system for surface water treatment[J].Desalination,2006,190(1-3):308-314.
    [92] Mozia S, Tomaszewska M, Morawski A W. Studies on the effect of humicacids and phenol on adsorption-ultrafiltration process performance[J]. WaterResearch,2005,39(2-3):501-509.
    [93] Oh H K, Takizawa S, Ohgaki S, et al. Removal of organics and viruses usinghybrid ceramic MF system without draining PAC[J]. Desalination,2007,202(1-3):191-198.
    [94] Seo G T, Moon C D, Chang S W, et al. Long term operation of highconcentration powdered activated carbon membrane bio-reactor for advancedwater treatment[J]. Water Science and Technology,2004,50(8):81-87.
    [95] Treguer R, Tatin R, Couvert A, et al. Ozonation effect on natural organicmatter adsorption and biodegradation-Application to a membrane bioreactorcontaining activated carbon for drinking water production[J]. WaterResearch,2010,44(3):781-788.
    [96] Williams M D, Pirbazari M. Membrane bioreactor process for removingbiodegradable organic matter from water[J]. Water Research,2007,41(17):3880-3893.
    [97] Watanabe Y, Kimura K, Suzuki T. Membrane application to water purificationprocess in Japan-Development of hybrid membrane system[J]. WaterScience and Technology2000,41(10-11):9-16.
    [98] Seo G, Takizawa S, Ohgaki S. Ammonia oxidation at low temperature in ahigh concentration powdered activated carbon membrane bioreactor[J]. WaterScience and Technology: Water Supply,2002,2(2):169-176.
    [99] Andersson A, Laurent P, Kihn A, et al. Impact of temperature on nitrificationin biological activated carbon (BAC) filters used for drinking watertreatment[J]. Water Research,2001,35(12):2923-2934.
    [100] Khan M M T, Lewandowski Z, Takizawa S, et al. Continuous and efficientremoval of THMs from river water using MF membrane combined with highdose of PAC[J]. Desalination,2009,249(2):713-720.
    [101] Wang X Z, Xue G, Wang B Z, et al. Pilot study on drinking water advancedtreatment by GAC-MF system[J]. Journal of Dong Hua University (EnglishEdition),2004,21(1):135-139.
    [102] HalléC, Huck P M, Peldszus S, et al. Assessing the performance of biologicalfiltration as pretreatment to low pressure membranes for drinking water[J].Environmental Science and Technology,2009,43(10):3878-3884.
    [103] Zhao P, Takizawa S, Katayama H, et al. Factors causing PAC cake fouling inPAC-MF (powdered activated carbon-microfiltration) water treatmentsystems[J]. Water Science and Technology,2005,51(6-7):231-240.
    [104] Kim H S, Takizawa S, Ohgaki S. Application of microfiltration sy stemscoupled with powdered activated carbon to river water treatment[J].Desalination,2007,202(1-3):271-277.
    [105] Gur-Reznik S, Katz I, Dosoretz C G. Removal of dissolved organic matter bygranular-activated carbon adsorption as a pretreatment to reverse osmosis ofmembrane bioreactor effluents[J]. Water Research,2008,42(6-7):1595-1605.
    [106] Sartor M, Schlichter B, Gatjal H, et al. Demonstration of a new hybridprocess for the decentralised drinking and service water production fromsurface water in Thailand[J]. Desalination,2008,222(1-3):528-540.
    [107] Niquette P, Hausier R, Lahaye P, et al. An innovative process for thetreatment of high loaded surface waters for small communities[J]. Journal ofEnvironmental Engineering and Science,2007,6(2):139-145.
    [108] Schlichter B, Mavrov V, Chmiel H. Study of a hybrid process combiningozonation and membrane filtration-Filtration of model solutions[J].Desalination,2003,156(1-3):257-265.
    [109] Müller S, Uhl W. Influence of hybrid coagulation-ultrafiltration pretreatmenton trace organics adsorption in drinking water treatment[J]. Journal of WaterSupply: Research and Technology-AQUA,2009,58(3):170-180.
    [110] Seo G T, Jang S W, Lee S H, et al. The fouling characterization and control inthe high concentration PAC membrane bioreactor HCPAC-MBR[J]. WaterScience and Technology2005,51(6-7):77-84.
    [111] Li C W, Chen Y S. Fouling of UF membrane by humic substance: Effects ofmolecular weight and powder-activated carbon (PAC) pre-treatment[J].Desalination,2004,170(1):59-67.
