黄土高原晚中新世—上新世红粘土碳酸盐地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上新世暖期(5-3Ma)是与当代全球变暖最为相似的类比期。这一时期同工业革命前相比,全球气温高2.5℃,大气二氧化碳浓度高35%,北半球大规模冰川缺失,海平面上升。太平洋地区的表层海水温度上升,在东西和南北两个方向上温度差缩小。由低纬度海洋向中纬度内陆地区输送暖湿气流的信风系统减弱。这些气候特征与当代“厄尔尼诺”现象相似。据现代气象观测,“厄尔尼诺”会给我国北方带来干旱天气。然而上新世暖期的气候是否会长期处于“厄尔尼诺”状态之下,有没有给我国北方地区带来持续性的干旱,目前存有很大争议。
     黄土高原的红粘土风成序列为研究这一时期的我国北方的气候特点提供了最佳的材料。为了恢复红粘土发育时期的气候特点,研究人员围绕气候代用指标展开了一系列研究工作,取得了丰硕的成果。这些代用指标包括蜗牛化石记录、植物孢粉记录、磁化率、粒度、铁矿物、碳酸盐矿物含量、碳氧同位素等。然而使用已有的气候代用指标获得的古气候信息之间缺乏一致。上新世的气候特征仍然颇具争议,争议的焦点在于上新世东亚季风是否存在、黄土高原的气候是否更加干燥、黄土高原的植被分布特征与现代是否相似。
     为了回答这些问题,本文以气候变化敏感矿物——碳酸盐为切入点,在野外地质考察的基础上,对六盘山以东地区自南向北四条红粘土剖面(段家坡、灵台、巴家嘴和佳县)展开地球化学研究。围绕红粘土碳酸盐矿物已开展的研究工作存在如下问题或不足:1)对于不同的碳酸盐矿物种类未作区分;2)缺少不同种类的碳酸盐矿物的地球化学特征;3)对不同类型的碳酸盐矿物的时空分布特点缺乏了解;4)成壤碳酸盐碳同位素的解释存在争议;5)成壤碳酸盐氧同位素的研究整体上较为薄弱。针对以上问题,本文采用X射线衍射、漫反射红外光谱(FTIR)、场发射扫描电镜(FE-SEM)和稳定同位素质谱仪(MAT)等手段,研究了各剖面中碳酸盐的矿物学特征、成因,建立碳酸盐矿物的定量分析方法,阐明了各剖面中碳酸盐矿物(原白云石、方解石)的含量、碳氧同位素变化规律与分布。在此基础上,进一步探讨了成壤碳酸盐的种类和含量变化与季风的关系;恢复了上新世古生态;揭示了红粘土成壤碳酸盐氧同位素与全球气候变化的联系。
     论文的原创性成果包括以下四个方面:
     1)发现红粘土存在着次生成因的原白云石(高钙白云石)。本文使用红外光谱方法(FTIR)鉴定和定量了红粘土原白云石和共生方解石,获得了自南向北四条红粘土剖面的原白云石和方解石矿物含量。发现随着地层由老到新,原白云石含量和出现频率在四条红粘土剖面一致呈现出降低的趋势。在空间上,段家坡和巴家嘴红粘土原白云石含量较高,平均值分别达到了6.0%和3.6%;灵台和佳县剖面原白云石含量较低,平均值只有1.6%和1.7%。
     2)红粘土原白云石的碳氧同位素偏负,指示了陆相“淡水”成因和大气降水的参与。微形貌观察显示红粘土原白云石由直径为1-20μm的自生微晶体构成,具有菱面体结构,生长在土壤孔隙中与自生方解石共生。这表明原白云石原位生长,是在成壤过程中自生形成的。论文提出较高的Mg2+/Ca2+比值和较为温暖、干旱的气候条件是形成原白云石的必要条件;红粘土原白云石对上新世较温暖和干旱的气候条件具有重要的指示意义。
     3)发现红粘土沉积序列存在着碳酸盐淋滤-淀积旋回,基本与深海氧同位素轨道尺度旋回吻合。其中淋滤层碳酸盐含量低,磁化率高,Rb/Sr比值高,Zr/Rb比值低;而淀积层碳酸盐含量高,磁化率低,Rb/Sr比值低,Zr/Rb比值高;与上覆第四纪黄土-古土壤旋回相类似。确立了8-3Ma期间至少存在七次重大环境事件,为青藏高原隆升和全球变化的区域响应研究提供了新的证据。此外,研究发现上新世暖期(5-3Ma B.P.)存在类似于第四纪的季风旋回,结论并不支持上新世暖期“永久性厄尔尼诺”假说。
     4)发现了红粘土钙结核碳同位素自南向北逐渐偏正,并揭示了在6.7-6.4Ma和~3.6Ma两次重要的C4植被扩张事件,很可能与干旱化加剧有关。据红粘土钙结核氧同位素时间序列变化特点,确定了晚中新世以来三个重要演化阶段。发现6.1-3.6Ma,钙结核氧同位素逐渐偏正;-3.6Ma之后,偏正的趋势加剧。钙结核氧同位素值逐步偏正与深海氧同位素由轻变重的趋势一致,很可能与全球变冷过程和中国西部内陆干旱化的加强有关。
The Pliocene Warming Period (PWP) is often considered the closest analog of modern global warming. Comparing with the pre-industrial conditions, mean annual temperature was2.5℃higher, with the atmospheric concentration of CO2between300-400ppm. During the PWP, higher latitudes were warmer, the ice cap was largely absent from Northern Hemisphere, and the sea level was higher. The Pacific climate was also quite different. The surface sea temperature (SST) of Pacific increased and the SST gradient between the equatorial Pacific was very small. The Northern Hemisphere atmospheric circulations show a robust response to meridional SST gradient changes. The reduced SST gradient widens the Intertropical Convergence Zone (ITCZ) and decreases precipitation amount at the western coast of Pacific. These Pliocene climate conditions were often called "permanent El Nino". Under modern El Nino-like climate, the landfalls will decrease in North China. However, there is still considerable debate over the characteristics of El Nino/southern oscillation (ENSO) during PWP. The opposing evidence suggests that a La Nina-like state was dominant during PWP. During a modern La Nina event, monsoonal rainfall will be enhanced in North China.
