大豆苷元抗骨质疏松及其壳聚糖长效缓释微球制剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆苷元(daidzein)来源于天然植物大豆,作为一种异黄酮成分,具有弱雌激素样和抗雌激素样作用,广泛用于心脑血管疾病、癌症、骨质疏松等疾病的治疗和预防,具有疗效好、副作用小等特点。为了进一步了解大豆苷元抗骨质疏松的作用,并制成合适给药的新剂型,本文从细胞学和整体动物两个方面进行大豆苷元抗骨质疏松的实验研究,并以壳聚糖为载体材料,设计和研制了大豆苷元-壳聚糖长效缓释微球,并采用体内外不同方法对其进行了科学的评价。
     在培养基中添加β-甘油磷酸二钠、L-抗坏血酸和培养时间10、20、30天条件下,采用MTT比色法、碱性磷酸酶活性测定、Ca和P含量测定、茜素红染色和von Kossa染色,考察不同大豆苷元浓度(10~(-9)~10~(-5)M)对MC3T3-E1成骨样细胞增殖、分化和矿化的影响,结果表明大豆苷元能促进MC3T3-E1细胞的增殖和分化特别是促进矿化的发生和增加矿化的量;建造去卵巢小鼠骨质疏松模型,选择小鼠进行去卵巢手术后1、3和5周模型,与阳性对照药17β-雌二醇比较,考察腹腔注射大豆苷元溶液对小鼠子宫重量系数、股骨病理切片HE染色的骨组织结构和骨组织中细胞因子OPG、RANKL mRNA相对表达水平的影响,从而初步探讨大豆苷元抗骨质疏松的机理,大豆苷元能改善去卵巢导致的小鼠皮毛蓬松、行动迟缓、反应迟钝和精神不振,能增加去卵巢小鼠的子宫重量系数、骨小梁分布密度和骨皮质厚度,并呈现剂量和时间效应,此外大豆苷元能通过调节OPG/RANKL比例从而调节骨重建过程中破骨细胞和成骨细胞的平衡,说明大豆苷元具有抗骨质疏松的作用,这对于了解植物雌激素抗骨质疏松的作用机制具有重要意义。
     在制剂处方研究前,建立大豆苷元原药的高效液相分析方法,对原料药的理化性质进行了考察。大豆苷元溶液在强光、温度、不同pH介质中72h内的稳定性研究表明药物含量无明显变化,稳定性较好;测定了大豆苷元在H_20、0.1mol/LHCl、pH6.8PBS和pH7.4PBS中的平衡溶解度以及不同pH下正辛醇/水系统中,大豆苷元的表观油水分配系数P_(app);原料药的稳定性影响因素实验表明,在露置空气、高湿及40℃、60℃条件下,大豆苷元含量无明显变化,在光照条件下含量略有降低。采用Caco-2细胞体外吸收模型,考察了大豆苷元在不同浓度和不同pH条件下穿单分子层细胞膜的渗透速率和吸收百分数,并对其在Caco-2细胞转运实验中产生的代谢物进行了初步测定,大豆苷元跨单分子层细胞膜的转运不受介质pH和浓度的影响,与仅通过经细胞通道转运的标记化合物普萘诺尔的P_(app)值相近,预测大豆苷元体内吸收良好,通过β-葡萄糖醛酸酶水解,在转运介质和Caco-2单分子层细胞膜中均能检测到少量代谢物,证明存在葡萄糖醛酸化、硫酸酯化代谢物等。
     采用乳化/戊二醛交联法制备载药壳聚糖微球,以司盘-80为乳化剂和液体石蜡为油相,大豆苷元经微粉化后以微晶状态混悬于壳聚糖水溶液中为水相,乳化后包裹入乳滴继而交联,形成的微球外形圆整,分散性好,载药量高。经单因素考察筛选出影响微球粒径、粒径分布、载药量及释放快慢的处方因素和工艺条件包括聚合物浓度、药物与聚合物投料比和乳化转速,进一步采用球面对称设计-效应面优化法对其进行优化,经专业统计Statistica进行数据处理。优化的微球中位径、跨距、载药量分别为70.40μm、0.526、30.48%,这些实际测定值与模型方程拟和值偏差较小说明设计和优化结果是成功可靠的。透析袋法释药缓慢,符合表观零级动力学过程。三批样品的重现性试验及稳定性加速试验结果表明,制备的大豆苷元-壳聚糖微球处方稳定、质量可控,达到制剂的设计目的与要求。
     建立测定肌肉内注射微球后药物残留量的分析方法,小鼠肌肉内注射大豆苷元-壳聚糖微球后缓慢释药长达35天,突释效应不明显,回收肌肉内注射微球的扫描电镜和注射部位肌肉病理切片表明微球生物组织相容性较好,注射于体内21~35天内发生轻微降解。采用大豆苷元时间分辨荧光免疫分析试剂盒测定血浆内总大豆苷元的浓度,测定大鼠静脉注射大豆苷元溶液和肌肉内注射大豆苷元-壳聚糖微球后的体内血浆药时曲线,大豆苷元的体内过程符合二室模型,药物动力学参数k_(10)、t_(1/2(α))、t_(1/2(β))、V_c分别为1.17 h~(-1)、0.30h、18.94h、0.46 L/kg。大鼠肌肉内注射微球后血浆药物浓度持久保持35天,其绝对生物利用度为39.02%,较口服大豆苷元有显著性提高。体内外相关性研究表明,微球体内吸收百分数与透析袋释药法测定的体外累积释药百分数有较好的相关性(r=0.9975),微球中药物主要以药物结晶溶解和扩散方式释放,在后期伴有体系降解溶蚀释药特征。
     建立去卵巢小鼠骨质疏松模型,进行大豆苷元-壳聚糖长效缓释微球肌肉内注射给药。股骨病理切片HE染色表明,与灌胃大豆苷元混悬液相比,微球组特别是高剂量具有明显改善骨小梁和皮质骨组织结构疏松的作用,提示其在体内药效得到提高。
Daidzein is a natural isoflavone found in Leguminosae with structural similarities to natural and synthetic estrogens and anti-estrogens. Studies suggest that daidzein exhibits a variety of biological effects on human health in cardiovascular disease, cancer chemoprevention and especially in estrogen replacement therapy (ERT) to prevent and treat osteoporosis with good therapy and low side effect. In order to further learn isoflavones, the effect of daidzein on osteoporosis was studied in cells and animals. Moreover, daidzein loading microspheres were prepared to obtain long sustained release using chitosan as carrier and evaluated in vitro and in vivo.MC3T3-E1 osteoblastic-like cells were cultured for 10, 20 or 30 days in the presence of P-GP and L-AA. The effect of daidzein on the differentiation and mineralization in MC3T3-E1 cells was investigated. The MTT assay, the measurement of alkaline phosphatase (ALP) activity, the measurement of calcium (Ca) and phosphorus (P) concentrations, the alizarin red S and von Kossa staining were used to investigate the effect of different concentrations of daidzein from 10~(-9) M to 10~(-5)M on the cells. The results showed that daidzein prompted the proliferation, differentiation and mineralization of MC3T3-E1 cells. In the study, ovariectomized mice osteoporosis model was built to investigate the effect of daidzein solution through intraperitoneal administration (i.p.) on osteoporosis. Compared with 17β-estradiol, daidzein meliorated the appearance of shaggy coat, tardive action, slow response and hyponoia, due to ovariectomization and increased the uterus index, density of trabecular bone and thickness of cortical bone. Moreover, dadizein regulated the ratio of osteoprotegerin (OPG) to receptor activator of nuclear factor kB ligand (RANKL) mRNA expression level to modulate the balance between osteoblasts and osteoclasts in the bone remodeling process, which showed significance to learn the action of daizein on osteoporosis.In the pre-formulation study, high performance liquid chromatography (HPLC) was used to determine the content of daidzein. The stability of daidzein solution, solubility, partition coefficient in oil/water, and stability of daidzein powder were investigated by measuring the relative change of daidzein content. Using Caco-2 cells model, transport characteristics of daidzein across the monolayer in the different pH medium and the different concentration were studied. The apparent permeability coefficient (P_(app)) of daidzein, independent to the pH medium and concentration, was similar to that of transcellcular marker--propranolol, suggesting the good absorption of daidzein in vivo. By hydrolysis withβ-glucuronidase, low metabolites were detected in monolayer and transport medium, verifying the existence of glucuronides and sulfates.
     The emulsification/glutaraldehyde crosslinking method was used to prepare daidzein loading chitosan micropsheres. Micronized daidzein was dispersed in chitosan solution by ultrasonication and dropped into liquid paraffin containing span-80 to form emulsion droplets under stirring. The following crosslink with glutaraldehyde produced the spherical appearance, good dispersing and high drug loading microspheres. After the single factor investigation for the effe, ct on the particle size, particle size distribution, drug loading and release rate, a spherical symmetric design-response surface methodology was applied to optimize the formulation and preparing condition of microspheres. The medium size, span and drug loading of the optimized microspheres were 70.40μm, 0.526, 30.48%, respectively. The release of daidzein from microspheres was long sustained with dialysis bag release method. The experimental values were close to the predicted values stimulated by Statistics softare Statistica version 6.0, with low percentage bias, suggesting that the optimized formulation was reliable and reasonable. The repeatability of three batches and stability experiments of daidzein-loaded chitosan microspheres suggested that the quality of preparation was stable and the purposed was obtained.
