近地大气湍流对激光传输信号幅度起伏特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气湍流的存在将引起激光传输信号的幅度起伏,从而会影响激光测量和探测设备的性能。为了分析和评估湍流场对激光传输信号的影响,本文通过数值计算和实验两种途径研究了近地大气湍流对激光传输信号幅度起伏特性的影响。在理论上,以角谱传播理论为基础,结合FFT功率谱反演生成相位屏,建立了激光在大气湍流中传播的数值计算模型,并在Matlab7.8软件环境下,编写计算程序。通过大量的数值计算,分析了高斯光束在不同强度湍流场中传播不同距离后的光斑分布及特定面积上光信号的幅度统计特性、大气湍流对单向激光传输系统中接收光信号幅度起伏特性的影响和大气湍流对激光测距回波信号幅度起伏特性的影响等问题。在实验上,基于大气湍流的温湿度模型,搭建室内模拟大气湍流场的实验装置,研究了大气湍流对激光测距回波信号幅度起伏特性和测距数据离散性的影响。结果表明:随着湍流强度的增强和传播距离的减小以及敏感元面积的增大,接收光信号幅度统计分布越来越偏离正态分布且对称性越差;随着湍流强度和传播距离的增大以及敏感元面积的减小,光信号幅度平均值逐渐减小、幅度统计离散分布范围更宽。此外,激光雷达回波信号随着湍流强度的增大,幅度统计分布更趋于分散,幅度平均值逐渐减小,进而导致激光雷达测距统计分布呈现相应的离散分布。
The presence of atmospheric turbulence will cause the laser transmission signal amplitude fluctuations, which will affect the laser measurement and the performance of detection equipment. In order to analyze and evaluate the influence of turbulence on the laser transmission signals, numerical simulations and experiments are used to study the impact of atmospheric turbulence on laser transmission characteristics of the signal amplitude fluctuations in this paper. In theory, based on the theory of angular spectrum propagation, and combined with inverse FFT power spectrum to generate the phase screen, a numerical model of laser propagating in atmospheric turbulence is established. The computer program is written in Matlab7.8 software environment. By a mass of numerical calculations, we studied the spot distribution of Gaussian beam propagation in the turbulent atmosphere of different intensity at different distances, the statistical properties of optical signal amplitude on specific area, the effect of atmospheric turbulence on the property of received optical laser signal amplitude fluctuation in one-way laser transmission system, and the effect of atmospheric turbulence on the property of laser ranging echo signal amplitude fluctuation. In the experiment, based on temperature and humidity models of atmospheric turbulence, we build an indoor experimental device to simulate atmospheric turbulence field to study the influence of atmospheric turbulence on the property of laser ranging echo signal amplitude fluctuation and the dispersion of ranging data. The results show as follows:As the turbulence intensity increases, or the transmission distance decreases or the area of sensitive element increases, the statistical distribution of signal amplitude is diverge from normal distribution gradually and the symmetrical characteristic is bad more and more. As the turbulence intensity increases, or the transmission distance increases or the area of sensitive element decreases, the average amplitude of optical signal gradually decreases, and the disperse range of the amplitude statistics is broader. Bisides, with the turbulence intensity increases, the amplitude statistical distribution of lidar's signal is more disperse, and the average amplitude gradually decreases, and then result in the statistical distribution of lidar ranging presents discrete properties.
引文
[1]Amann M.C., Bosch T., Lescure M., Myllyl R., Rioux M. Laser ranging:A critical review of usual techniques for distance measurement [J]. Optical Engineering,2001, 40(1):10-19.
    [2]于彦梅.激光测距机及发展趋势[J].情报指挥控制系统与仿真技术,2002,08:19-21.
    [3]Hill RJ, Clifford SF. Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation [J]. JOS A,1978,68(7):892-899.
    [4]饶瑞中.光在湍流大气中的传播[J].2005.
    [5]Obukhov AM. Structure of the temperature field in turbulent flow[R]. DTIC Document, 1968.
    [6]Propagation data and prediction methods required for the design of earth-space telecommunication systems [C]. ITU-R.1990:618.
    [7]G.S.Agarwal. Wave propagation in a random medium [J]. Lecture Notes in Physics,1983, 184:319-324.
    [8]Ishimaru A. Wave propagation and scattering in random media [M]. Wiley-IEEE Press, 1999.
    [9]Fante R.X. Inner-scale size effect on the scintillations of light in the turbulent atmosphere [J]. JOSA,1983,73(3):277-281.
    [10]Hill RJ. Theory of saturation of optical scintillation by strong turbulence:Plane-wave variance and covariance and spherical-wave covariance [J]. JOSA,1982,72(2):212-222.
    [11]Hill RJ, Clifford SF. Theory of saturation of optical scintillation by strong turbulence for arbitrary refractive-index spectra [J]. JOSA,1981,71(6):675-686.
    [12]Tatarskii V. I. The effect of the turbulent atmosphere on wave propagation [M]. Springfield, Va.:National Technical Information Service,1971.