     The Red Clay Formation, which underlies the well-known Quaternary loess sequence, extends the eolian deposits from2.6Ma through the late Miocene making it a good archive to reconstruct Pliocene climate in North China. Paleoecological analysis of terrestrial snail communities from the Red Clay and pollen assemblages indicates the existence of monsoonal precipitation. However, the temporal sampling resolution in these studies is low and detailed information of EAM variability remains poorly understood. The Pliocene climate pattern was rather controversial and focused on the state of East Asian monsoon (EAM).
     The goal of this study is to explore the evolution of EAM during the Pliocene. To accomplish this goal, we studied the carbonate minerals formed in the warmer Pliocene epoch, as carbonate minerals have been suggested as potential paleoclimate proxies in Pleistocene loess-paleosol sequence. However, little work has been done on the carbonates from the underlying Red Clay. Few attempts have been made to determine Red Clay carbonate genesis or distinguish differences between carbonate species. As a result, the lack of information about the relative abundance of different carbonate mineral species in the Red Clay is a potential hindrance to paleoclimate reconstructions. We studied four continuous sections (Duanjiapo, Lingtai, Bajiazui and Jiaxian) of the Red Clay Formation on the Chinese Loess Plateau (CLP) by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Stable Isotope Mass Spectrometry. The fundermantal objective of these studies is to clarify Pliocene paleoclimate state by relative abundances, micro-morphology, stable isotope compositions of primary pedogenic protodolomite and calcite from four typical Red Clay sequences.
     The summary of innovations in this study was listed as follows including four aspects.
     1) Red Clay on CLP shows diagnostic FTIR absorption features of calcite and protodolomite, which allowed the two carbonate minerals to be identified and quantified using the FTIR method. Linear regression of the713cm-1and728cm-1absorption band area versus calcite and dolomite concentration, respectively, produces regression equations with R2's of0.92and0.96. The protodolomite and calcite minerals contents were acquired for the four studies Red Clay sections. In all the four sections, protodolomite concentrations and the frequency of occurrence increase downward.
     2) SEM observations indicate that Red Clay protodolomite is composed of euhedral rhombic crystals coexisting with calcite and palygorskite. The crystals vary from1-20μm and grow into the soil voids, implying that the protodolomite is authigenic. The depletion of δ18O further indicates that this protodolomite formed in a fresh water environment. The above results demonstrate that the protodolomite originated from pedogenesis. Dolomitization in the Red Clay sequence appears to be the result of overcoming kinetic barriers. A high pore water Mg/Ca ratio is the critical kinetic factor controlling Red Clay dolomitization. Warm and seasonal dry conditions lead to the formation of protodolomite. Protodolomite is indicative for the warm and dry climate during Pliocene.
     3) Red Clay Formation contains the leached and calcareous horizons. Their carbonate content varies with high frequency and large amplitude. High MS values, Rb/Sr ratios and lower Zr/Rb ratios are found in the leached horizons, whereas low MS values, Rb/Sr ratios and higher Zr/Rb ratios are found in the calcareous horizons. These variations are comparable with those observed in the overlying paleosol-loess sequence. Seven highly leached horizons, whose carbonate content is near zero, reflect climate intervals dominated by large climate events. They were in phase with the deep sea δ18O isotope fluctuations, indicating a close connection with global climate change. At least two strong leaching/carbonate accumulation cycles occurred during the PWP (5-3Ma). The dramatic differences in the precipitation suggested by these cycles do not appear to support the hypothesis that past and future warmer climate would lead to a permanent El Nino-like climate.
     4) The carbon isotopes of carbonate nodules in Red Clay show a northward positive gradient on CLP, revealing that the abundance of C4plants was in proportion with aridity. C4plants greatly expanded in two intervals from6.7-6.4Ma and at~3.6Ma on CLP. The second C4expansion interval is in phase with the increasing dust deposition rate in North Pacific, suggesting that the drying of Asian interior may have triggered the C4plants expansion. Three important climate evolution stages were revealed from the oxygen isotopes of carbonate nodules in Red Clay. Between6.1-3.6Ma, oxygen isotopes of carbonate nodules gradually increased and after~3.6Ma, the increasing trend was even more evident. The enhancement of oxygen isotopes from carbonate nodules correlated with deep sea oxygen isotopes, indicating a close dependence on global temperatures.
引文
Aggarwal, P. K., K. Frohlich, K. M. Kulkarni, and L. L. Gourcy (2004), Stable isotope evidence for moisture sources in the Asian summer monsoon under present and past climate regimes, Geophys Res Lett,31(8).
    An, Z. S., et al. (2005), Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation, Geology,33(9),705-708.
    An, Z. S. (2000), The history and variability of the East Asian paleomonsoon climate, Quaternary Sci Rev,19(1-5),171-187.
    An, Z. S., and Y. S. Huang (2005), Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation, Geology,33,705-708.
    An, Z. S., G J. Kukla, S. C. Porter, and J. L. Xiao (1991), Magnetic-Susceptibility Evidence of Monsoon Variation on the Loess Plateau of Central China during the Last 130,000 Years, Quaternary Res,36(1),29-36.
    An, Z. S., J. E. Kutzbach, W. L. Prell, and S. C. Porter (2001), Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times, Nature, 411(6833),62-66.
    Anderson, W. T., S. M. Bernasconi, J. A. McKenzie, and M. Saurer (1998), Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies):An example from central Switzerland (1913-1995), J Geophys Res-Atmos,103(D24),31625-31636.
    Arvidson, R. S., and F. T. Mackenzie (1999), The dolomite problem:Control of precipitation kinetics by temperature and saturation state, Am J Sci,299(4),257-288.
    Augustin, L., et al. (2004), Eight glacial cycles from an Antarctic ice core, Nature,429(6992), 623-628.
    Ballantyne, A. P., D. R. Greenwood, J. S. S. Damste, A. Z. Csank, J. J. Eberle, and N. Rybczynski (2010), Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies, Geology,38(1),603-606.
    Brierley, C. M., A. V. Fedorov, Z. H. Liu, T. D. Herbert, K. T. Lawrence, and J. P. LaRiviere (2009), Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene, Science,323(5922),1714-1718.
    Burton, E. A., and H. G. Machel (1992), Water-rock interaction, Balkema, Rotterdam, the Netherlands.
