方向性数字图像表示及去噪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在目前的信号表示方法中小波变换法已被广泛接受,然而小波在高维(例如二维)应用中表现出了局限性。这是因为小波仅对零维奇异值的目标函数是最优基,在一维或更高维奇异性上,不是最优基。因此能够克服小波上述缺点的具有方向性的图像表示方法就成为人们寻求的目标。在近几年对方向性图像表示方法的研究中,脊波、曲波、Contourlet变换方法由于具有固定的变换形式和灵活的方向选择性而逐渐成为各种方向性图像表示中的佼佼者。
     本文首先对这些变换方法进行详细地研究和讨论,包括原理、构造方法、性能、应用领域等。在此基础上,开发了简化计算的小波基矢量构造方法,并将其应用于改进的有限域脊波变换;在对Contourlet方向滤波器的研究中,结合全相位数字滤波,通过构造方向模板以及图像扭转和风扇滤波迭代的方法,得到了两种新型的方向滤波器组。这两种全相位方向滤波器组不对图像下采样,保留了图像方向的细节信息,具有更好的方向选择性能且在恢复时,不需要重建滤波,方法简单;在对Contourlet变换的分级研究中,建立了一种全相位分级方法,由于全相位子带分解的优异性能,使得这种分级方法优于拉普拉斯金字塔分级方法。将全相位分级方法同全相位方向滤波器相结合,形成了一种新型的全相位Contourlet离散变换。
     本文研究了方向性表示方法在图像去噪中的应用。首先,总结了各种图像去噪的方法,重点介绍了小波去噪的各种算法。通过比较各种图像表示方法的图像去噪效果,得到了有意义的结论,即本文提出的改进有限域脊波变换方法适用于具有直线特征的图像去噪,而全相位Contourlet在对自然图像,尤其是细节较多图像去噪上性能优异。
Among the present image representations, wavelet transformation has been adopted widely. However, in high dimensions (such as two dimensions), wavelets expose an inherent limitation. It is because wavelets are optimal bases in catching zero-dimension singularities but not for one-dimension or higher dimensions singularities. This disappointing behavior indicates that more powerful directional image representations are necessary in higher dimensions. In recent researches about directional image representations, Ridgelet, Curvelet and Contourlet gradually are accepted for their fixed transforms and flexible directional image expansions.
     In this dissertaion, firstly the above transformation methods are studied in detail, including theories, construction methods, performances, application fields and so on. During the process of research, this dissertation has developed wavelet base vectors to simplify the computation and has proposed the improved finite ridgelet; Then based on the directional filter bank of Contourlet and All phase digital filters, tow construction methods of the novel all phase directional filter banks (APDFB) are acquired respectively by constructing directional templates or by rotating images and iterating fan filters. Not considering subsample, these two filter banks retain more image details and better direction selectivity. As to the image reconstruction, the original image can be obtained only by adding all directional images and reconstruction filter is unnecessary; Furthermore, an all phase multiscale decomposition method is proposed to substitute the Laplacian pyramid applied in the original Contourlet. To combine it with APDFB, a novel all phase Contourlet discrete transform is accomplished.
     Finally this dissertaion summarizes all sorts of image denoising methods and provides the results and comparisons of all denoising methods. The conclusion is that improved finite ridgelet transform adapts to denoise images with linear singularitiesand All phase Contourlet has excellent performances in denoising natural images especially those with more details.
引文
[1]. B.A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, pp. 607–609, 1996.
    [2]. A. B. Watson. The cortex transfonn: Rapid computation of simulated neural images. Computer Vision, Graphics, and Image Processing, vol. 39, no. 3, pp. 311~327, 1987.
    [3]. E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. Shiftable multiscale transforms. IEEE Transactions on Information Theory, Special Issue on Wavelet Transforms and Multiresolution Signal Analysis, vol. 38, no. 2, 1992, pp. 587~607.
    [4]. S. M. Phong, C. W. Kim, P. P. Vaidyanathan, R. Ansari. A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Trans. Signal Proc. 43, pp. 649–665, Mar. 1995.