     The assay method of determining the residue amount of daidzein after intramuscular injection of microspheres was built to study drug release in vivo. The results showed that the release of drug was sustained for 35 days and the burst effect was not clearly in the release profile. Micrography of the retrived microspheres in muscle using a scanning electron microscope and pathological section of muscle by HE staining showed good biocompatibility and weak degradation in the upper release period. Plasma concentrations of daidzein were determined using time-resolved fluoroimmunoassay. The intravenous injection of a daidzein solution in rats was best fitted to two-compartment model. The pharmacokinetic parameters k_(10)、t_(1/2(α))、t_(1/2(β)) and V_c were 1.17h~(-1)、0.30h、18.94h、0.46 L/kg, respectively. The mean plasma concentration-time profile of daidzein after intramuscular injection of the daidzein-loaded chitosan microspheres showed that the total daidzein concentration showed fluctuation and lasted for about 35 days in plasma. The absolute bioavailability (F) of the daidzein-loaded chitosan microspheres was 39.02%. Compared with the low absolute bioavailability of oral formulations, our result indicated that intramuscular injection of the daidzein-loaded chitosan microspheres significantly improved the bioavailability of daidzein. The relation between the absorption percent in vivo and the accumulative release percent with dialysis bag release method in vitro showed linear (the relative coefficient was 0.9975). The release of daidzein from the chitoan microspheres was the diffused manner, companied with degradable erosion in the end.
     In the study, ovariectomized mice osteoporosis model was built to investigate the effect of daidzein loading chitosan microspheres through i.m. route on osteoporosis. The pathological section of femur by HE staining showed that compared with daidzein i.g. group, daidzein microspheres i.m. groups, especially high dose microspheres i.m. group, increased the uterus index, density of and thickness of cortical bone, suggesting the increase of bioavailability in vivo.
引文
[1] Gregory, R., Mundy, M.D., 2000. Pathogenesis of osteoporosis and challenges for drug delivery. Ad. Drug Deliv. Rev., 42, 165-173.
    [2] 郑高利.葛根异黄酮对骨质疏松症的防治作用及其机理研究.浙江大学博士学位论文.2002年
    [3] Aviva, E., Gershon, G., 2000. Administration routes and delivery system of bisphosphonates for the treatment of bone resorption. Ad. Drug Deliv. Rev., 42, 175-195.
    [4] Fumiaki, I., Shigemi, A., Komatsu, F., 2003. Clodronate stimulates osteoblast differentiation in ST2
    and MC3T3-E1 cells and rat organ cultures. Eur. J. of Pharmacol., 477, 9-16.
    [5] Smad4 and ERalpha form a complex that regulates estrogen target gene promoter. Drug Week. 7/18/2003, p303-303.
    [6] Shozo, N., Yoshiko, F., Shohei, Y., 2003. A new bisphosphonate YM529 induces apoptosis in HL60 cells by decreasing phophorylation of single survival signal ERK. Life Sic, 73, 2655-2664.
    [7] Toyotaka, I., Yoshitaka, M, Kaori, Y., 2003. Nitrogen-containing bisphosphonates induce S-phase cell cycle arrest and apoptosis of myeloma cells by activating MAPK pathway and inhibiting mevalonate pathway. Cellular Signalling., 15, 719-727.
    [8] Sophie, B.N., Regis, B., 2003. New insights in myeloma — induced osteolysis. Leukemia & Lymphoma, 44, 1463-1467.
    [9] Studies reveal mechanism involved in bone loss caused by estrogen deficiency. Biotech. Week. 9/27/2003, p199.
    [10] Arjmandi, B.H., Smith, B.J., 2000. Soy isoflavones' osteoprotective role in postmenopausal women: mechanism of action. J. Nutr. Biochem., 13, 130-137.
    [11] Bingham, S.A., Atkinson, C, Coward A., 1998. Phyto-estrogens: where are we now? Brit. J. Nutr. 79, 393-406.
    [12] Clarkson, T.B., 2000. Soy phytoestrogens: what will be their role in postmenopausal hormone replacement therapy? Menopause. 7, 71-75.
    
    [13] Kurzer, M.S., Xu, X., 1997.Dietary phytoestrogens. Annu. Rev. Nutr. 17, 353-381.
    [14] Setchell, K.D., Cassidy, A., 1999. Dietary isoflavones: biological effects and relevance to human health. J. Nutr. 129, 758S.
    
    [15] Dixon, R.A., Ferreira, D., 2000. Genistein. Phytochem., 60, 205-211.
    [16] Barnes, S., Kim, H., Darley-Usmar V., et al., 2000. Beyond ERa and ER(3: estrogen receptor is only part of the isoflavone story. J. Nutr. 130, 656s-657s.
    [17] Picherit, C, Coxam V., Bennetau-Pelissero C. et al., 2000. Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats. J. Nutr.130, 1675-1681.
    [18] Sugimoto, E. and Yamaguchi, M., 2000. Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem. Pharmacol., 59, 471-475.
    [19] Kanno, S., Hirano, S., Kayama, F., 2004. Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology. 196, 137-145.
    [20] Jia, T.L., Wang, H.Z., Xie, L.P., Zhang, R.Q., 2003. Daidzein enhances osteoblast growth that may be
    mediated by increased bone morphogenetic protein (BMP) production. Biochem. Pharmacol. 65, 709-715.
    [21] Chen, X.W., Garner. S.C., Anderson, J.J.B., 2002. Isoflavones regulate interleukin-6 and osteoprotegerin synthesis during osteoblast cell differentiation via an estrogen-receptor-dependent pathway. Biochem. Biophy. Res. Commun., 295, 417-422.