    Cao, J. J., J. C. Chow, J. G. Watson, F. Wu, Y. M. Han, Z. D. Jin, Z. X. Shen, and Z. S. An (2008), Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau, Atmos Environ,42(10),2261-2275.
    Cao, J. J., S. C. Lee, X. Y. Zhang, J. C. Chow, Z. S. An, K. F. Ho, J. G. Watson, K. Fung, Y. Q. Wang, and Z. X. Shen (2005), Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance, J Geophys Res-Atmos,110(D3),-.
    Capo, R. C., C. E. Whipkey, J. R. Blachere, and O. A. Chadwick (2000), Pedogenic origin of dolomite in a basaltic weathering profile, Kohala peninsula, Hawaii, Geology,28(3), 271-274.
    Cerling, T. E. (1984a), The Stable Isotopic Composition of Modern Soil Carbonate and Its Relationship to Climate, Earth and Planetary Science Letters,71(2),229-240.
    Cerling, T. E. (1984b), The stable isotope composition of modern soil carbonate and its relationship to climate, Earth and Planetary Science Letters,71,229-240.
    Cerling, T. E., and J. Quade (Eds.) (1993), Stable Carbon and Oxygen Isotopes in Soil Carbonates,217-231 pp., American Geophysical Union, Washington D.C.
    Cerling, T. E., J. Quade, Y. Wang, and J. R. Bowman (1989), Carbon Isotopes in Soils and Paleosols as Ecology and Paleoecology Indicators, Nature,341(6238),138-139.
    Chen, B. Q., D. H. Sun, and Z. S. An (2001), Palaeoclimatic record from red clay sequence at Bailuyuan of Lantian, Shaanxi province, Journal of Shaanxi Normal University (Natural Science Edition),29,112-117.
    Chen, J., Z. S. An, and J. Head (1999), Variation of Rb Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology, Quaternary Res,51(3),215-219.
    Chen, J., Z. S. An, H. T. Wang, and Y. Gao (1996), An isotopic study of the S-1 paleosol carbonates from the central Loess Plateau of North China, Chinese Sci Bull,41(18), 1542-1545.
    Chen, J., Y. J. Wang, Y. Chen, L. W. Liu, J. F. Ji, and H. Y. Lu (2000), Rb and Sr geochemical characterization of the Chinese Loess stratigraphy and its implications for palaeomonsoon climate, Acta Geol Sin-Engl,74(2),279-288.
    Chen, J., Y. Chen, L. W. Liu, J. F. Ji, W. Balsam, Y. B. Sun, and H. Y. Lu (2006), Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength, Geochim Cosmochim Ac,70(6),1471-1482.
    Chen, T. H., H. F. Xu, Q. Q. Xie, J. Chen, J. F. Ji, and H. Y. Lu (2005), Characteristics and genesis of maghemite in Chinese loess and paleosols:Mechanism for magnetic susceptibility enhancement in paleosols, Earth and Planetary Science Letters,240(3-4), 790-802.
    Chen, X. L., X. M. Fang, Z. S. An, W. X. Han, X. Wang, Y. Bai, and Y. Hong (2007), An 8.1 Ma calcite record of Asian summer monsoon evolution on the Chinese central Loess Plateau, Sci China Ser D,50(3),392-403.
    Cheng, H., R. L. Edwards, W. S. Broecker, G. H. Denton, X. G. Kong, Y. J. Wang, R. Zhang, and X. F. Wang (2009), Ice Age Terminations, Science,326(5950),248-252.
    Clift, P., P. X. Wang, W. Kuhnt, R. Hall, and R. Tada (2002), Continent-Ocean Interactions within the East Asian Marginal Seas, paper presented at An American Geophysical Union Chapman Meeting, AGU, Bahia Resort Hotel, San Diego, California, USA.
    Colson, J., and I. Cojan (1996), Groundwater dolocretes in a lake-marginal environment:An alternative model for dolocrete formation in continental settings (Danian of the Provence Basin, France), Sedimentology,43(1),175-188.
    Compton, J. S., and R. Siever (1986), Diffusion and mass balance of Mg during early dolomite formation, Monterey Formation, Geochim Cosmochim Ac,50(1),125-135.
    Derbyshire, E., X. M. Meng, and R. A. Kemp (1998), Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record, J Arid Environ,39(3),497-516.
    Ding, Z. L., and S. L. Yang (2000), C-3/C-4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau:evidence from pedogenic carbonate delta C-13, Palaeogeogr Palaeocl,160(3-4),291-299.
    Ding, Z. L., J. M. Sun, S. L. Yang, and T. S. Liu (2001a), Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change, Geochim Cosmochim Ac,65(6),901-913.
    Ding, Z. L., S. L. Yang, J. M. Sun, and T. S. Liu (2001b), Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma, Earth and Planetary Science Letters,185(1-2),99-109.
    Ding, Z. L., N. W. Rutter, J. M. Sun, S. L. Yang, and T. S. Liu (2000), Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China:evidence from grain size records of loess-palaeosol and red clay sequences, Quaternary Sci Rev,19(6),547-558.
    Ding, Z. L., J. M. Sun, S. L. Yang, and T. S. Liu (1998), Preliminary magnetostratigraphy of a thick eolian red clay-Loess sequence at Lingtai, the Chinese Loess Plateau, Geophys Res Lett,25(8),1225-1228.
    Ding, Z. L., J. M. Sun, T. S. Liu, R. X. Zhu, S. L. Yang, and B. Guo (1998), Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China, Earth and Planetary Science Letters,161(1-4),135-143.
    Ding, Z. L., S. F. Xiong, J. M. Sun, S. L. Yang, Z. Y. Gu, and T. S. Liu (1999), Pedostratigraphy and paleomagnetism of a similar to 7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution, Palaeogeogr Palaeocl,152(1-2),49-66.
    Dworkin, S. I., L. Nordt, and S. Atchley (2005), Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate, Earth and Planetary Science Letters,237(1-2),56-68.
    Dwyer, G. S., and M. A. Chandler (2009), Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes, Philos TR Soc A, 367(1886),157-168.
    Ehleringer, J. R., T. E. Cerling, and B. R. Helliker (1997), C-4 photosynthesis, atmospheric CO2 and climate, Oecologia,112(3),285-299.
