靶向载药材料及微球的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物释放系统(Drug Delivery Systems, DDS)已成为药学领域的重要发展方向,随之而来对药物载体及材料的研究也就愈加显得格外重要。因为只有选用适宜的药物载体或材料及适当的药物与载体的配比,方可获得释药速率令人满意的给药系统。因此,开发新型药物载体及相关材料对于研发新型医药产品有着重要的意义。
    本文首先制备了醛端基聚乙二醇,随后采用还原法将醛基还原为胺基,且采用叶酸对壳聚糖进行修饰,制备了靶向载药材料壳聚糖-叶酸。而后采用反相乳化交联法、制备了壳聚糖微球、壳聚糖-叶酸微球和PEG化壳聚糖微球、PEG化壳聚糖-叶酸微球。具体内容主要包括以下几个方面:
    1. 本文首先对PEG进行了化学改性,通过氧化反应将其一端的羟基转变为醛基,而后在碱性条件下利用还原法将醛基转化为胺基,探讨了反应条件对上述反应的影响,并利用红外光谱等测试手段对其进行初步表征。
    2. 通过化学反应得到了具有靶向性分子叶酸修饰的壳聚糖大分子,初步探讨了反应条件对叶酸修饰程度的影响。并采用红外光谱对其进行初步表征。
    3. 根据壳聚糖大分子的特点,采用戊二醛为交联剂、苯甲酸乙酯为有机分散介质制备了交联壳聚糖微球,探讨了反应条件对粒径的影响,并用红外光谱、扫描电镜、光学显微镜等对微球结构和形貌进行了表征。实验结果表明:采用本实验方法可得到单分散性好的壳聚糖微球。
    4. 随后在以戊二醛为交联剂、苯甲酸乙酯为有机分散介质的条件下制备了载有化学键合叶酸分子的壳聚糖微球,并采用红外、扫描电镜、光学显微镜等对其结构和形貌进行表征。实验结果表明:壳聚糖经一定程度叶酸修饰后仍然可以交联,经反相乳化交联可得到单分散性较好的叶酸化壳聚糖微球。
    5. 在上述研究基础上,制备了PEG化壳聚糖微球和PEG化壳聚糖-叶酸微球,并用红外、扫描电镜等对其形貌和结构进行表征。实验结果表明:采用反相乳化交联法可制备出一定粒径分散度的PEG化壳聚糖微球和PEG化壳聚糖-叶酸微球。
Targeted Drug Delivery Systems (TDDS) have been an important developing drug field, so it is necessary to develop the research of drug carrier and material. Only the proper proportion of drug carrier or material to drug is the base of satisfied Targeted Drug Delivery Systems. Therefore it is important for the development of new drugs to keen on the research of new drug vector and material revolved.
    In this paper, PEGCH2COH was prepared and then was deoxidize to PEGCH2CH2NH2. In addition, folate was used to modify chitosan so chitosan-folate was obtained as an targeted delivery material. And then inverse crosslinking-emulsion was used and the chitosan microspheres, PEGlated chitosan microspheres, chitosn-folate microspheres and PEGlated chitosn-folate microspheres were obtained. The major contents include:
    1. First, in this paper, PEG was modified to converse one hydroxy end group into a aldehyde group and then using reducer to revert it into amidocyanogen group under the condition of alkalescence. The reactive conditions were also discussed and PEG-COH was charactered by FT-IR.
    2. Chitosan molecules were modified by introducing folate molecules through chemical reaction, and the reactive conditions that affects the reaction between chitosan and folate were studied. Chitosan-folate was charactered by FT-IR.
     3. Since chitosan is a macromolecule, and has a lot of amido groups on the melecules. The chitosan microspheres were prepared using glutaraldehyde as a crosslinking agent and acetylamino benzoate as organic diffusion media respectively. The reactive conditions were also explored and the best condition was found according to the experiments. Then structure and appearance of the microspheres were charactered by IR, SEM and microscope. The results showed that the good size-distributed microspheres could be obtained under the experimental conditions.