    [22] Wilde, A.D, Lieberherr, M., Colin, C, Pointillart, A., 2004. A low dose of daidzein acts as an ER-selective agonist in trabecular osteoblasts of young female piglets. J. Cellular Physiology, 200, 253-262.
    [23]王建华,魏艳青,李恩.大豆甙元对大鼠成骨细胞增殖与分化的影响.天然产物研究与开发
    [24]王建华,佟晓旭,陈永春,李恩.大豆甙元对大鼠成骨细胞碱性磷酸酶活性的影响.中药药理与临床.2003,19(4):8-9.
    [25]周继,李玉白,唐明德.大豆甙元对大鼠骨代谢的影响探讨.南华大学学报医学版.2005,33(3):342-343.
    [26]师莉莉,薛晓欧.大豆甙元对去卵巢大鼠阴道和子宫形态的影响.锦州医学院学报.2005,26(6):16—18.
    [27] 李潮,薛晓欧,师莉莉.大豆甙元对去卵巢大鼠子宫雌激素受体亚型表达的影响.中国妇产科临床杂志.2005,6(4):1269-27l,255
    [29] Fonseca, D., Ward, W.E., 2004. Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone, 35, 489-497.
    [30] Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S.I., Tomoyasu, A., Yano, K., Goto, M., Mmakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N., Suda, T., 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci., 95, 3597-3602.
    [31] Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M., 2004. Recent advances on chitosan-based micro- and nanoparticles in dug delivery. J. Control. Release. 100, 5-28.
    [32] Prabaharan, M. and Mano, J.F., 2005. Chitosan-based particles as controlled drug delivery system. Drug Deliv. 12,41-57.
    
    [33] Sinha V.R., Singla A.K., Wadhawan S., Kaushik R., Kumria R., Bansal K., Dhawan S., 2004. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274, 1-33.
    [34] Patashnik, S., Rabinovich L., Golomb, G.., 1997. Preparation and evaluation of chitosan microspheres containing bisphosphonates. J. Drug Target., 4, 371-380.
    [35] Fujisaki, J., Tokunaga, Y., Takahashi, T., et al. 1995. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. I. synthesis and in vivo characterization of osteotropic carboxy-fluorescein. J. Drug Target., 3, 273-282.
    [36] Fujisaki, J., Tokunaga, Y., Takahashi, T., Murata, S., Shimojo, F., Hata, T., 1996. Physicochemical characterization of bisphosphonic carboxyfluorescein for osteotropic drug delivery. J. Phar. Pharmcol., 48, 798-800.
    [37] Hirabayashi, H., Takahashi, T., Fujisaki, J., Masunaga, T, Sato, S., Hiroi, J., Tokunaga, Y., Kimura, S., Hata, T., 2001. Bone-specific delivery and sustained release of diclofenac, a non-steroidal anti-inflammatory drug, via bisphosphonic prodrug based on the osteotropic drug delivery system (ODDS). J. Control. Release, 70, 183-191.
    [38]许娟,汪朝阳,曹曼丽等.羟基磷灰石/聚乳酸复合材料.化工科技.2003,11(3):44-47.
    [39]程蓉,钱欣.聚乳酸的改性及应用进展.化工进展.2002,21(11):824-826.
    [40]杨秀伟,郝美荣,服部征雄主编.中药成分代谢分析.中国医药科技出版社.2003.594页.
    [41] Setchell, K.D., Faughnan, M.S., Avades, T., Zimmer-Nechemias, L., Brown, N.M., Wolfe, B.E., Brashear, W.T., Desai, P., Oldfield, M.F., Botting, N.P., Cassidy, A., 2003. Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am. J. Clin. Nutr. 77, 411-419.
    [42]彭文兴,李焕德,周宏灏.大豆苷元在人肝微粒体中的单羟化代谢机制.药学学报.2004,39(11):892-896.
    [43]裴利宽,郭宝林.黄酮类化合物吸收和代谢研究进展.中国药学杂志.2006,41(8):568.572.
    [44] Kulling, S.E., Honig, D.M., Metzler, M., 2001. Oxidative metabolism of the soy isoflavones daidzein and genistein in vitro and in vivo. J. Agric. Food Chem. 49, 3024-3033.
    [45] Hendrich, S., 2002. Bioavailability of isoflavones. J. Chromatogr. B. 777, 203-210.
    [46] Rowland, I., Faughnan, M., Hoey, L., Wahala, K., Williamson, G., Cassidy, A., 2003. Bioavailability of phyto-estrogens. Br. J. Nutr. 89, S45-58.
    [1] 薛庆善.主编.体外培养的原理与技术.科学出版社.2001年.343页.
    [2] Jia, T.L., Wang, H.Z,, Xie, L.P., Zhang, R.Q., 2003. Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production. Biochem. Pharmacol. 65, 709-715.
    [3] Kanno, S., Hirano, S., Kayama, F., 2004. Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology. 196, 137-145.