    Farquhar, G D., J. R. Ehleringer, and K. T. Hubick (1989), Carbon Isotope Discrimination and Photosynthesis, Annu Rev Plant Phys,40,503-537.
    Fedorov, A. V., C. M. Brierley, and K. Emanuel (2010), Tropical cyclones and permanent El Nino in the early Pliocene epoch, Nature,463(7284),1066-U1084.
    Feng, Z. D., L. X. Wang, Y. H. Ji, L. L. Guo, X. Q. Lee, and S. I. Dworkin (2008), Climatic dependency of soil organic carbon isotopic composition along the S-N Transect from 34 degrees N to 52 degrees N in central-east Asia, Palaeogeogr Palaeocl,257(3),335-343.
    Folk, R. L., and L. S. Land (1975), Mg/Ca Ratio and Salinity:Two Controls over Crystallization of Dolomite, Aapg Bull,59.
    Fox, D. L., J. G. Honey, R. A. Martin, and P. Pelaez-Campomanes (2012), Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA:Oxygen isotopes and paleoclimate during the evolution of C-4-dominated grasslands, Geol Soc Am Bull,124(3-4),431-443.
    Friedman, I., and J. R. O'Neil (Eds.) (1977), Compilation of stable isotope fractionation factors of geochemical interest,440-KK pp.
    Fu, Q. L., H. R. Qing, and K. M. Bergman (2004), Dolomitized calcrete in the Middle Devonian Winnipegosis carbonate mounds, subsurface of South-Central Saskatchewan, Canada, Sediment Geol,168(1-2),49-69.
    Gaillardet, J., B. Dupre, P. Louvat, and C. J. Allegre (1999), Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem Geol,159(1-4),3-30.
    Gallet, S., B. M. Jahn, and M. Torii (1996), Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications, Chem Geol,133(1-4), 67-88.
    Gao, C, J. H. McAndrews, X. Wang, J. Menzies, C. L. Turton, B. D. Wood, J. Pei, and C. Kodors (2012), Glaciation of North America in the James Bay Lowland, Canada,3.5 Ma, Geology,40(11),975-978.
    Gocke, M., and Y Kuzyakov (2011), Effect of temperature and rhizosphere processes on pedogenic carbonate recrystallization:Relevance for paleoenvironmental applications, Geoderma,166(1),57-65.
    Gocke, M., K. Pustovoytov, and Y. Kuzyakov (2011), Pedogenic carbonate recrystallization assessed by isotopic labeling:a comparison of (13)C and (14)C tracers, Journal of Plant Nutrition and Soil Science,174(5),809-817.
    Gunatilaka, A. (1991), Dolomite formation in coastal Al-Khiran, Kuwait Arabian Gulf- a re-examination of the sabkha model, Sediment Geol,72(1-2),35-53.
    Guo, Z. T., S. Z. Peng, Q. Z. Hao, P. E. Biscaye, and T. S. Liu (2001), Origin of the Miocene-Pliocene Red-Earth formation at Xifeng in northern China and implications for paleoenvironments, Palaeogeogr Palaeocl,170(1-2),11-26.
    Guo, Z. T., W. F. Ruddiman, Q. Z. Hao, H. B. Wu, Y. S. Qiao, R. X. Zhu, S. Z. Peng, J. J. Wei, B. Y. Yuan, and T. S. Liu (2002), Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature,416(6877),159-163.
    Gylesjo, S., and E. Arnold (2006), Clay mineralogy of a red clay-loess sequence from Lingtai, the Chinese Loess Plateau, Global Planet Change,51(3-4),181-194.
    Han, J. M., E. Keppens, T. S. Liu, R. Paepe, and W. Y. Jiang (1997), Stable isotope composition of the carbonate concretion in loess and climate change, Quatern Int,37,37-43.
    Han, J. T., H. H. Chen, W. S. Fyfe, Z. F. Guo, D. J. Wang, and T. S. Liu (2007), Spatial and temporal patterns of grain size and chemical weathering of the Chinese Red Clay Formation and implications for East Asian monsoon evolution, Geochim Cosmochim Ac,71 3990-4004.
    Hardie, L. A. (1987), Dolomitization-a Critical-View of Some Current Views, J Sediment Petrol, 57(1),166-183.
    Holland, H. D., and H. Zimmerman (2000), The dolomite problem revisited, Int Geol Rev,42(6), 481-490.
    Hu, X. F., Xu Liang Feng, Pan Yun, and S. M. Neng (2009), Influence of the aging of Fe oxides on the decline of magnetic susceptibility of the Tertiary red clay in the Chinese Loess Plateau, Quatern Int,209(1-2),22-30
    Humphrey, J. D., and T. M. Quinn (1989), Coastal Mixing Zone Dolomite, Forward Modeling, and Massive Dolomitization of Platform-Margin Carbonates, J Sediment Petrol,59(3), 438-454.
    Ji, J. F., W. Balsam, and J. Chen (2001), Mineralogic and Climatic Interpretations of the Luochuan Loess Section (China) Based on Diffuse Reflectance Spectrophotometry, Quaternary Res,56,23-30.
    Ji, J. F., Y. Ge, W. Balsam, J. E. Damuth, and J. Chen (2009), Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR):A fast method for identifying Heinrich events in IODP Site U1308, Mar Geol,258(1-4),60-68.
    Ji, J.F., W. Balsam, X. Chen, J. Chen, Y. Chen, and H. T. Wang (2006), Rate of solar insolation change and the glacial/interglacial transition, Geophys Res Lett,33(4).
    Jiang, W. Y, S. Z. Peng, Q. Z. Hao, D. S. Liu, and T. S. Liu (2002), Carbon isotopic records in paleosols over the Pliocene in northern China:Implication on vegetation development and Tibetan uplift, Chinese Sci Bull,47(8),687-690.
    Johnson, K. R., and B. L. Ingram (2004), Spatial and temporal variability in the stable isotope systematics of modern precipitation in China:implications for paleoclimate reconstructions, Earth and Planetary Science Letters,220(3-4),365-377.
    Jones, G. A., and P. Kaiteris (1983), A Vacuum-Gasometric Technique for Rapid and Precise Analysis of Calcium-Carbonate in Sediments and Soils, J Sediment Petrol,53(2),655-660.