    4. Chitosan-folate(CSF) was made into microspheres by inverse emulsion using glutaraldehyde as a crosslinking agent and acetylamino benzoate as organic diffusion media respectively. Then the microspheres were charactered by IR, SEM and microscope. The results showed that the chitosan modified by folate microspheres can also be obtained
    
    5. The PEGlated chitosan and PEGlated chitosan-folate microspheres were prepared and charactered by IR, SEM and microscope. The results show that the PEGlated chitosan and PEGlated chitosan-folate microspheres can be prepared by inverse crosslinking -emulsion.
引文
[1] Li H, Song J H, Park J S, et al.,Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor, International Journal of Pharmaceutics,2003,258(1-2):11-19.
    [2] Katayama K,Kato Y,Onishi H et al.,Preparation of novel double liposomes using the glass-filter method,International Journal of Pharmaceutics, 2002,248(1-2): 93 – 99.
    [3] Charman S A, Charman W N, Rogge M C, et al.,Self-emulsifying drug delivery system: formulation and biopharmaceutic evaluation of an investigational lipophilic compound,Pharmacological Research, 1992,9(1):87-93.
    [4] Yang Yi Yan, Shi Meng, Goh S H, et al., POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres, Journal of Controlled Release,2003,88(2):201-213.
    [5] El-Gibaly, Ibrahim,Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres,International Journal of Pharmaceutics,2002,249(1-2):7-12
    [6] Olivieri L, Seiller M, Bromberg L, et al. Optimization of a thermally reversible W/O/W multiple emulsion for shear-induced drug release. Journal of Controlled Release. 2003, 88(3):401-412.
    [7] Sudimack J, Lee R J. Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews,2000,41(2):147-162.
    [8] Reddy, J.A.; Clapp, D W; Low, P S. Retargeting of viral vectors to the folate receptor endocytic pathway. Journal of Controlled Release. 2001,74(1-3):77-82.
    [9] Lu, Yingjuan; Low, Philip S. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. Journal of Controlled Release. 2003,91(1-2):17-29.
    [10] Leamon, Christopher P.; Low, Philip S. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today. 2001,6(1):44-51.
    [11] C.P. Leamon, P.S. Low, Cytotoxicity of momordin–folate conjugates in cultured human cells, J. Biol. Chem. 1992,267: 24966–24971.
    [12] K.A. Mislick, J.D. Baldeschwieler, J.F. Kayyem, T.J. Meade, Transfection of folate–polylysine DNA complexes: evidence for lysosomal delivery, Bioconjug. Chem. 1995,6: 512–515.
    [13] J.A. Reddy, P.S. Low, Folate-mediated targeting of therapeu-tic and imaging
    
    
    agents to cancers, Drug Carrier Syst. 1998. 15: 587–627.
    [14] C.P. Leamon, D. Weigl, R.W. Hendren, Folate copolymer-mediated transfection of cultured cells, Bioconjug. Chem. 1999, 10:947–957.
    [15] Benns J M, Mahato R I, Kim S W, Optimization of factors influencing the transfection efficiency of folate–PEG–folate-graft-polyethylenimine,Journal of Controlled Release ,2002,79(1-3):255-269.
    [16] Holm J, Hansen S I, H?ier M M,et al. High-Affinity Folate Receptor in Human Ovary, Serous Ovarian Adenocarcinoma, and Ascites: Radioligand Binding Mechanism, Molecular Size, Ionic Properties, Hydrophobic Domain, and Immunoreactivity. Archives of Biochemistry and Biophysics. 1999,366(2):183-191.
    [17] Holme, Kevin R, Perlin, Arthur S. Chitosan N-sulfate. A water-soluble polyelectrolyte, Carbohydrate Research, 1997, 302(1-2):, 7-12.
    [18] Melnyk S, Pogribna M, Miller B J et al., Uracil misincorporation, DNA strand breaks, and gene amplification are associated with tumorigenic cell transformation in folate deficient/repleted Chinese hamster ovary cells, Cancer Letters, 1999,146(1):35-44.