    [4] Isama, K., Tsuchiya, T., 2003. Enhancing effect of poly (L-lactide) on the differentiation of mouse osteoblast-like MC3T3-Elcells. Biomaterials, 24, 3303-3309.
    [5] 杨明.壳聚糖与聚羟基丁酸已酸酯在骨组织工程中的应用研究.清华大学硕士学位论文.2002,24-25.
    [6] 徐叔云,卞如濂,陈修主编.药理实验方法学.人民卫生出版社.1992年.635页.
    [7] 雷涛,张秀珍,贺铭,谢南姿,赵家胜,陈亚清.实验性骨质疏松症大鼠模型的制备.同济大学学报(医学版).2001,22(3):12-13.
    [8] Pie, J.E., Park, J.H., Ryu, Y.M., Kim, K.N., Suh, S.W., Becker, K.G., Cho-Chung, Y.S., Kim, M.K., 2006. Effect of genistein on the expression of bone metabolism genes in ovariectomized mice using a cDNA microarray. J. Nutr. Biochem., 17, 157-164
    [9] Ishimi, Y., Yoshida, M., Wakimoto, S., Wu, J., Chiba, H., Wang, X., Takeda, K., Miyaura, C., 2002. Genstein, a soybean isoflavone, affects bone marrow lymphopoiesis and prevent bone loss in castrated male mice. Bone, 31, 180-185.
    [10] F.M.奥斯伯,R.E.金斯顿,J.G塞德曼等著,马学军,舒跃龙等译.精编分子生物学实验指南(第四版).科学出版社.2005年.604-605页.
    [11] 薛庆善.主编.体外培养的原理与技术.科学出版社.2001年.343-344页.
    [12] 张冉.抗骨痹素抗骨质疏松的药效学研究.沈阳药科大学硕士学位论文.2003,32-34.
    [13] 陈立军,余黎.密骨颗粒对小鼠骨质疏松症的防治作用.中华实用中西医杂志.2005,18(2):252-253.
    [14] J.萨姆布鲁克等著,金冬雁等译.分子克隆实验指南(第二版).科学出版社.1998年.366-367页.
    [15] Sophie,B.N.,Regis,B.,2003.New insight in myeloma-induced osteolysis.Leuk.Lyphoma.,44,1463-1467.
    [16] 董安莉,陈璐璐,丁桂芝.成骨细胞骨形成机制研究进展.中国骨质疏松杂志.1999,5(3):60-64
    [17] Rousseau, M., Pereira-Mouries, L., Almeida, M.J., Milet, C., Lopez, E., 2003. The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp. Biochem. Physiol. B., 135, 1-7.
    [18] Sugimoto, E. and Yamaguchi, M., 2000. Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem. Pharmacol., 59, 471-475.
    [19] 李青南,梁念慈,胡彬,李朝阳,吴铁,张志平.骨质疏松药物研究指南(美国-FDA)的方案简 介附去卵巢模型及联合用药.中国骨质疏松杂志.1997,3(1):75-78,42.
    [20] 汪青,孙兰,龚海洋,郑虎,邱明才,刘景生.骨质疏松动物模型建立与评价.中国药理学通报.1999,15(5):391-395.
    [21] Kai, M., Yamauchi, A.., Tominaga, K., Koga, A., Kai, H., Kataoka, Y., 2004. Soybean isoflavones eliminate nifedipine-induced flushing of tail skin in ovariectomized mice. J. Pharmacol. Sci., 95, 476-478.
    [22] Kostenuik, P.J., Bolon, B., Morony, S., Daris, M., Geng, Z., Carter, C., Sheng, J., 2004. Gene therapy with human recombinant osteoprotegerin reverses established osteopenia in ovariectomized mice. Bone, 34, 656-664.
    [23] Fonseca, D., Ward, W.E., 2004. Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone, 35, 489-497.
    [24] 于丽云,周学瀛.RANKL和破骨细胞.国外医学内分泌分册.2003,23(2):123-126.
    [25] Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S.I., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N., Suda, T., 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci., 95, 3597-3602.
    [26] Troen, B.R., 2003. Molecular mechanisms underlying osteoclast formation and activation. Exp. Gerontol., 38, 605-614.
    [27] Koseki, T., Gao, Y., Okahashi, N., Murase, Y., Tsujisawa, T., Sato, T., Yamato, K., Nishihara, T., 2002. Role of TGF-β family in osteoclastogenesis induced by RANKL. Cell. Signal., 14, 31-36.
    [28] Kong, Y.Y., Penninger, J.M., 2000. Molecular control of bone remodeling and osteoporosis. Exp. Gerontol., 35, 947-9516.
    [29] Bord, S., Ireland, D.C., Beavan, S.R., Compston, J.E., 2003. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone, 32, 136-141.
    [30] 王宝利.1核因子_κB受体激活物配基RANKL反义RNA影响破骨细胞样细胞生成的研究2小鼠RANKL活性区cDNA克隆及在大肠杆菌和毕赤酵母中的表达3人护骨素OPG成熟肽基因酵母表达载体的构建.天津医科大学博士论文.2002.14.15.