    Kaakinen, A., E. Sonninen, and J. P. Lunkka (2006), Stable isotope record in paleosol carbonates from the Chinese Loess Plateau:Implications for late Neogene paleoclimate and paleovegetation, Palaeogeogr Palaeocl,237(2-4),359-369.
    Kim, S. T., and J. R. Oneil (1997), Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim Cosmochim Ac,61(16),3461-3475.
    Land, L. S. (1998), Failure to precipitate dolomite at 25 degrees C from dilute solution despite 1000-fold oversaturation after 32 years, Aquat Geochem,4(3-4),361-368.
    LaRiviere, J. P., A. C. Ravelo, A. Crimmins, P. S. Dekens, H. L. Ford, M. Lyle, and M. W. Wara (2012), Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing, Nature,486(7401),97-100.
    Li, G., X. Sheng, J. Chen, J. Yang, and Y. Chen (2007), Oxygen-isotope record of paleorainwater in authigenic carbonates of Chinese loess-paleosol sequences and its paleoclimatic significance, Palaeogeography, Palaeoclimatology, Palaeoecology,245(3-4),551-559.
    Li, G., J. Chen, Y. Chen, J. Yang, J. Ji, and L. Liu (2007), Dolomite as a tracer for the source regions of Asian dust, J Geophys Res-Atmos,112(D17).
    Lisiecki, L. E., and M. E. Raymo (2005a), A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records (vol 20, art no PA1003,2005), Paleoceanography, 20(2),-
    Lisiecki, L. E., and M. E. Raymo (2005b), A Pliocene-Pleistocene stack of 57 globally distributed benthic delta 0-18 records, Paleoceanography,20(1),
    Liu, L. W., J. Chen, Y. Chen, J. F. Ji, and H. Y. Lu (2002), Variation of Zr/Rb ratios on the Loess Plateau of Central China during the last 130000 years and its implications for winter monsoon, Chinese Sci Bull,47(15),1298-1302.
    Liu, T. S. (1985), Loess and the Environment (in Chinese), Science Press, Beijing.
    Liu, T. S., and Z. L. Ding (1998), Chinese loess and paleomonsoon, Annu. Rev. Earth Planet. Sci., 26,111.
    Liu, W., Y. Ning, Z. An, Z. Wu, H. Lu, and Y. Cao (2005a), Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau, Science in China Series D:Earth Sciences,48(1),93-99.
    Liu, W., Y. Huang, Z. An, S. C. Clemens, L. Li, W. L. Prell, and Y. Ning (2005b), Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau:Carbon isotope evidence from bulk organic matter and individual leaf waxes, Palaeogeography, Palaeoclimatology, Palaeoecology,220(3-4),243-254.
    Liu, X. M., J. Shaw, T. S. Liu, F. Heller, and B. Y. Yuan (1992), Magnetic Mineralogy of Chinese Loess and Its Significance, Geophys J Int,108(1),301-308.
    Lu, H. Y, Y. L. Zhou, W. G. Liu, and J. Mason (2012), Organic stable carbon isotopic composition reveals late Quaternary vegetation changes in the dune fields of northern China, Quaternary Res,77(3),433-444.
    Ma, Y. Z., F. L. Wu, X. M. Fang, J. J. Li, Z. S. An, and W. Wang (2005), Pollen record from red clay sequence in the central Loess Plateau between 8.10 and 2.60 Ma, Chinese Sci Bull, 50(19),2234-2243.
    Maher, B. A., and R. Thompson (1995), Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols, Quaternary Res,44(3), 383-391.
    Mauger, C. L., and J. S. Compton (2011), Formation of modern dolomite in hypersaline pans of the Western Cape, South Africa, Sedimentology,58(1),1678-1692.
    Miao, X. D., Y. B. Sun, H. Y. Lu, and J. A. Mason (2004), Spatial pattern of grain size in the Late Pliocene'Red Clay'deposits (North China) indicates transport by low-level northerly winds, Palaeogeogr Palaeocl,206,149-155.
    Mowers, T. T., and D. A. Budd (1996), Quantification of porosity and permeability reduction due to calcite cementation using computer-assisted petrographic image analysis techniques, Aapg Bulletin-American Association of Petroleum Geologists,80(3),309-322.
    Nash, D. J., and S. J. McLaren (2003), Kalahari valley calcretes:their nature, origins, and environmental significance, Quatern Int,111,3-22.
    O'Neil, J. R., and S. Epstein (1966), Oxygen Isotope Fractionation in the System Dolomite-Calcite-Carbon Dioxide, Science,152(3119),198-201.
    Oleary, M. H. (1981), Carbon Isotope Fractionation in Plants, Phytochemistry,20(4),553-567.
    Pagani, M., K. H. Freeman, and M. A. Arthur (1999), Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses, Science,285(5429),876-879.
    Pagani, M., Z. H. Liu, J. LaRiviere, and A. C. Ravelo (2010), High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations, Nat Geosci,3(1), 27-30.
    Passey, B. H., L. K. Ayliffe, A. Kaakinen, Z. Zhang, J. T. Eronen, Y. Zhu, L. Zhou, T. E. Cerling, and M. Fortelius (2009), Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China, Earth and Planetary Science Letters,277(3-4),443-452.
    Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature,399(6735),429-436.
    Pingitore Jr, N. E., and M. P. Eastman (1986), The coprecipitation of Sr2+with calcite at 25℃ and 1 atm, Geochim Cosmochim Ac,50(10),2195-2203.
    Pipujol, M. D., and P. Buurman (1994), The Distinction between Groundwater Gley and Surface-Water Gley Phenomena in Tertiary Paleosols of the Ebro Basin, Ne Spain, Palaeogeogr Palaeocl,110(1-2),103-113.
    Qiang, M., F. Chen, Z. Wang, G. Niu, and L. Song (2010), Aeolian deposits at the southeastern margin of the Tengger Desert (China):Implications for surface wind strength in the Asian dust source area over the past 20,000 years, Palaeogeogr Palaeocl,286(1-2),66-80.
    Qiang, X. K., C. M. Powell, Z. X. Li, and H. B. Zheng (2001), Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet, Earth and Planetary Science Letters,187(1-2),83-93.