    [5]. F. G. Meyer, R. R. Coifman. Brushlets: a tool for directional image analysis and image compression. Journal of Appl. and Comput. Harmonic Analysis, vol. 5, 1997, pp.147~187.
    [6]. N. Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals. Journal of Appl. and Comput. Harmonic Analysis, vol. 10, 2001, pp. 234~253.
    [7]. E. L. Pennec, S. Mallat. Image compression with geometric wavelets. Proc. IEEE Int. Conf. on Image Proc.,Vancouver, Canada, Sep. 2000.
    [8]. David Donoho and Xiaoming Huo. Beamlet pyramids: A new form of multiresolution analysis, suited for extracting lines, curves, and objects from very noisy image data. In Proceedings of SPIE, volume 4119, July 2000.
    [9]. D. L. Donoho,Wedgelets: nearly-minimax estimation of edges. Ann. Statist, vol.27, 1999. pp859~897.
    [10]. P. L. Dragotti, M. Vetterli. Footprints and edgeprints for image denoising and compression. Proc. IEEE Int. Conf. On Image Proc., Thessaloniki, Greece, 2001,10.
    [11]. 焦李成 侯彪 刘芳, 基函数网络逼近:进展与展望, 工程数学学报,2002.2 pp.21~36
    [12]. 焦李成 谭山, 图像的多尺度几何分析:回顾和展望,电子学报 2004 年12 期,pp.1975~1981
    [13]. 侯彪 刘芳 焦李成, 基于脊波变换的直线特征检测, 2003 年 33 卷 1期 中国科学 E 辑 pp. 65~73
    [14]. 成礼智,小波的理论与应用 北京: 科学出版社 2004
    [15]. 成礼智,小波与离散变换理论及工程实践 北京:清华大学出版社 2005
    [16]. 刘祝华 邹道文 钟华 邓承志 汪胜前, 基于 Finite Ridgelet 变换的去噪算法研究,计算机工程与应用,2005 年 18 期,pp.42~44.
    [17]. 李应岐 何明一,一种基于近似有限 Ridgelet 变换的 SAR 图像分割方法,计算机工程与应用 2005 年 9 期,pp.13~15.
    [18]. 袁修贵 宋守根,Ridgelet 变换在地震数据压缩中的应用,中南大学学报:自然科学版,2004 年 2 期,pp.300~303.
    [19]. 一种更适合图像处理的多尺度变换——Curvelet 变换,计算机工程与应用,2004 年 28 期, pp.21~26.
    [20]. 李智杰 高新波 姬红兵, 基于 Curvelet 变换的红外图像背景杂波抑制算法,2004 年 5 期 pp.1~9.
    [21]. 肖小奎 黎绍发,加强边缘保护的 Curvelet 图像去噪方法,通信学报,2004年 2 期 pp.9~15.
    [22]. 肖亮 韦志辉 吴慧中,基于图像内容的脊波变换域数字水印模型和算法研究,电子与信息学报,2004(9),pp.1440~1448.
    [23]. 喻汉龙 余胜生 周敬利 郑武, 一种基于改进的 contourlet 变换的图像压缩算法,通信学报,2005 年 14 期,pp.40~43.
    [24]. 袁修贵,张安,Ridgelet 变换及其在图象降噪中的应用,计算机工程与应用 2004(1)pp.83~85
    [25]. 袁修贵,宋守根,侯木舟. Ridgelet 变换在地震数据处理中的应用,物探化探计算技术 2003(5) pp.140~144
    [26]. M. N. Do and M. Vetterli. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans on Image Processing, revised Dec. 2004, to appear
    [27]. E.J.Candès. Ridgelets: Theory and applications, Ph.D. dissertation, Dept. Statistics, Stanford Univ. Stanford, CA, 1998.
    [28]. E.J.Candès, D.L.Donoho. Ridgelets: A key to higher-dimensional intermittency. Phil.Trans. R. Soc. Lond. A., pp. 2495–2509, 1999.