    [1] 崔福德主编.药剂学.中国医药科技出版社.2002.314-315页.
    [2] 毕殿洲等主编.药剂学(第四版).人民卫生出版社.1980.99页.
    [3] 梁桂贤,刘谦民.药物肠吸收研究方法近况.国外医药-合成药.生化药.制剂分册.1998,19(4):251-253.
    [4] Michiya Kobayashi,Noriaki Sada,Mitsuru Sugawara et al. Development of a new system for prediction of drug absorption that takes into account drug dissolution and pH change in the gastro-intestinal tract. Int.J. Pharm. 2001, 221(1-2): 87-94
    [5] 屠锡德,朱家壁等主编.生物药剂学.南京:江苏科学技术出版社.1981.13-16页.
    [6] 杨秀伟,郝美荣,服部征雄主编.中药成分代谢分析.中国医药科技出版社.2003.151-154页.
    [7] Artursson P, Palm K, Luthman K. 1996. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 22: 67-84.
    [8] Baily CA, Bryla P, Malick AW. 1996. The use of intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Adv Drug Deliv Rev. 22:85-103.
    [9] Quaroni A, Hochman J. 1996. Development of intestinal cell culture models for drug transport and metabolism studies. Adv Drug Deliv Rev. 22: 3-52.
    [10] Delie F, Rubas W. 1997. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: Advantages and limitations of the Caco-2 models. Crit Rev Ther Drug Carrier Syst. 14:221-286
    [11] Murota, K., Shimizu, S., Miyamoto, S., Izumi, T., Obata, A., Kikuchi, M., Terao, J., 2002. Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells: comparison of isoflavonoids and flavonoids. Nutr. Metab. 132, 1956-1961.
    [12] Chen, J., Lin, H., Hu, M., 2005. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother. Pharmacol. 55, 159-169.
    [13] Liu Y, Hu M. 2002. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perused rat intestinal model. Drug Metab Disposit. 30:370-377
    [14] Steensa A, Noteborn, HPJM., Van der Jagt RCM., Polman THG., Mengeters MJB., Kuiper HA. 1999. Bioavailability of genistein, daidzein and their glycosides in intestinal epithelial Caco-2 cells. Environ Toxicol Pharmacol. 7:209-212
    [15] Steensa A, Noteborn HPJM., Kuiper HA. 2004. Comparison of Caco-2, IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein, daidzein and their glycosides. Environ Toxicol Pharmacol. 16:131-139
    [16] Kulling SE, Honig DM, Metzler M. 2001. Oxidative metabolism of the soy isoflavones daidzein and genistein in vitro and in vivo. J Agric Food Chem. 49:3024-3033
    [17] 杨秀伟,郝美荣,服部征雄主编.中药成分代谢分析.中国医药科技出版社.2003.594-598页.
    [18] Hendrich, S., 2002. Bioavailability of isoflavones. J. Chromatogr. 777: 203-210.
    [1] 周新腾.注射用雌二醇生物可降解缓释微球的研究.沈阳药科大学博士学位论文.2003,43-44.
    [2] Leane, M.M., Nankervis, R., Smith, A., Illum, L., 2004. Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms. Int. J. Pharm., 271,241-249.
    [3] Prochazkovab, S., VaEruma, K.M., φestgaardb, K., Quantitative determination of chtosans by ninhydrin. Carbohydr. Polym. 38, 115-122.
    [4] 吴婉莹,李云谷.金雀异黄素壳聚糖微球的制备方法.中国中药杂志.2002,27(5):353-355.
    [5] Genta, I., Perugini, P, Conti, B., Pavanetto, F., 1997. A multiple emulsion method to entrap a lipophilic compound into chitosan microspheres. Int. J. Pharm. 152, 237-246.
    [6] Akbuga, J., Ozbas-Turan, S., Erdogan, N., 2004. Plasmid-DNA loaded chitosan microspheres for in vitro IL-2 expression. Eur. J. Pharm. Biopharm. 58, 501-507.
    [7] Shu, X.Z., Zhu, K.J., 2002. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int. J. Pharm. 233, 217-225.
    [8] Kockisch, S., Rees, G.D., Tsibouklis, J., Smart, J.D., 2005. Mucoadhesive, triclosan-loaded polymer microspheres for application to the oral cavity: preparation and controlled release characteristics. Eur. J. Pharm. Biopharm., 59, 207-216.
    [9] Jiang, H.L., Park, I.K., Shin, N.R., Kang, S.G., Yoo, H.S., Kim, S.I., Suh, S.B., Akaike, T., Cho, C.S., 2004. In vitro study of the immune stimulating activity of an athrophic rhinitis vaccine associated to chitosan microspheres. Eur. J. Pharm. Biopharm., 58, 471-476.
    [10] Wang, Y.M., Sato, H., Adachi, I., Horikoshi, I., 1996. Optimization of the formulation design of chitosan microspheres containing cisplatin. J. Pharm. Sci. 85, 1204-1210.
