污泥低温干燥及冷凝液污染特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国污水处理厂不断完善,污泥产量急剧增加。污泥干燥能有效的减少污泥体积,使污泥稳定化,干燥后的污泥还能作为能源使用。但对不同污水污泥处理工艺条件下污泥干燥特性及其冷凝液的水质特性研究较少。本文主要针对不同污水和污泥处理方式对污泥颗粒的干燥特性影响进行研究,重点分析了温度对污泥干燥过程中产生的冷凝液的水质影响及其有机物成分的变化规律。
     本文选取三种不同类型的脱水污泥,分别制成3种粒度的污泥颗粒,在65℃、85℃、105℃和125℃条件下进行恒温干燥实验。结果表明,减小污泥颗粒和增大干燥温度均可缩短污泥完全干燥时间,提高污泥的最大干燥速率;消化污泥干燥速率最高,曝气生物滤池污泥次之,剩余污泥最低。通过扫描电镜分析干燥后的污泥可知:消化污泥表面非常粗糙,结构比较松散;剩余污泥表面相对比较光滑,结构密实;而曝气生物滤池污泥表面比较粗糙,结构比较致密。污泥表面的粗糙程度与等温干燥速率正相关。
     本文在实验室条件下利用油浴锅模拟污泥低温干燥,研究了不同温度条件下冷凝液水质特性和有机物组成。结果表明,温度高于185℃时,冷凝液COD和NH_4~+-N浓度分别超过2000mg/L和1000mg/L,属于高浓度有机废水,需要进行处理后达标排放。冷凝液有机物组成成分较为复杂:在低温阶段(105℃~145℃)以醇类和链状烷烃为主,含量分别为23%和35%;在高温阶段(205℃)以烯烃和芳香烃为主,含量分别为19.39%和26.34%。通过对比,冷凝液中有机污染物均不属于《地表水环境质量标准》中监控污染物和EPA优先控制污染物,可见冷凝液中有机污染物的毒性相对较低。
With the constant perfection of the sewage treatment plant, the sludge production sharp increases. Sludge drying technology can effectively reduce the sludge volume and make the sludge stabilized. Even the sludge can be used as energy source after drying. However, the research on sludge drying characteristics and the water quality of the condensate with different sewage sludge treatments has not been reported widely. This paper mainly studies the effects on sludge particle drying characteristics from different sewage and sludge treatments and emphatically analyses the drying temperature influence on the water quality and the change law of organic compounds composition of the drying condensate.
     Three dewatered sludge with different particle sizes were dried at constant temperature 65℃, 85℃, 105℃and 125℃respectively. The results showed that reducing sludge particle size or increasing the drying temperature had good effect on improving the drying rate of sludge. The drying rates of three sludges were followed by digested sludge, biological aerated filter sludge and excess sludge, respectively. SEM analysis indicated that there were significant differences in the micro-morphologies of three sludges, such as digested sludge with very rough surface and loose structure, excess sludge with smooth surface and dense structure and biological aerated filter sludge with rough surface and less dense structure. Therefore, there was a positive correlation between the surface roughness of sludge and the drying rate.
     In this paper,the water quality and organic compounds composition of the liquor condensate has been analyzed through the simulation for sludge low-temperature drying under laboratory conditions. The results showed that: when the temperature was higher than 185℃, the COD and NH_4~+-N concentrations of the liquor condensate was respectively more than 2000mg/L and 1000mg/L, which belongs to the high concentration organic wastewater and could not be discharged without proper treatment to reach the standard. The organic compositions in the liquor condensate were complicated: in low temperature stage (105℃ ~145℃), the main components were alcohol and chain alkane, the content of which were 23% and 32% severally; In high temperature stage (205℃), the mains were olefins and aromatics, the contents were 19.39% and 26.34% respectively. There were no organic pollutants controlled in《Surface Water Environment Quality Standard》and EPA in the condensate. Therefore the toxic of condensate is relatively lower.