    [29]. Minh N. Do, Martin Vetterli. The Finite Ridgelet Transform for Image Representation. IEEE Trans. On Image Processing, Vol. 12, No.1, January 2003
    [30]. E.J.Cand`es, D.L.Donoho. Curvelets–a suprisingly effective nonadaptive representation for objects with edges. In A. Cohen, C. Rabut, and L. L. Schumaker, editors, Curve and Surface Fitting, Saint-Malo, 1999. Vanderbilt University Press.
    [31]. E.J.Cand`es, D.L.Donoho. Curvelets, multiresolution representation, and scaling laws. In A. Aldroubi, A. F. Laine, and M. A. Unser, editors, SPIE Wavelet Applications in Signal and Image Processing VIII, volume 4119, 2000.
    [32]. Jean-Luc Starck, Emmanuel J. Candès, David L. Donoho. The Curvelet Transform for Image Denoising, IEEE Trans. On Image Processing, Vol. 11, No. 6, June 2002
    [33]. M. N. Do, M. Vetterli. Curvelets and filter banks. IEEE Trans. Image Proc., 2001. to be submitted.
    [34]. M. N. Do, M.Vetterli. Pyramidal directional filter banks and curvelets. In Proc. IEEE Int. Conf. on Image Proc., Thessaloniki, Greece, Oct. 2001.
    [35]. D.L.Donoho, M.R.Duncan. Digital curvelet transform: strategy, implementation and experiments. In Proc. Aerosense 2000, Wavelet Applications VII, SPIE volume 4056, pages 12~29..
    [36]. Jean-Luc Starck, Fionn Murtagh, Emmanuel J. Candès, David L. Donoho. Gray and Color Image Contrast Enhancement by the Curvelet Transform. IEEE Trans. On Image Processing, Vol. 12, No. 6, 2003(6) pp.706~717
    [37]. Cohen, B. Matei. Compact representation of images by edge adapted multiscale transforms. Proc. IEEE Int. Conf. on Image Proc., Special Session on Image Processing and Non-Linear Approximation, Thessaloniki, Greece, Oct. 2001, invited paper.
    [38]. M.B.Wakin, J.K.Romberg, H.Choi, R.G.Baraniuk. Rate-distortion optimized image compression using wedgelets, Proc. IEEE Int. Conf. on Image Proc., Rochester, New York, 2002,10.
    [39]. R.Shukla,P.L.Dragotti, M. N. Do, M.Vetterli. Rate-distortion optimized tree structured compression algorithms for piecewise smooth images. IEEE Trans. On Image Proc., 2002, submitted.
    [40]. Zhengxin Hou, Xujing Guo, and Xi Yang. A novel hierarchical coding algorithm based on multi-subsample and the all phase IDCT interpolation. Proceedings of Mathematics of data/image coding, compression, and encryption VII, with applications, 5561, Aug. 2004, 76~83, Optical Science and Technology 49th Annual Meeting.
    [41]. R. H. Bamberger, M.J.T.Smith. A filter bank for the directional decomposition of images: Theory and design. IEEE Trans. Signal Proc., 40(4), 1992, 882~893.
    [42]. R. H. Bamberger. The Directional Filter Bank: A Multirate Filter Bank for the Directional Decomposition of Images. PhD thesis, Georgia Institute of Technology, 1990.
    [43]. G. Beylkin. Discrete Radon Transform. IEEE Trans. Acoust. Speech Sig. Proc., 1987(35):162–172.
    [44]. E. D. Bolker, The finite Radon transform, in Integral Geometry (Contemporary Mathematics), S. Helgason, R. L. Bryant, V. Guillemin, and R. O. Wells, Jr., Eds., 1987, vol. 63, pp. 27~50.
    [45]. Peter J. Burt, Edward H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans on Comm. 31(4), 532~540,1983.
    [46]. 毕厚杰,静止图像编码,通信学报 1993, pp.48~54.
    [47]. Lawrence H. Croft, John A. Robinson. Subband image coding using watershed and watercourse Lines of the Wavelet Transform. IEEE Trans. on Image Processing 3(6), 759-772,1994.