    Quade, J., and T. E. Cerling (1995), Expansion of C4 grasses in the late Miocene of Norhern Pakistan-evidence from stable isotopes in paleosols, Palaeogeogr Palaeocl,115(1-4), 91-116.
    Quade, J., T. E. Cerling, and J. R. Bowman (1989a), Development of Asian Monsoon Revealed by Marked Ecological Shift during the Latest Miocene in Northern Pakistan, Nature, 342(6246),163-166.
    Quade, J., T. E. Cerling, and J. R. Bowman (1989b), Systematic Variations in the Carbon and Oxygen Isotopic Composition of Pedogenic Carbonate Along Elevation Transects in the Southern Great-Basin, United-States, Geol Soc Am Bull,101(4),464-475.
    Rabenhorst, M. C., L. P. Wilding, and L. T. West (1984), Identification of Pedogenic Carbonates Using Stable Carbon Isotope and Micro fabric Analyses, Soil Sci Soc Am J,48(1),125-132.
    Rao, Z., Z. Zhu, F. Chen, and J. Zhang (2006), Does delta(13)C(carb) of the Chinese loess indicate past C(3)/C(4) abundance? A review of research on stable carbon isotopes of the Chinese loess, Quaternary Sci Rev,25(17-18),2251-2257.
    Raymo, M. E., B. Grant, M. Horowitz, and G. H. Rau (1996), Mid-Pliocene warmth:Stronger greenhouse and stronger conveyor, Mar Micropaleontol,27(1-4),313-326.
    Rea, D. K., H. Snoeckx, and L. H. Joseph (1998), Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the northern hemisphere, Paleoceanography,13(3),215-224.
    Romanek, C. S., E. L. Grossman, and J. W. Morse (1992), Carbon Isotopic Fractionation in Synthetic Aragonite and Calcite-Effects of Temperature and Precipitation Rate, Geochim Cosmochim Ac,56(1),419-430.
    Rowe, P. J., and B. A. Maher (2000),'Cold'stage formation of calcrete nodules in the Chinese Loess Plateau:evidence from U-series dating and stable isotope analysis, Palaeogeogr Palaeocl,157(1-2),109-125.
    Salomons, W., A. Goudie, and W. G. Mook (1978), Isotopic Composition of Calcrete Deposits from Europe, Africa and India, Earth Surf Proc Land,3(1),43-57.
    Salzmann, U., M. Williams, A. M. Haywood, A. L. A. Johnson, S. Kender, and J. Zalasiewicz (2011), Climate and environment of a Pliocene warm world, Palaeogeogr Palaeocl, 309(1-2),1-8.
    Sanchez-Roman, M., C. Vasconcelos, T. Schmid, M. Dittrich, J. A. McKenzie, R. Zenobi, and M. A. Rivadeneyra (2008), Aerobic microbial dolomite at the nanometer scale:Implications for the geologic record, Geology,36(11),879-882.
    Sarnthein, M., G. Bartoli, M. Prange, A. Schmittner, B. Schneider, M. Weinelt, N. Andersen, and D. Garbe-Schonberg (2009), Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates, Clim Past,5(2),269-283.
    Shackleton, N. J., M. A. Hall, and D. Pate (1995), Pliocene stable isotope stratigraphy of Site 846, Proceedings of the Ocean Drilling Program.Scientific Results,138,337-355.
    Sheng, X. F., J. Chen, J. F. Ji, T. H. Chen, G. J. Li, and H. H. Teng (2008), Morphological characters and multi-element isotopic signatures of carbonates from Chinese loess-paleosol sequences, Geochim Cosmochim Ac,72(17),4323-4337.
    Suarez, M. B., B. H. Passey, and A. Kaakinen (2011), Paleolsol carbonate multiple isotopologue signiture of active east asian summer monsoons during the late Miocene and Pliocene, Geology,39(12),1151-1154.
    Sun, D. H. (1997), Magnetostratigraphy and Paleoclimate Records of Late Cenozoic Eolian Sequence in the Loess Plateau of China,112 pp, Xi'An.
    Sun, D. H., M. Y. Chen, J. Shaw, H. Y. Lu, Y. B. Sun, L. P. Yue, and Y. X. Zhang (1998), Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau (in Chinese), Science in China (D) 28, 79-84.
    Sun, J. M. (2002), Source regions and formation of the Loess sediments on the high mountain regions of northwestern China, Quaternary Res,58(3),341-351.
    Sun, J., T. Lu, Z. Zhang, X. Wang, and W. Liu (2012), Stepwise expansions of C4 biomass and enhanced seasonal precipitation and regional aridity during the Quaternary on the southern Chinese Loess Plateau, Quaternary Sci Rev,34(0),57-65.
    Sun, Y, H. Y. Lu, and Z. S. An (2006), Grain size of loess, palaeosol and Red Clay deposits on the Chinese Loess Plateau:Significance for understanding pedogenic alteration and palaeomonsoon evolution, Palaeogeogr Palaeocl,241(1),129-138.
    Taylor, S. R., S. M. Mclennan, and M. T. Mcculloch (1983), Geochemistry of Loess, Continental Crustal Composition and Crustal Model Ages, Geochim Cosmochim Ac,47(11), 1897-1905.
    Vuille, M., M. Werner, R. S. Bradley, and F. Keimig (2005), Stable isotopes in precipitation in the Asian monsoon region, J. Geophys. Res.,110(D23), D23108.
    Wang, L., H. Y. Lu, N. Q. Wu, J. Li, Y. P. Pei, G. B. Tong, and S. Z. Peng (2006), Palynological evidence for Late Miocene-Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change, Palaeogeogr Palaeocl,241(1),118-128.
    Wang, P. X., J. Tian, X. R. Cheng, C. L. Liu, and J. Xu (2003a), Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event, Geology,31(3),239-242.
    Wang, P. X., Q. H. Zhao, Z. M. Jian, X. R. Cheng, W. Huang, J. Tian, J. L. Wang, Q. Y. Li, B. H. Li, and X. Su (2003b), Thirty million year deep-sea records in the South China Sea, Chinese Sci Bull,48(23),2524-2535.
    Wang, Y J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C. C. Shen, and J. A. Dorale (2001), A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China, Science,294(5550),2345-2348.
    Wang, Y. Q., X. Y. Zhang, R. Arimoto, J. J. Cao, and Z. X. Shen (2005), Characteristics of carbonate content and carbon and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources, Atmos Environ,39(14),2631-2642.