    [112] Oh H, Yu M, Takizawa S, et al. Evaluation of PAC behavior and foulingformation in an integrated PAC-UF membrane for surface water treatment[J].Desalination,2006,192(1-3):54-62.
    [113] Kennedy M D, Kamanyi J, Heijman B G J, et al. Colloidal organic matterfouling of UF membranes: role of NOM composition&size[J]. Desalination,2008,220(1-3):200-213.
    [114] Costa A R, De Pinho M N, Elimelech M. Mechanisms of colloidal naturalorganic matter fouling in ultrafiltration[J]. Journal of Membrane Science,2006,281(1-2):716-725.
    [115] Campinas M, Rosa M J. Assessing PAC contribution to the NOM foulingcontrol in PAC/UF systems[J]. Water Research,2010,44(5):1636-1644.
    [116] Yiantsios S G, Karabelas A J. An experimental study of humid acid andpowdered activated carbon deposition on UF membranes and their removal bybackwashing[J]. Desalination,2001,140(2):195-209.
    [117] Saravia F, Naab P, Frimmel F H. Influence of particle size and particle sizedistribution on membrane-adsorption hybrid systems[J]. Desalination,2006,200(1-3):446-448.
    [118] Ravindran V, Tsai H H, Williams M D, et al. Hybrid membrane bioreactortechnology for small water treatment utilities: Process evaluation andprimordial considerations[J]. Journal of Membrane Science,2009,344(1-2):39-54.
    [119] Zhang M, Li C, Benjamin M M, et al. Fouling and natural organic matterremoval in adsorbent/membrane systems for drinking water treatment[J].Environmental Science and Technology,2003,37(8):1663-1669.
    [120] Mozia S, Tomaszewska M. Treatment of surface water using hybrid processes-Adsorption on PAC and ultrafiltration[J]. Desalination,2004,162(1-3):23-31.
    [121] Lee J W, Chun J I, Jung H J, et al. Comparative studies on coagulation andadsorption as a pretreatment method for the performance improve ment ofsubmerged MF membrane for secondary domestic wastewater treatment[J].Separation Science and Technology,2005,40(13):2613-2632.
    [122] Xia S J, Liu Y N, Li X, et al. Drinking water production by ultrafiltration ofSonghuajiang River with PAC adsorption[J]. Journal of EnvironmentalSciences,2007,19(5):536-539.
    [123] Gai X J, Kim H S. The role of powdered activated carbon in enhancing theperformance of membrane systems for water treatment[J]. Desalination,2008,225(1-3):288-300.
    [124] Saravia F, Frimmel F H. Role of NOM in the performance ofadsorption-membrane hybrid systems applied for the removal ofpharmaceuticals[J]. Desalination,2008,224(1-3):168-171.
    [125] Khan M M T, Takizawa S, Lewandowski Z, et al. Membrane fouling due todynamic particle size changes in the aerated hybrid PAC-MF system[J].Journal of Membrane Science,2011,371(1-2):99-107.
    [126] Jia Y, Wang R, Fane A G. Hybrid PAC-submerged membrane system for traceorganics removal II: System simulation and application study[J]. ChemicalEngineering Journal,2009,149(1-3):42-49.
    [127] Vigneswaran S, Guo W S, Smith P, et al. Submerged membrane adsorptionhybrid system (SMAHS):process control and optimization of operatingparameters[J]. Desalination,2007,202(1-3):392-399.
    [128] Damayanti A, Ujang Z, Salim M R. The influenced of PAC, zeolite, andMoringa oleifera as biofouling reducer (BFR) on hybrid membrane bioreactorof palm oil mill effluent (POME)[J]. Bioresource Technology,2011,102(6):4341-4346.
    [129] Hilal N, Ogunbiyi O O, Miles N J, et al. Methods employed for control offouling in MF and UF membranes: A comprehensive review[J]. SeparationScience and Technology,2005,40(10):1957-2005.
    [130]国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [131] Boehm H P. Surface Oxides on Carbon and Their Analysis: A CriticalAssessment[J]. Carbon,2002,40(2):145-149.
    [132] Frolund B, Griebe T, Nielsen P H. Enzymatic activity in the activated-sludgefloc matrix[J]. Applied Microbiology and Biotechnology,1995,43(4):755-761.
    [133] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with theFolin phenol reagent[J]. The Journal of biological chemistry,1951,193(1):265-275.
    [134]陈艳,董秉直,詹俊英,等. pH对粉末活性炭去除有机物的影响[J].给水排水,2004,30(5):13-16.