引文
[1]中国污泥处理处置市场分析报告(2011)(R) http://www2.h2o-china.com/report/2011/201 1wunireport/
    [2]黄雅曦,李季,李国学,等.污泥资源化处理与利用中控制重金属污染的研究进展[J].中国生态农业学报, 2006, 14(1):156-158
    [3]何品晶,顾国维,李笃中,等,城市污泥处理与利用[M],北京:科学出版社, 2003:39-55
    [4] Diane, Guarino C, Davis R. Sludge disposal trends around the globe[J]. Water Engineering and Management, 1993, 140(2):17-20
    [5] Kumar S, Gaikwad S A, Shekdar A V, et al. Estimation method for national methane emission from solid waste landfills[J]. Atmosphere Environment, 2004, 38( 21):3481- 3487
    [6] Vesilind P A, Ramsey T B.Effect of drying temperature on the fuel value of wastewater sludge[J]. Wastewater Management and Research, 1996, 14, 189-196
    [7] Werlhera J, Ogadab Z. Sewage sludge combustion. Progress in Energy and Combustion Science,1999, 25, 55-116
    [8]李淑更.脱水污泥的土地资源化利用及环境效应的试验研究[D].广州:华南理工大学, 2009
    [9]吴启堂,林毅,曾海恩.城市污泥作复合肥粘结剂的研究[J].中国给水排水, 1992, 8(4): 20-22
    [10]郭广慧.我国城市污泥中养分和重金属含量及农用潜力分析[D].成都:西南大学, 2007
    [11]聂静,杨健,姚阔为,等.城市污水污泥农用资源化评述[J].四川有色金属, 2006, (4): 53-56
    [12]刘秀如.城市污水污泥热解实验研究[D].北京:中国科学院工程热物理研究所, 2011
    [13]刘则华,刘锡建,陈思浩.日本的污泥处理现状及对策[J].上海工程技术大学学报, 2006, 20(4): 291-294
    [14]蒋岭.深圳特区污泥干化工程方案研究[D].重庆:重庆大学, 2004
    [15]周玉文,胡伟, Hohnecker H G,等.德国污泥处置发展情况和相关政策法规简介[J].给水排水, 2008, 34:17-20
    [16]郑立辉,司梅芳,李磊.剩余污泥处理与资源化研究进展[J].污染防治技术, 2008, 21(1): 66-68
    [17] Mehrdadi, N., Joshi, S.G., Nasrabadi, T., et al. Aplication of solar energy for drying ofsludge from pharmaceutical industrial waste water and probable reuse[J]. InternationalJournal of Environmental Research, 2007. 1(1). 42-48
    [18]袁军,范浩杰,施善彬,等.污水污泥干化基本特性的试验研究[J].给水排水, 2008, 34(2): 186-188
    [19]王钊.北京污水处理厂污泥干化处理工艺选择的探讨[J].市政技术, 2004, 22(6):374 -378
    [20]伍军,李尔,邹惠君,污泥全干化处理工艺在武昌南污泥处理厂工程中的应用[J].给水排水,2010,36(10)19-23
    [21]徐小宁,邓文义,李晓东.污泥在桨叶式干燥机内干化特性研究[J].能源与环境, 2007,20(3)53-55
    [22]甘海军.浙江省城市污泥的处置对策与资源化利用研究[D].浙江:浙江大学, 2006
    [23]翁焕新,马学文,苏闽华,等.利用烟气余热干化城市污泥工艺的应用[J].中国给水排水, 2008, 24(2): 58-60
    [24] Menlendez J.A. Microwave induced pyrolysis of sewage sludge[J]. Water Research, 2002, 36: 3261-3264
    [25] Tae-In Ohm, Jong-Seong Chae, K wang-Soo Lim, et al. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature[J]. Journal of Hazardous Materials, 2010, 178(1-3):483-488
    [26] R.Font, M.F.Gomez-Rico, A. Fullana. Skin effect in the heat and mass transfer model for sewage sludge drying[J]. Separation and Purification Technology, 2011, 77(1): 146-161
    [27] Vraxelaire J, Bongiovanni J M,Mousques P, et al. Thermal drying of residual sludge ,Water Research.2000, 34(17): 4318-4323.