    Wang, Y. X., J. D. Yang, J. Chen, K. J. Zhang, and W. B. Rao (2006), Variations of Nd-143/Nd-144 and Sr-87/Sr-86 ratios of the Lingtai profile in the Chinese Loess Plateau during the past 7 Ma, Geochim Cosmochim Ac,70(18), A689-A689.
    Warren, J. (2000), Dolomite:occurrence, evolution and economically important associations, Earth-Sci Rev,52(1-3),1-81.
    Watanabe, T., et al. (2011), Permanent El Nino during the Pliocene warm period not supported by coral evidence, Nature,471(7337),209-211.
    Wen, L. J., H. Y. Lu, and X. K. Qiang (2005), Changes in grain-size and sedimentation rate of the Neogene Red Clay deposits along the Chinese Loess Plateau and implications for the palaeowind system, Sci China Ser D,48(9),1452-1462
    Whipkey, C. E., R. C. Capo, J. C. C. Hsieh, and O. A. Chadwick (2002), Development of magnesian carbonates in Quaternary soils on the island of Hawaii, J Sediment Res,72(1), 158-165.
    White, W. B. (1974), The Carbonate Minerals in V.C. Farmer (ed) The Infrared Spectra of Minerals, V.C. Farmer, ed., Mineralogical Society, London.
    Wright, V. P., and M. E. Tucker (Eds.) (1991), Calcretes:an introduction,1-22 pp., Int. Assoc. Sedimentol.
    Wu, M. C, W. L. Chang, and W. M. Leung (2004), Impacts of El Nino-Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific, J Climate,17(6), 1419-1428.
    Wu, N. Q., Y. P. Pei, H. Y. Lu, Z. T. Guo, F. J. Li, and T. S. Liu (2006), Marked ecological shifts during 6.2-2.4 Ma revealed by a terrestrial molluscan record from the Chinese Red Clay Formation and implication for palaeoclimatic evolution, Palaeogeogr Palaeocl,233(3-4), 287-299.
    Xiong, S., Z. Ding, Y. Zhu, R. Zhou, and H. Lu (2010), A similar to 6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess-red clay deposit, Quaternary Sci Rev,29(15-16), 1911-1922.
    Xu, Z., Y. Li, Y. Tang, and G. Han (2009), Chemical and strontium isotope characterization of rainwater at an urban site in Loess Plateau, Northwest China, Atmos Res,94(3),481-490.
    Yang, S., Z. Ding, X. Wang, Z. Tang, and Z. Gu (2012), Negative delta O-18-delta C-13 relationship of pedogenic carbonate from northern China indicates a strong response of C-3/C-4 biomass to the seasonality of Asian monsoon precipitation, Palaeogeogr Palaeocl, 317,32-40.
    Yokoo, Y, T. Nakano, M. Nishikawa, and H. Quan (2004), Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific, Chem Geol,204(1-2),45-62.
    Yu, B., H. Dong, H. Jiang, G. Lv, D. Eberl, S. Li, and J. Kim (2009), The role of clay minerals in the perservation of organic matter in sediments of Qinghai Lake, NW China, Clay Clay Miner,57(2),213-226.
    Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science,292(5511),686-693.
    Zhang, J., W. W. Huang, R. Letolle, and C. Jusserand (1995), Major-Element Chemistry of the Huanghe (Yellow-River), China-Weathering Processes and Chemical Fluxes, J Hydrol, 168(1-4),173-203.
    Zhang, P. Z., P. Molnar, and W. R. Downs (2001), Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates, Nature,410(6831), 891-897.
    Zhang, Y. G, J. F. Ji, W. Balsam, L. W. Liu, and J. Chen (2009), Mid-Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation, Geology,37(7),599-602.
    Zhang, Z., M. Zhao, H. Lu, and A. M. Faiia (2003), Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau, Earth and Planetary Science Letters,214(3-4),467-481.
    Zhao, J. B. (1995), A study of the CaCO3 illuvial horizons of paleosols and permeated pattern far rain water, J Geogr Sci,15(4),344-350.
    Zhao, J. B. (1998), Illuvial CaCO3 layers of paleosol in loess and its environmental significance, Journal ofXi'an Engineering University,20(3),46-49.
    Zhao, L., J. F. Ji, J. Chen, L. W. Liu, Y. Chen, and W. Balsam (2005), Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle:Implications for monsoon reconstruction, Geophys Res Lett,32(20).
    Zhao, Q. H., P. X. Wang, X. R. Cheng, J. L. Wang, B. Q. Huang, J. Xu, Z. Zhou, and Z. M. Jian (2001a), A record of Miocene carbon excursions in the South China Sea, Sci China Ser D, 44(10),943-951.
    Zhao, Q. H., Z. M. Jian, J. L. Wang, X. R. Cheng, B. Q. Huang, J. Xu, Z. Zhou, D. Y. Fang, and P. X. Wang (2001b), Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea, Sci China Ser D,44(10),934-942.
    曹毅与宋述光,北祁连山高压变质带的变形和变质特征及其对俯冲带折返的意义,岩石学报,2009,25(9):2235-2246
    陈丹玲等,北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MS U-Pb定年及其地质意义,科学通报,2004,49(18):1901-1908
    陈骏等,黄土高原中部S1古土壤次生碳酸盐稳定同位素组成与成因初探,科学通报,1996,41(14):1297-1300
    陈煦等,吐哈盆地中二叠统-三叠系层序地层学分析,新疆石油地质,2003,24(6):494-497
    党玉琪等,柴达木盆地西部地区古近纪与新近纪沉积相,古地理学报,2004,6(3):297-306
    邓松涛等,新生代晚期天山北缘沉积记录、环境变化和构造隆升的关系研究,矿物岩石地球化学通报,2008,27(z1):445-446
    丁仲礼等,黄土高原红粘土成因及上新世北方干旱化问题,第四纪研究,1997,2,147-157
    方小敏等,天山黄土和古尔班通古特沙漠发育及北疆干旱化,科学通报,2002,47(7):540-545
    高志勇等,准噶尔盆地南缘古近纪-新近纪前陆盆地沉积格局与演变,古地理学报,2009,11(5):491-502
    顾兆炎,黄土-古土壤序列碳酸盐同位素组成与古气候变化,科学通报,1991,10:767-770.