    [48]. 程正兴. 小波分析算法与应用. 西安:西安交通大学出版社 1999.6
    [49]. S. Mallat. A wavelet tour of signal processing. 2nd ed. Academic Press, 1999.
    [50]. A. Skodras, C. Christopoulos, T. Ebrahimi. The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine, vol. 18, Sep. 2001, pp. 36~58.
    [51]. Y.Lu , M.N.Do. CRISP-contourlet: a critically sampled directional multiresolution image representation. In Proc. SPIE Conf. on Wavelets X, San Diego, Aug. 2003.
    [52]. D. Donoho , I. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, vol. 81, 1994, pp. 425~455.
    [53]. I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun. On Pure and Appl. Math., 41:909~996, November 1988.
    [54]. I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Th., 36(5): 961~1005, September 1990.
    [55]. I. Daubechies. Ten lectures on wavelets. SIAM, Philadelphia, PA, 1992.
    [56]. M. Do, S. Ayer, M. Vetterli. Invariant image retrieval using wavelet maxima moment. In Proc. of 3rd Int. Conf. in Visual Information and Information Systems, 1999, pp.451~458.
    [57]. J. Kovacevic. Filter Banks and Wavelets: Extensions and Applications. PhD thesis, Columbia University, Oct. 1991.
    [58]. S. Mallat , W. L. Hwang. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, Special Issue on Wavelet Transforms and Multiresolution Signal Analysis, 38(2):617–643, March 1992.
    [59]. S. Park. New directional filter banks and their applications in image processing. PhD thesis, Georgia Institute of Technology, 1999.
    [60]. M. Vetterli, Multidimensional sub-band coding: Some theory and algorithms. Signal Proc., vol. 6, no. 2, pp. 97~112, February 1984.
    [61]. M. N. Do, M. Vetterli. Directional local bases from multidimensional filter hanks. IEEE Trans. Image Proc., 2001, submitted.
    [62]. M. N. Do , M. Vetterli. Frame reconstruction of the Laplacian pyramid. in IEEE Trans. Acoust., Speech, and Signal Proc.. Salt Lake City, May 2001.
    [63]. M. N. Do, Directional Multiresolution Image Representations. PhD thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, December 2001
    [64]. 王兆华,韩萍,曹继华. Fourier 重叠数字滤波器. 信号处理 2001(4)pp.189~191
    [65]. 候正信.离散余弦列率数字滤波器. 天津大学学报 1999(5)pp.324~328
    [66]. 侯正信,王兆华,杨喜. 全相位数字滤波器的设计与实现.电子学报 2003,31(4) pp539~543.
    [67]. 苏飞. 带窗的全相位数字滤波器设计与应用研究. 天津大学博士论文2003.2
    [68]. 苏飞,王兆华. DCT 域全相位 FIR 滤波器的设计与实现. 电子学报 2004(12), Vol (37) 1110~1114.
    [69]. 苏 飞,王兆华. 全相位 FIR 滤波器及其在频谱分析中的应用. 数据采集与处理 2004(3),Vol (19) pp.61~66
    [70]. 王文全. 基于列率子带特征编码的图像压缩技术, 天津大学硕士论文, 2002.2
    [71]. 王兆华,侯正信,苏飞. 全相位 FFT 频谱分析. 通信学报 2003(11)pp.16~19
    [72]. Shih-Ta Hsiang. Highly scalable subband/wavelet image and video coding. Phd. Thesis Rensselaer Polytechnic Institute 2005.5
    [73]. P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall, Englewood Cliffs, NJ, 1993.
    [74]. D.L.Donoho, I.M.Johnsone. Threshold selection for wavelet shrinkage of noisy data. Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE 3-6 Nov. 1994, A24~A25 vol.1
    [75]. Lau, D.L., Arce, G.R., Gallagher, N.C.. Robust image wavelet shrinkage for denoising. Image Processing, 1996. Proceedings., International Conference onVolume 1, 16-19 Sept. 1996 pp.371 ~ 374 vol.1
    [76]. Donoho, D.L. De-noising by soft-thresholding. Information Theory, IEEE Transactions on Volume 41, Issue 3, May 1995 pp: 613 ~627
    [77]. Chang, S.G.; Bin Yu; Vetterli, M.. Adaptive wavelet thresholding for image denoising and compression. Image Processing, IEEE Transactions on Volume 9, Issue 9, Sept. 2000 Page(s):1532~1546.