    [11] 王亚敏,石庭森,浦永林,朱建纲,赵延乐.顺铂壳聚糖微球的制备及特性研究.药学学报.1996,31(4):300-305.
    [12] 王亚敏,石庭森.顺铂壳聚糖微球制备工艺的研究.军事医学科学院院刊.1996,20(3):195-198.
    [13] 郑爱萍,于少云,赵莹,武凤兰.鼻用氟尿嘧啶壳聚糖微球的制备及其特性研究.北京大学学报(医学版).2004,36(3):300-304.
    [14] 郑爱萍,刘海宏,李宏斌,武凤兰.5-氟尿嘧啶壳聚糖微球的制备及其体外释放特性.中国药科大学学报.2004,35(4):318-323.
    [15] 蒋新宇,周春山,邓晔.壳聚糖载药微球的研制.常德师范学院学报(自然科学版).2003,15(1):36-39.
    [16] 尹承慧,侯春林,蒋丽霞,顾其胜,蒋雪涛,刘公义.环丙沙星/壳聚糖植入微球的制备及其体外释放研究.第二军医大学学报.2002,23(5):536-539.
    [17] 刘利萍,李苹,吴泽志,蔡绍皙.肺靶向利福平壳聚糖磁微球的构建.化学世界.2003,(4):200-202,190.
    [18] Wu W. and Cui G.H., 2000. Central composite design-response surface methodology and its application in pharmaceutics. Foreign Med. Sci. Section on Pharmacy. 27, 292-298.
    [19] 吴伟,崔光华.星点设计_效应面优化法及其在药学中的应用.国外医学药学分册.2000,27(5):292-298.
    [20] Khawla, A.A.I., Lucila, G.C., Lu, D.R., 1996. Preparation and evaluation of sustained release AZT-loaded microspheres: optimization of the release characteristics using response surface methodology. J. Pharm. Sci. 85, 144-149.
    [21] Khawla, A.A.I., Lucila, G.C., Lu, D.R., 1996. Preparation and evaluation of Zidovudine-loaded sustained-release microspheres. 2. optimization of multiple response variables. J. Pharm. Sci. 85, 572-576.
    [22] Molpeceres, J., Guzman, M., Aberturas, M.R., Chacon, M., Berges, L., 1996. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J. Pharm. Sci. 85, 206-213.
    [23] Chac6n, M., Berges, L, Molpeceres, J., Aberturas, M.R., Guzman, M., 1996. Optimized preparation of poly D, L (lactic-glycolic) microspheres and nanoparticles for oral administration. Int. J. Pharm. 141, 81-91.
    [24] 李华.长春西汀透皮给药系统的设计与评价.沈阳药科大学博士学位论文.2004,53-60.
    [25] Zhou, X.T., Pan, W.S., Zhang, R.H., Zhu, F., 2002. Preparation and evaluation of poly (d,l-lactic acid) (PLA) or d,1-lactide/glycolide copolymer (PLGA) microspheres with estradiol. Die Pharmazie. 10, 695-697.
    [26] Polakovic, M., Gorner, T., Gref, R., Dellacherie E., 1999. Lidocaine loaded biodegradable nanospheres. Ⅱ. Modeling of drug release. J. Control. Release. 60: 169-177.
    [27] 周新腾.注射用雌二醇生物可降解缓释微球的研究.沈阳药科大学博士学位论文.2003,58.
    [28] 毕殿洲等主编.药剂学(第四版).北京:人民卫生出版社.1980:100.
    [29] Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M., 2004. Recent advances on chitosan-based micro-and nanoparticles in dug delivery. J. Control. Release. 100, 5-28.
    [30] Prabaharan, M. and Mano, J.F., 2005. Chitosan-based particles as controlled drug delivery system. Drug Deliv. 12, 41-57.
    [31] Sinha V.R., Singla A.K., Wadhawan S., Kaushik R., Kumria R., Bansal K., Dhawan S., 2004. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274, 1-33.
    [32] Jameela, S.R., Kumary, T.V., Lal, A.V., Jayakrishnan, A., 1998. Progesterone-loaded chitosan microspheres: a long acting biodegradable controlled delivery system. J. Control. Release. 52, 17-24.
    [33] Patashnik S., Rabinovich L., Golomb G., 1997. Preparation and evaluation of chitosan microspheres containing bisphosphonates. J. Drug Target. 4:371-380.
    [34] Jameela, S.R., Jayakrishnan, A., 1995. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials. 16, 769-775.
    [35] Yoshino, T., Machida, Y., Onishi, H., Nagai, T., 2003. Preparation and characterization of chitosan microspheres containing doxifluridine. Drug Dev. Ind. Pharm. 29, 417-427.
    [36] Perugini, P., Genta, I., Conti, B., Modena, T., Cocchi, D., Zaffe, D., Pavanetto, F., 2003. PLGA microspheres for oral osteopenia treatment: preliminary "in vitro"/"in vivo" evaluation. Int. J. Pharm. 256, 153-160.