    顾兆炎等,气候变化对黄土高原末次盛冰期以来的C3/C4植物相对丰度的控制,科学通报,2003,48(13):1458-1464
    韩家懋等,黄土中钙结核的碳氧同位素研究(二)碳同位素及其古环境意义,第四纪研究,1995,4:367-377
    韩家懋等,黄土中钙结核的碳氧同位素研究(一)氧同位素及其古环境意义,第四纪研究,1995,(2):130-138
    韩家懋等,黄土碳酸盐中古气候变化的同位素记录,中国科学(D辑),1996,26(5):399-404
    姜文英等,干旱化对成土碳酸盐碳同位素组成的影响,第四纪研究,2001,5:427
    李杰等,甘肃西峰6.2-2.4Ma B.P红粘土中孢粉记录及古植被演化,第四纪研究,2005,25(4):467-473
    李维锋等,塔里木盆地西南坳陷中新统安居安组辫状河三角洲沉积,地质通报,2003,22(9):675-679
    李向平等,鄂尔多斯盆地中生代构造事件及其沉积响应特点,西安石油大学学报,2006,21(3): 1-4
    林本海,最近800ka黄土高原夏季风变迁的稳定同位素证据,科学通报,1992,18,1691-1693
    刘景彦等,塔里木盆地库车坳陷古近系库姆格列木群底砂岩段沉积古地理和物源体系,岩石矿物学杂志,2008,27(6):538-546
    刘连文,3.6Ma来黄土高原东亚季风演化的矿物与元素地球化学研究,南京大学博士学位论文,2002
    刘卫国等,黄土高原现代土壤和古土壤有机碳同位素对植被的响应,中国科学(D辑:地球科学),2002,32(10):830-836
    陆松年等,秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨,地学前缘,2006,13(6):303-310
    马雪等,柴达木盆地西部新生代砂岩碎屑组分变化记录的沉积转型事件,地质通报,2010,29(9):1294-1303
    宁有丰等,甘肃西峰黄土-古土壤剖面的碳酸盐与有机碳的碳同位素差值(△δ13C)的变化及其古环境意义,科学通报,2006,51(1):1828-1832
    庞奖励,黄土高原稳定同位素与古环境研究,干旱区地理,1998,21(3):87-95
    强小科等,佳县红粘土堆积序列频率磁化率的古气候意义,海洋地质与第四纪地质,2003,23(3):91-96
    强小科等,佳县红粘土堆积的磁学性质及其古气候意义,中国科学(D辑),2004,34(7):658-667
    饶志国等,黄土高原西部地区末次冰期和全新世有机碳同位素变化与C3和C4植被类型转换研究,第四纪研究,2005,25(1):107-114
    盛雪芬,黄土碳酸盐的环境地球化学研究,南京大学博士学位论文,2004
    宋述光等,大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例,岩石学报,2009,25(9):2067-2077
    孙东怀,晚新生代黄土高原风尘序列的磁性地层与古气候记录,中科院地球环境研究所博士学位论文,1997
    汤良杰等,柴达木盆地及相邻造山带区域断裂系统,地球科学-中国地质大学学报,2002,27(6):676-682
    陶明信,论新疆吐哈盆地的两种构造单元体系,地质通报,2010,29(2):297-304
    王国安等,中国北方C3植物碳同位素组成与年均温度关系,中国地质,2002,29
    王国安等,中国北方黄土区C3草本植物碳同位素组成研究,中国科学(D辑),2003,6:550-556
    王国安,中国西北C3植物的碳同位素组成与年降雨量关系初探,地质科学,2001,36(4):494-499
    王启超等,阴山东段(冀北及冀晋内蒙古接壤地带)的太古宙地层问题讨论,地层学杂志,2002,26(1):55-61,72
    蔚远江等,准噶尔盆地西北缘前陆冲断带二叠纪逆冲断裂活动的沉积响应,地质学报,2004,78(5):612-625
    徐旺春等,锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义,科学通报,2007,52(10):1174-1180
    杨杰东等,黄土高原黄土物源区的同位素证据,地学前缘,2009,16(6):195-206
    岳乐平,中国黄土与红色粘土记录的地磁极性界限及地质意义,地球物理学报,1995,38(3):311-320
    岳统波等,甘肃西峰赵家川黄土-红粘土剖面坡缕石分布及其古气候意义,高校地质学报,2010,16(3),383-387
    谢巧勤等,甘肃灵台黄土-红粘土序列中坡缕石的分布及其古气候意义,岩石矿物学杂志, 2005,24(6),653-658
    张洪美等,柴达木盆地东南缘晚三叠世火山岩地球化学特征及构造环境分析,西北地质,2011,44(4):15-22
    张云翔等,甘肃灵台上新世晚期红粘土中的哺乳动物化石,古脊椎动物学报,1999,37(3):190-199
    张云翔等,黄河中游新近纪三趾马动物群生态序列,科学通报,2001,14: 1196-1199
    张瑜等,中新世以来六盘山邻区黄土-红粘土成土碳酸盐碳氧同位素记录及其对C4植物早期扩张的指示,第四纪研究,2011,31(5):800-811
    张宗清等,秦岭勉略带中安子山麻粒岩的年龄,科学通报,2002,47(22):1751-1755
    赵良,黄土高原风成序列中气候敏感矿物研究,南京大学博士学位论文,2006
    郑洪波等,段家坡黄土剖面磁性地层学研究,黄土-第四纪地质-全球变化(第三辑)[M],北京:科学出版社,1992,38-43
    郑洪波等,新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升——Ⅰ地层学与岩石学证据,沉积学报,2002,20(2):274-281
    郑洪波等,新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升——Ⅱ沉积相与沉积盆地演化,沉积学报,2003,21(1):46-51
    周玮,黄土高原第三纪红粘土中针铁矿和赤铁矿的漫反射光谱学研究,南京大学硕士学位论文,2008
    周喜文等,贺兰山高压泥质麻粒岩——华北克拉通西部陆块拼合的岩石学证据,岩石学报,2010,26(7):2113-2121
    朱如凯等,中国北方地区二叠纪岩相古地理,古地理学报,2007,9(2):133-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700