    [78]. Selesnick, I.W.. A new complex-directional wavelet transform and its application to image denoising Image Processing. 2002 International Conference on Volume 3, 24-28 June 2002 pp:573~ 576 vol.3
    [79]. Velisavljevic, V., Dragotti, P.L., Vetterli, M.. Directional wavelet transforms and frames. Image Processing. 2002. Proceedings. 2002 International Conference on Volume 3, 24-28 June 2002 pp:589 ~ 592 vol.3
    [80]. Rosiles, J.G., Smith, M.J.T.. Image denoising using directional filter banks. Image Processing, 2000. Proceedings. 2000 International Conference on. Volume 3, 10~13 Sept. 2000 pp:292 ~ 295 vol.3
    [81]. Sendur, L., Selesnick, I.W.. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. Signal Processing, IEEE Transactions on Volume 50, Issue 11, Nov. 2002 pp:2744~ 2756
    [82]. 谢杰成,张大力,徐文立,小波图像去噪,中国图象图形学报 2002.3 pp.209~217.
    [83]. Meyer.Y, 小波与算子 北京:世界图书出版社 1990
    [84]. 霍春雷,冯象初,张玉双,宋国乡, 第二类 Fredholm 积分方程的小波快速算法,工程数学学报 2003.12 pp.42~46
    [85]. 柳 蔚,马争鸣,基于边缘检测的图象小波阈值去噪方法, 中国图象图形学报 2002.8 pp.788~793
    [86]. 杨建伟,程正兴,杨守志. 任意矩阵伸缩的正交小波包. 高等学校计算数学学报 2003.3 pp.91~96
    [87]. Mark J.Shensa. The discrete wavelet transform: wedding the a Trous and Mallat Algorithms. IEEE Trans on Signal Processing. 1992(10) pp.2464~2482
    [88]. Minh N. Do. Framing pyramids. IEEE Trans. On Signal Processing. 2003(9) pp.2329~2342
    [89]. A. Rosenfeld, Ed., Multiresolution image processing and analysis. New York, Springer-Verlag, 1984.
    [90]. Z. Cvetkovic′, M. Vetterli, Oversampled filter banks, IEEE Trans. on Signal Processing, vol. 46, pp. 1245–1255, May 1998.
    [91]. 秦前清,杨宗凯编 实用小波分析 西安:西安电子科技大学出版社 1994 年
    [92]. 余松煜等编 数字图像处理,北京:电子工业出版社 1989 年
    [93]. A.G. Flesia, H. Hel-Or, A. Averbuch, E.J. Cand`es, R.R. Coifman, D.L. Donoho. Digital implementation of ridgelet packets
    [94]. Emmanuel J. Candμes. Harmonic Analysis of Neural Networks
    [95]. F.Matus, J. Flusser. Image representations via a finite radon transform. IEEE Trans. On Pattern Analysis and Machine Intelligence. 1993.10 pp.996~1006
    [96]. Emmanuel J. Candμes. Monoscale ridgelets for the representation of images with edges
    [97]. Minh N.Do. Martin Vetterli. Orthonormal finite ridgelet transform for image compression. pp.367~370
    [98]. M. Vetterli and C. Herley. Wavelets and filter banks: theory and design. IEEETrans. Signal Proc., 40(9):2207~2232, September 1992.
    [99]. M. Vetterli. Wavelets, Approximation and compression. IEEE SP Mag., pp. 59~73, Sep. 2001.
    [100]. A. Said, W.A.Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits and Systems for Video Technology, 6(3): 243~250,1996.
    [101]. J.K.Romberg, H.Choi, R.G.Baraniuk. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. In Proc. Of SPIE Conf. on Mathematical Modeling, Bayesian Estimation, and Inverse Problems, volume 3816, pages 306–320, 1999.