    [1] 周新腾.注射用雌二醇生物可降解缓释微球的研究.沈阳药科大学博士学位论文.2003,87-88.
    [2] 瞿文,陈庆华,赵瑞钦,李宁,周美华.丙氨瑞林生物可降解缓释微球注射剂的研究.中国医药工业杂志.2000,31(1): 14-18.
    [3] Janning, P., Schuhmacher, U.S., Upmeier, A., Diel, P., Michna, H., Degen, G.H., Bolt, H.M., 2000. Toxicokinetics of the phytoestrogen daidzein in female DA/Han rats. Toxicokinetics Metab. 74, 421-430.
    [4] Qiu, E, Chen, X.Y., Song, B., Zhong, D.E, Liu, C.X., 2005. Influence of dosage forms on pharmacokinetics of daidzein and its main metabolite daidzein-7-O-glucuronide in rats. Acta Pharmacol. Sin., 26, 1145-1152.
    [5] 魏树礼主编.生物药剂学与药物动力学.北京医科大学中国协和医科大学联合出版社.1997年.82-84页.
    [6] Mi, F.L., Tan, Y.C., Liang, H.F., Sung, H.W., 2002. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials. 23, 181-191.
    [7] Cade'e, J.A., Brouwer, L.A., Otter, den W., Hennink, W.E., Luyn, van M.J.A., 2001. A comparative biocompatibility study of microspheres based on crosslinked dextran or poly (lactic-co-glycolic) acid after subcutaneous injection in rats. J. Biomed. Mater. Res., 56, 600-609.
    [8] Jameela, S.R., Jayakrishnan, A., 1995. Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials. 16, 769-775.
    [9] Yoshino, T., Machida, Y., Onishi, H., Nagai, T., 2003. Preparation and characterization of chitosan microspheres containing doxifluridine. Drug Dev. Ind. Pharm., 29, 417-427.
    [10] Uehara, M., Lapcik, O., Hampl, R., Al-Maharik, N., Makela, T., Wahala, K., Mikola, H., Adlercreutz, H., 2000. Rapid analysis of phytoestrogens in human urine by time-resolved fluoroimmunoassay. J. Steroid Biochem., 72, 273-282.
    [11] Wang, G.J., Lapcik, O., Hampl, R., Uehara, M., Al-Maharik, N., Stumpf, K., Mikola, H., Wahala, K., Adlercreutz, H., 2000. Time-resolved fluoroimmunoassay of plasma daidzein and genistein. Steroids., 65,339-348.
    [12] Uehara, M., Ohta, A., Sakai, K., Suzuki, K., Watanabe, S., Adlercreutz, H., 2001. Dietary fructoo- ligosaccharides modify intestinal bioavailability of a single dose of genistein and daidzein and affect their urinary excretion and kinetics in blood of rats. The J. Nutr., 131, 787-795.
    [13] Thomas, B.F., Zeisel, S.H., Busby, M.G., Hill, J.M., Mitchell, R.A., Scheffier, N.M., Brown, S.S., Bloeden, L.T., Dix, K.J., Jeffcoat, A.R., 2001. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B., 760, 191-205.
    [14] Klejdus, B., Vacek, J., Adam, V., Zehnalek, J., Kizek, R., Trnkova, L., Kuban, V., 2004. Determination of isoflavones in soybean food and human urine using liquid chromatography with electrochemical detection. J. Chromatogr. B., 806, 101-111.
    [15] Tekel, J., Daeseleire, E., Heeremans, A., Peteghem, van C., 1999. Development of a simple method for the determination of genistein, daidzein, biochanin A, and formononetin (biochanin B) in human urine. J. Agric. Food Chem., 47: 3489-3494.
    [16] Franke, A.A., Custer, L.J., Wilkens, L.R., Marchand, L.L., Nomura, A.M.Y,, Goodman, M.T., Kolonel, L.N., 2002. Liquid chromatographic-photodiode array mass spectrometric analysis of dietary phytoestrogens from human urine and blood. J. Chromatogr. B., 777, 45-59.
    [17] Chen, X.Y., Qiu, E, Zhong, D.E, Duan, X.T., Liu, C.X., 2005. Validated liquid chromatography-tandem mass spectrometric nethod for the quantitative determination of daidzein and its main metabolite daidzein glucuronide in rat plasma. Pharmazie., 60, 334-338.
    [18] Bennetau-Pelissero, C., Arnal-Schnebelen, B., Lamothe, V., Sauvant, P., Sagne, J.L., Verbruggen, M.A., Mathey, J., Lavialle, O., 2003. ELISA as a new method to measure genistein and daidzein in food and human fluids. Food Chem., 82, 645-658.
    [19] Gallagher, K.M., Corrigan, O.I., 2000. Mechanistic aspects of the release of levamisole hydrochloride from biodegradable polymers. J. Control. Release, 69, 261-272.
    [20] Zhang, X., Wyss, U.P., Pichora, D., 1994. A mechanistic study of antibiotic release from biodegradable poly(dl-lactide) cylinders. J. Control. Release, 31,129-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700