    [19] Yaral H, Aybar F, Kabakc G et al., Diastolic dysfunction and increased serum homocysteine concentrations may contribute to increased cardiovascular risk in patients with polycystic ovary syndrome, Fertility and Sterility, 2001,76(3):511-516.
    [20] Vlastos A T, Schottenfeld D, Follen M, Biomarkers and their use in cervical cancer chemoprevention, Critical Reviews in Oncology/ Hematology 2003,46(3):261-273.
    [21] Vallet J L, Smith T P, Sonstegard T S et al., Structure of the genes for porcine endometrial secreted and membrane folate binding proteins, Domestic Animal Endocrinology,2001,21(1):55-72.
    [22] Raghunathan K, Priest D G, Modulation of fluorouracil antitumor activity by folic acid in a murine model system Biochemical Pharmacology, 1999,58(5): 835-839.
    [23] Raghunathan, K, Schmitz J C, Priest D G, Impact of schedule on leucovorin potentiation of fluorouracil antitumor activity in dietary folic acid deplete mice, Biochemical Pharmacology,1997,53(8): 1197-1202. [24] Ma J. The role of folate in colon cancer, Food and Chemical Toxicology, Volume:, Issue:, July, 1997,35(7):735-736.
    [25] Joseph S L, Lenore A, Nutritional status of folate and colon cancer risk: evidence
    
    
    from NHANES I epidemiologic follow-up study, Annals of Epidemiology, 2001,11(1):65-72.
    [26] Ishikawa J, Okano J, Ohki K et al., Phagocytosis of dictyostelium discoideum studied by the particle-tracking method, Experimental Cell Research, 2003,288(2):268-276.
    [27] Akoglu B, Faust D, Milovic V et al, Folate and chemoprevention of colorectal cancer: is 5-methyl-tetrahydrofolate an active antiproliferat -ive agent in folate-treated colon-cancer cells. Nutrition, 2001,17(7-8):652-653.
    [28] van Steenis J H, van Maarseveen E M, Verbaan F J et al., Preparation and characterization of folate-targeted pEG-coated pDMAEMA-based polyplexes Journal of Controlled Release,2003,87(1-3):6167-176.
    [29] Mislick K A, Baldeschwieler J D, Kayyem J F et al., Transfection of folate–polylysine DNA complexes: Evidence for lysosomal delivery, Bioconjugat Chemistry, 1995,(6):512–515.
    [30] C.P. Leamon, D. Weigl, R.W. Hendren, Folate copolymermediated transfection of cultured cells, Bioconjugate Chemistry, 1999(10): 947–957.
    [31] Guo W, Lee R J, Receptor-targeted gene delivery via folate conjugated polyethylenimine, AAPS Pharmsci. 1999(1):19.
    [32] Benns J M, Maheshwari A, Furgeson D Y et al, Folate-PEG-folate-graft- polyethylenimine-based gene delivery, Journal of Drug Target,2001(9):123-139.
    [33] Benns J M, Mahato R I, Kim S W, Optimization of factors influencing the transfection efficiency of folate-PEG-folate- polygraft-polyethy -lenimine, Journal of Controlled Release, 2002(79):255–269.
    [34] Choi Y H, Liu F, Kim J S et al., Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier, Journal of Controlled Release, 1998(54):39–48.
    [35] Ogris M, Brunner S, Schuller S et al., PEGylated DNA/ transferrin-PEI complexes: reduced inter-action with blood components, extended circulation in blood and potential for systemic gene delivery, Gene Therapy, 1999,(6):595–605.
    [36] Erbacher P, Bettinger T, Belguise V P et al., Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI), Journal of Gene Medicine,1999(1):210–222.
    [37] Gruner B A, Weitman S D,The folate receptor as a potential therapetic anticancer target, Invest New Drugs, 1998(16): 205-219.
    
    [38] Leamon C P, Low P S, Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis, Proc. Natl. Acad. Sci. USA, 1991,88 (13):5572.