    [135] Wu F C, Tseng R L, Hu C C. Comparisons of pore properties and adsorptionperformance of KOH-activated and steam-activated carbons[J]. Microporousand Mesoporous Materials,2005,80(1-3):95-106.
    [136] Ho Y S, Mckay G. The kinetics of sorption of divalent metal ions ontosphagnum moss peat[J]. Water Research,2000,34(3):735-742.
    [137] Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes fromwater using the composite of chitosan and activated clay[J]. Journal ofColloid and Interface Science,2004,278(1):18-25.
    [138] Alkan M, Demirba O, elik apa S, et al. Sorption of acid red57fromaqueous solution onto sepiolite[J]. Journal of Hazardous Materials,2004,116(1-2):135-145.
    [139]詹健,康晓荣,黄福昌.微絮凝超滤对微污染源水中氨氮去除的试验研究[J].水资源保护,2009,25(3):68-71.
    [140]王锦,王晓昌,何自琦.超滤膜直接过滤水处理试验研究[J].西安建筑科技大学学报(自然科学版),2001,33(1):51-55.
    [141]苗茵婷,孙志民,刘强,等.浸没式超滤膜过滤工艺处理珠江微污染水的研究[J].广东化工,2011,38(1):127-128+108.
    [142] Ying Z, Ping G. Effect of powdered activated carbon dosage on retardingmembrane fouling in MBR[J]. Separation and Purification Technology,2006,52(1):154-160.
    [143] Jamal Khan S, Visvanathan C, Jegatheesan V. Effect of powdered activatedcarbon (PAC) and cationic polymer on biofouling mitigation in hybridMBRs[J]. Bioresource Technology,2012,113:165-168.
    [144] Robles A, Ruano M V, Ribes J, et al. Factors that affect the permeability ofcommercial hollow-fibre membranes in a submerged anaerobic MBR(HF-SAnMBR) system[J]. Water Research,2013,47(3):1277-1288.
    [145] Kim H G, Chung T H. Performance of the sludge thickening and reduction atvarious factors in a pilot-scale MBR[J]. Separation and PurificationTechnology,2013,104:297-306.
    [146] Fallah N, Bonakdarpour B, Nasernejad B, et al. Long-term operation ofsubmerged membrane bioreactor (MBR) for the treatment of syntheticwastewater containing styrene as volatile organic compound (VOC): Effect ofhydraulic retention time (HRT)[J]. Journal of Hazardous Materials,2010,178(1-3):718-724.
    [147] Rahimi Y, Torabian A, Mehrdadi N, et al. Optimizing aeration rates forminimizing membrane fouling and its effect on sludge characteristics in amoving bed membrane bioreactor[J]. Journal of Hazardous Materials,2011,186(2-3):1097-1102.
    [148] Fu H Y, Xu P C, Huang G H, et al. Effects of aeration parameters on effluentquality and membrane fouling in a submerged membrane bioreactor usingBox-Behnken response surface methodology[J]. Desalination,2012,302:33-42.
    [149] Jeong S, Naidu G, Vigneswaran S. Submerged membrane adsorptionbioreactor as a pretreatment in seawater desalination for biofouling control[J].Bioresource Technology,2013,141:57-64.
    [150] Guo W S, Vigneswaran S, Ngo H H, et al. Influence of bioreaction on along-term operation of a submerged membrane adsorption hybrid system[J].Desalination,2006,191(1-3):92-99.
    [151] Committee A M T R. Committee Report: Membrane Process[J]. Journal ofAmerican Water Works Association,1998,90(6):91-95.
    [152] Guo H, Wyart Y, Perot J, et al. Low-pressure membrane integrity tests fordrinking water treatment: A review[J]. Water Research,2010,44(1):41-57.
    [153] Chang H Q, Liang H, Gao W, et al. Purification of micro-polluted reservoirwater from the Yellow River by membrane bioreactors combined withpretreatments[J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Instituteof Technology,2012,44(12):25-31.
    [154]张劲松. MBR的膜污染机制与可持续操作原理[D].大连:大连理工大学学位论文,2007:59-61.
    [155] Sun C, Leiknes T, Weitzenb ck J, et al. Development of an integratedshipboard wastewater treatment system using biofilm-MBR[J]. Separationand Purification Technology,2010,75(1):22-31.
    [156]胡婧逸,邓慧萍,张玉先,等. PAC/MBR处理微污染地表水的中试研究[J].中国给水排水,2010,26(15):23-27.