    [28] Saveyn, H., Curvers, D., Schoutteten, M., et al. Improved Dewatering by Hydrothermal Conversion of Sludge[J]. Journal of Residuals Science & Technology, 2009, 6(1). 51-56
    [29] Brendan C O'Kelly.. Mechanical properties of dewatered sewage sludge[J].Waste management, 2005,25(1):47-52
    [30] Peregrina, C., Rudolph, V., Lecomte, D, et al. Immersion frying for the thermal drying of sewage sludge: An economic assessment[J]. Journal of Environmental Management, 2008, 86(1). 246-261
    [31] Hayashi, N. and Shimada, S. Study on drying organic sludges by thermal jet dryer– Part 1: Drying performance of thermal jet dryer[J]. Drying Technology, 2006, 24(12). 1601-1607
    [32]马学文,翁焕新.温度与颗粒大小对污泥干燥特性的影响[J].浙江大学学报, 2009,43(9): 1661-1667
    [33]刘凯,马晓茜,肖汉敏.造纸污泥薄层干燥实验及动力学模型分析[J].燃料化学学报, 2011,39(2): 149-154
    [34]姜瑞勋,李爱民,王伟云.脱水污泥薄层干燥特性及动力学模型分析[J].中国环境科学, 2009, 9(1):22-25
    [35] Tao, T, Peng, X.F. and Lee, D.J. Skin layer on thermally dried sludge cake[J]. Drying Technology, 2006, 24(8). 1047-1052
    [36]蔡全英,莫测辉,赖坤容,等.我国城市污泥中含氮有机污染物的初步研究[J],生态学杂志,2004, 23(3): 76-80
    [37]莫测辉,蔡全英,吴启堂,等.我国一些城市污泥中多环芳烃( PAHs)的研究[J],环境科学学报,2001,21(5): 613-618
    [38] Gomez-Rico, M.F., Fullana, A. and Font, R. Volatile organic compounds released from thermal drying of sewage sludge[J]. Water Pollution Ix, 2008, 111(1). 425-433, 639
    [39]朱晓琬,邓文义,王飞.等桨叶式干燥机热干燥处理制革污泥的排放特性[J].化工学报, 2008, 59(8): 2083-2088
    [40] Deng W Y, Li X D ,Yan J H, et al. Emission and drying kinetics of paper mill sludge during contact drying process[J]. Journal of Zhejiang University SCIENCE, 2009, 10(11):1670-1677
    [41] Deng W Y, Yan J H, Li X D., Emission characteristics of volatile compounds during sludges drying process[J]. Journal of Hazardous Materials, 2009, 162(1):186–192
    [42]刘瓒.污泥干燥处理中典型恶臭的释放特点[D].杭州,浙江大学, 2007
    [43]何鉴尧.印染污泥干燥过程中挥发性污染物的研究[D].广州,华南理工大学, 2010.
    [44]王兴润,金宜英,杜欣等.污水污泥动态间壁热干燥特性及工艺[J].化工学报, 2007, 58(9): 2211-2215
    [45]马军,邱立平.曝气生物滤池及其研究进展[J].环境工程, 2002, 20(3):7-11
    [46]赵卫东,刘建忠,周俊虎.等温脱水热重分析[J].中国电机工程学报, 2009, 29(14): 74-79
    [47]刘敏,张旭,顾国维,等.消化/剩余污泥水分扩散通量的研究[J].四川环境, 2010, 29(3):1-7
    [48] Thierry Ruiz, Christelle Wisniewski. Correlation between dewatering and hydro-textural characteristics of sewage sludge during dring[J]. Separation and Purification Technology, 2008, 61(2): 204-210
    [49]谢浩辉.污泥的结合水测量和热水解试验研究[D].杭州:浙江大学, 2011
    [50]张立国.中温两相厌氧消化处理低有机质剩余污泥效能研究[D].哈尔滨:哈尔滨工业大学, 2008
    [51] kgun N A, Doymaz I.. Modelling of Olive Cake Thin-layer Drying Process[J]. 2005, Journal of Food Engineering, 68(4): 455-461
    [52] N J Thakor, S.Sokhansanj, F.W.Sosulski, et al. Mass and dimensional changes of single canola kernels during drying[J]. . 1999, Journal of Food Engineering, 40(3): 153-160
    [53]刘红,闫怡新,王文燕,等..低强度超声波改善污泥活性[J].环境科学, 2005, 26(4): 124-128
    [54]姜瑞勋.污泥低温薄层干燥及污染物析出特性研究[D].大连:大连理工大学, 2008
    [55]王兴润,金宜英,王志玉,等.污水污泥间壁热干燥实验研究[J].环境科学, 2007, 28(2): 407-410
    [56]莫测辉,蔡全英,王伯光,等.我国城市污泥中醚类和卤代烃类有机污染物的初步研究[J].环境科学学报[J], 2002, 22(5): 671-676
    [57]贾相如,金保升,李睿.污水污泥在流化床中快速热解制油[J],燃烧科学与技术, 2009, 15(6): 528-534
    [58]贾相如,金保升,李睿.温度对污水污泥流化床热解油成分影响的GC—MS分析[J].热能动力工程, 2009, 24(5): 656-660
    [59]田冬梅.城市污泥中有机污染物的分析研究[D].上海,华东师范大学, 2006
    [60]褚赟.污泥中的苯系物与苯酚及其释放特征研究[D].杭州,浙江大学, 2009
    [61]马学文.城市污泥干燥特性及工艺研究[D].杭州:浙江大学, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700