    [39] Wang S, Low P S, Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells, Journal of Controlled Release, 1998,53(1-3):39-48.
    [40] Reddy J A, Low P S, Folate-mediated targeting of therapeutic and imaging agents to cancers. Critic Review Drug Carrier Systems, 1998,15(6): 587-627.
    [41] Shinoda T, Takagi A, Maeda A et al., J Pharm Sci. 1998:87(12):1521.
    [42] Schally A V, Kastin A J, Arimura A, Hypothalamic folliclestimulating hormone(FSH) and luteinizing hormone (LH)-regulating hormone: structure, physiology, and clinical studies, Fertile, Steril, 1971,22:703-721.
    [43] Harris J M, Polyethylene Glycol Chemistry, Biotechnical and Biomedical Applications, Plenum, New York, 1992.
    [44] Harris J M, Synthesis of polyethylene glycol derivatives, J. Macromol. Sci. Rev. Macromol. Chem. Phys, 1985(C25)325–373.
    [45] Zalipsky S, Chemistry of polyethylene glycol conjugates with biologically active molecules, Advanced Drug Delivery Review, 1995(16): 157–182.
    [46] Veronese F M, Peptide and protein PEGylation: a review of problems and solutions, Biomaterials, 2001(22):405–417.
    [47] Hooftman G, Herman S, Schacht E, Review: Poly(ethyleneglycol)s with reactive endgroups. II. Practical consideration for the preparation of protein–PEG conjugates, J. Bioact.Compat. Polym., 1996(11):135–159.
    [48] Smith A H, Wallig M A, Seigler D S et al., Ameliorating the toxic effects of Acacia angustissima with polyethylene glycol in rats, Animal Feed Science and Technology ,2003,106(1-4):165-174.
    [49] Minato S, Iwanaga K, Kakemi M et al., Application of polyethylenegl -ycol (PEG)-modified liposomes for oral vaccine: effect of lipid dose on systemic and mucosal immunity, Journal of Controlled Release, 2003,89(2):189-197.
    [50] Panagi Z, Avgoustakis K, Evangelatos G et al., Protein-induced CF release from liposomes in vitro and its correlation with the BLOOD/RES biodistribution of liposomes, International Journal of Pharmaceutics, 1998,163(1-2):103-114.
    [51] Veronese F M, Peptide and protein PEGylation: a review of problems and solutions, Biomaterials, 2001:405-417
    [52] Zasadzinski J A, Novel approaches to lipid based drug delivery, Current Opinion
    
    
    in Solid State & Materials Science, 1997,2(3):345-349.
    [53] Bailon P S, Palleroni A V, Interferon conjugates, European Patent Application, EP 0809996A2, 1997.
    [54] Ng K Y, Zhao Limin, Liu Yang et al., The effects of polyethyleneglycol (PEG)-derived lipid on the activity of target-sensitive immunoliposome, International Journal of Pharmaceutics, 2000.193(2):157-166.
    [55] Maruyama K, Ishida O, Takizawa T et al., Possibility of active targeting to tumor tissues with liposomes Advanced Drug Delivery Reviews, 1999,40(1-2):89-102.
    [56] Ogris M, Walker G, Blessing T et al., Tumor-targeted gene therapy: strategies for the preparation of ligand–polyethylene glycol–polyethylenimine/DNA complexes, Journal of Controlled Release,2003,91(1-2):173-181.
    [57] Ishiwata H, Sato S B, Vertut D A et al., Cholesterol derivative of poly(ethylene glycol) inhibits clathrin-independent, but not clathrin-dependent endocytosis, Biochimica et Biophysica Acta (BBA)/Molecular Cell Research, 1997, 1359(2): 123-135.
    [58] Felt O, Buri P, Gurny R, Chitosan: a unique polysaccharide for drug delivery, Drug Dev. Ind. Pharm., 1998,24(11):979–993.
    [59] Akbuga J, A biopolymer: chitosan, Int. J. Pharm. Adv. 1995,1(1): 3–17.