    [157] Di Bella G, Durante F, Torregrossa M, et al. Start-up with or withoutinoculum? Analysis of an SMBR pilot plant[J]. Desalination,2010,260(1-3):79-90.
    [158]傅金祥,苏锦明,周晴,等.温度对PAC-MBR组合工艺的影响[J].膜科学与技术,2005,25(6):55-58.
    [159] Liu Y, Wang L, Wang B, et al. Performance improvement of hybrid membranebioreactor with PAC addition for water reuse[J]. Water Science andTechnology2005,52(10-11):383-391.
    [160] Kim H S, Katayama H, Takizawa S, et al. Development of a microfilterseparation system coupled with a high dose of powdered activated carbon foradvanced water treatment[J]. Desalination,2005,186(1-3):215-226.
    [161]傅金祥,徐微,苏锦明,等.温度对IMBR污水处理效果的影响[J].沈阳建筑工程学院学报(自然科学版),2004,20(3):211-214.
    [162]刘锐,黄霞,范彬,等.膜-生物反应器中溶解性微生物产物的研究进展[J].环境污染治理技术与设备,2002,3(1):1-7.
    [163] Huang X, Liu R, Qian Y. Behaviour of soluble microbial products in amembrane bioreactor[J]. Process Biochemistry,2000,36(5):401-406.
    [164] Liang S, Liu C, Song L F. Soluble microbial products in membrane bioreactoroperation: Behaviors, characteristics, and fouling potential[J]. WaterResearch,2007,41(1):95-101.
    [165] Henriques I D S, Holbrook R D, Kelly Ii R T, et al. The impact of floc size onrespiration inhibition by soluble toxicants-A comparative investigation[J].Water Research,2005,39(12):2559-2568.
    [166] Ivanovic I, Leiknes T. Impact of aeration rates on particle colloidal fraction inthe biofilm membrane bioreactor (BF-MBR)[J]. Desalination,2008,231(1-3):182-190.
    [167] Wilén B M, Keiding K, Nielsen P H. Anaerobic deflocculation and aerobicreflocculation of activated sludge[J]. Water Research,2000,34(16):3933-3942.
    [168] Le-Clech P, Chen V, Fane T a G. Fouling in membrane bioreactors used inwastewater treatment[J]. Journal of Membrane Science,2006,284(1-2):17-53.
    [169] Xiao F, Ma J, Yi P, et al. Effects of low temperature on coagulation ofkaolinite suspensions[J]. Water Research,2008,42(12):2983-2992.
    [170] Rosenberger S, Laabs C, Lesjean B, et al. Impact of colloidal and solubleorganic material on membrane performance in membrane bioreactors formunicipal wastewater treatment[J]. Water Research,2006,40(4):710-720.
    [171] Rosenberger S, Evenblij H, Te Poele S, et al. The importance of liquid phaseanalyses to understand fouling in membrane assisted activated sludgeprocesses-Six case studies of different European research groups[J]. Journalof Membrane Science,2005,263(1-2):113-126.
    [172] Kimura K, Yamato N, Yamamura H, et al. Membrane fouling in pilot-scalemembrane bioreactors (MBRs) treating municipal wastewater[J].Environmental Science and Technology,2005,39(16):6293-6299.
    [173] Van Den Brink P, Satpradit O A, Van Bentem A, et al. Effect of temperatureshocks on membrane fouling in membrane bioreactors[J]. Water Research,2011,45(15):4491-4500.
    [174] Miyoshi T, Tsuyuhara T, Ogyu R, et al. Seasonal variation in membranefouling in membrane bioreactors (MBRs) treating municipal wastewater[J].Water Research,2009,43(20):5109-5118.
    [175] Bai R, Leow H F. Microfiltration of activated sludge wastewater-The effect ofsystem operation parameters[J]. Separation and Purification Technology,2002,29(2):189-198.
    [176] Arabi S, Nakhla G. Impact of calcium on the membrane fouling in membranebioreactors[J]. Journal of Membrane Science,2008,314(1-2):134-142.
    [177] Kim I S, Jang N. The effect of calcium on the membrane biofouling in themembrane bioreactor (MBR)[J]. Water Research,2006,40(14):2756-2764.
    [178] Kumar M, Adham S S, Pearce W R. Investigation of seawater reverse osmosis
    fouling and its relationship to pretreatment type[J]. Environmental Science
    and Technology,2006,40(6):2037-2044.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700