    [102]. Z. Pecenovic, M. Do, S. Ayer, and M. Vetterli. New methods for image retrieval. In Proceedings of ICPS’98. Congress on Exploring New Tracks in Imaging, September 1998.
    [103]. S. Park,M, J. T. Smith, R.M.Mersereau. A new directional filterbank for image analysis and classification. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc., 1999, pp: 1417~1420.
    [104]. P. Moulin, J. Liu. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Trans. Inform. Th., 45:909~919, 1999.
    [105]. F. Liu , R. W. Picard. Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Trans. Patt. Recog. and Mach. Intell., 18(7):722~733, July 1996.
    [106]. F. Falzon , S. Mallat. Analysis of low bit rate image transform coding. IEEE Trans. Image Processing, Jan. 1998.
    [107]. D. Donoho, I. Johnstone, Ideal denoising in an orthonormal basis chosen from a library of bases. C.R. Acad Sci. Paris, S′erie I, vol. 319, pp. 1317–1722, 1994.
    [108]. J. Liu , P. Moulin, Complexity-regularized image denoising. IEEE Trans. Image Processing, vol. 10, no. 6, pp. 841–851, 2001.
    [109]. A. Said and W.A. Pearlman, A new, fast and efficient image codec based on set partitioning in hierachical trees. IEEE Tr. on Circuits and Systems for Video Techn., Vol. 6, pp.243-250, June 1996.
    [110]. 崔锦泰(著),程正兴(译),小波分析导论. 西安:西安交通大学出版社,1995
    [111]. H.Krim, D.Tucker and D.L. Donoho. On denoising and best signal representation. IEEE Transactions on Information Theory Vol.45, No.7, November 1999: pp.2225-2237.
    [112]. A. Chambolle, R.A.Devore, N.Lee and B.J.Lucier. Nonlinear Wavelet Image Processing: Variational Problems, Compression, and Noise Removal Through Wavelet Shrinkage. IEEE Transactions on Image Processing, Vol.7, No.3. March, 1998: 319-335.
    [113]. D.L.Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, Vo1.47, No.7, Nov. 2001: pp.2845-2862
    [114]. Berkner, K.; Wells, R.O., Jr., Wavelet transforms and de-noising algorithms. Signals, Systems and Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on. Volume: 2, 1998, Page(s): 1639 -1643 vol.2
    [115]. 胡昌华,张军波,夏军,张伟,基于 MATLAB 的系统分析与设计— 小波分析,西安:西安电子科技大学出版社,1999. 12
    [116]. 王晓丹,吴崇明,基于 MATLAB 的系统分析与设计—小波分析,西安:西安电子科技大学出版社,2000.9
    [117]. Coifrnan, R.R,Donoho, D.L., Translation-invariant de-noising, wavelets and statistics, New York, CA: Springer-verlag,1995
    [118]. Donoho, D.L., Johnstone, I.M., Kerkacharian, G, Wavelet shrinkage: asymptopia, Journal of Royal Statistical Society, 1995, Vol. 57, No. 2, pp: 301~336
    [119]. Johnstone, I.M., Silverman, B.W. Wavelet threshold estimators for data with correlated noise. Journal of Royal Statistics Society Series, 1997, Vol. 59, pp: 319~351
    [120]. 龙莆荟,赵荣椿,一种基于视觉感知及相位特征的纹理分割新方法.电子学报,1996(8)pp:33~36
    [121]. 范宏寅,张春田,图像信号二维方向滤波器研究.天津大学学报 1991(4)pp:
    [122]. M. J. T. Smith, T. P. Bamwell. A new filter-bank theory for time-frequency representation. IEEE Trans. Acoust. Speech Signal Processing, pp. 311~327, Mar. 1987.
    [123]. P. P. Vaidyanathan. Multirate digital filters, filter banks, polyphase networks and applications: a tutorial. Proc. IEEE, vol 78, pp. 56-93, Jan. 1990.
    [124]. 杨福生,小波变换的工程分析与应用,北京:科学出版社,1999
    [125]. J. Kovacevic and M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for R. IEEE Trans. Inform. Theory, vol. 38, pp. 533~555, Mar. 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700