    [60] Kas H S, Chitosan: properties, preparations and application to microparticulate systems, J. Microencapul. 1997,14(6):689–711.
    [61] Lehr C M, Bouwstra J A, Schacht E H et al., In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers, Int. J. Pharm. 1992,78:43–48.
    [62] Paul W, Sharma C P, Chitosan, a drug carrier for the 21st century: a review, S.T.P. Pharm. Sci. 2000,10(1):5–22.
    [63] Kuen Y L, Wan S H, Won H, Park Blood compatibility and biodegrade -bility of partially N-acylated chitosan derivatives, Biomaterials, 1995,16(16):1211-1216.
    [64] 吴国杰,禹慧明,黎碧娜,羧甲基壳聚糖的研制,西农业大学学报,2002,24(1):63-65.
    [65] 曲峰,李英霞,宋妮,壳聚糖作为药物载体的最新进展, 中国海洋药物,2001,6:40-43
    [66] 刘晨光, 刘成圣, 盂祥红等,壳聚糖作为药物缓释材料的研究进展,高技术通讯,2003,5,98-103
    [66] Bailey F E, Koleske J V. Alkylene oxides and their polymers. Marcel Dekker, New York,1991
    
    [67] Harris J M. Polythylene glycol chemistry, biotechnical and biomedical applications. Harris J M, ED, Plenum,1992, Chapter 1.
    [68] Yamaoka T, Tabata Y, Ikada Y. Pharm Sci,1994,83,601.
    [69] Richter A W, Akerblom E. Int Arch Allergy Appl Immunol,1984,74:36.
    [70] Zalipsky S. Adv drug delivery rev.1995,16:157
    [71] Zalipsky A, Gilon C, Zilkha A. Attachment of drugs to polyethylene glycols. Eur. Polym. J. 1983,19:1177-1183
    [72] 程志明,徐逸楣,张一宾等译,有机合成 醛 酮醌,日本化学会编,实验化学讲座,上海科学技术文献出版社,11-16
    [73] Andresa F, Bückmann, Michael M. Functionalization of poly(ethylene glycol) and monomethoxy-poly(ethylene glycol). Makromol Chem,1981,182:1379-1384
    [74] Muslim T, Morimoto M, Saimoto H, et al. Synthesis and bioactivities of poly(ethylene glycol)-chitosan hybrids. Carbohydrate polymers. 2001,46:323-330
    [75] 有机微量定量分析,兰州大学化学系、中国科学院上海药物研究所编著。科学出版社,1979,306-308
    [76] 黄骏涛;游离甲醛含量测定方法的研究, 铸造工程.造型材料, 2000,2:6-9
    [77]Harris J m, Ed. Poly(ethylene glycol ) chemistry :Biotechnical and Biomedical Applications; Plenum Press : New York, NY,1992.
    [78] 王小红,马建标,何炳林. 甲壳素、壳聚糖及其衍生物的应用.功能高分子学报,1999,12(2):197-202.
    [79] 鲁从华,罗传秋,曹维孝. 壳聚糖的改性及其应用.高分子通报,2001,(6):16-53.
    [80] Yamin W, Hitoshi S, Isao A, et al. Optimization of the formulation design of chitosan microspheres containing cisplatin. J Pharm Sci,1996,85(11):1204-1210.
    [81] 王亚敏,石庭森,蒲永林等,顺铂壳聚糖微球的制备及特性研究, 药学学报,1996,31(4):300-305.
    [82] 蒋新宇,周春山,邓晔. 壳聚糖载药微球的研制,常德师范学院院报,2003.1,15(4):36.
    [83] 周永国,杨越冬,郭学民等,磁性壳聚糖微球的制备、表征及其靶向给药研究.应用化学,2002,19(12):1178-1182.
    [84] 蒋挺大. 甲壳素.化学工业出版社.2003.
    [85] 刘程.表面活性剂应用大全.北京:化学工业出版社,1992:50-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700