    [13]Dudorov V.V., Vorontsov M.A., Kolosov V.V. Speckle-field propagation in frozen turbulence:Brightness function approach [J]. statistics,1924,4:5.
    [14]Gracheva ME, Gurvich AS. Strong fluctuations in the intensity of light propagated through the atmosphere close to the earth [J]. Radiophysics and Quantum Electronics, 1965,8(4):511-515.
    [15]Ho TL. Log-amplitude fluctuations of laser beam in a turbulent atmosphere [J]. JOSA, 1969,59(4):385-388.
    [16]Ger ekcio lu H., Baykal Y., Nakibo lu C. Annular beam scintillations in strong turbulence [J].JOSA A,2010,27(8):1834-1839.
    [17]Wang T., Strohbehn J.W. Log-normal paradox in atmospheric scintillations [J]. JOSA, 1974,64(5):583-591.
    [18]Wang T., Strohbehn J.W. Perturbed log-normal distribution of irradiance fluctuations [J]. JOSA,1974,64(7):994-999.
    [19]Flatte S.M., Bracher C., Wang G.Y. Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation [J]. JOSA A,1994,11(7): 2080-2092.
    [20]Karp S, Gaglidardi R M, Moran S E and Stotts L B. Optical channels [M]. New York, 1988.
    [21]Wang SJ, Baykal Y., Plonus MA. Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere [J]. JOSA,1983,73(6):831-837.
    [22]Vetelino F.S., Young C., Andrews L., Recolons J. Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence [J]. Applied optics,2007,46(11):2099-2108.
    [23]饶瑞中,王世鹏,刘晓春,龚知本.激光在湍流大气中的光强起伏与光斑统计特征[J].量子电子学报,1998,15(2):155-163.
    [24]Davis C.A., Walters DL. Atmospheric inner-scale effects on normalized irradiance variance [J]. Applied optics,1994,33(36):8406-8411.
    [25]Consortini A., Cochetti F., Churnside J.H., Hill R.J. Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation [J]. JOSA A,1993, 10(11):2354-2362.
    [26]Andrews L.C., Phillips R.L., Hopen C.Y., Al-Habash MA. Theory of optical scintillation [J]. JOSA A,1999,16(6):1417-1429.
    [27]Yura H.T., Fields R.A. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications [J]. Applied optics,2011,50(18):2875-2885.
    [28]Sasiela R.J., Shelton J.D. Transverse spectral filtering and mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism [J]. JOSA A,1993,10(4): 646-660.
    [29]张逸新,宋正方,龚知本.湍流大气中激光束的漂移[J].光学学报,1986,6(04):373-380.
    [30]张逸新,宋正方,龚知本.湍流大气中光束漂移的若干问题探讨[J].量子电子学报, 1986,3(01):57-64.
    [31]饶瑞中,王世鹏.湍流大气中激光束漂移的实验研究[J].中国激光,2000,27(11):1011-1015.
    [32]韦宏艳,吴振森.大气湍流中激光波束斜程传输的展宽、漂移特性[J].2008,23(4):611-615.
    [33]Andrews L.C., Phillips R.L. Laser beam propagation through random media [M]. Society of Photo Optical,2005.
    [34]Gbur G, Wolf E. Spreading of partially coherent beams in random media [J]. JOSA A, 2002,19(8):1592-1598.
    [35]Yura H.T. Short-term average optical-beam spread in a turbulent medium [J]. JOSA, 1973,63(5):567-572.
    [36]Charnotskii M.I. Short-exposure imaging and short-term laser beam spread in a turbulent atmosphere [C].1997:252.
    [37]范承玉.高斯束状波斜程传输的大气湍流效应[J].量子电子学报,1999,16(6):519-525.
    [38]Davis JI. Consideration of atmospheric turbulence in laser systems design [J]. Applied optics,1966,5(1):139-147.
    [39]Bufton J.L., Iyer R.S., Taylor L.S. Scintillation statistics caused by atmospheric turbulence and speckle in satellite laser ranging [J]. Applied optics,1977,16(9): 2408-2413.
    [40]Der S., Redman B., Chellappa R. Simulation of error in optical radar range measurements [J]. Applied optics,1997,36(27):6869-6874.
    [41]Kral L., Prochazka I., Hamal K. Optical signal path delay fluctuations caused by atmospheric turbulence [J]. Optics letters,2005,30(14):1767-1769.
    [42]张宇,唐勐,陈锺贤,吴杰,孙秀冬,苏建忠,刘锋,崔玉平.直接探测激光雷达系统的建模与仿真[J].红外与激光工程,2004,33(06):572-575.
    [43]Yura HT. Threshold detection in the presence of atmospheric turbulence [J]. Applied optics,1995,34(6):1097-1102.
    [44]杨瑞科,刘琦,马春林.大气湍流对直接探测激光雷达性能影响分析[J].红外与激光工程,2008,增刊(37):137-140.
    [45]Lu G., Yang Y. Effect of atmospheric turbulence on ranging performance of laser rangefinder [C].2003:195.
    [46]戴永江.激光雷达原理[M].北京:国防工业出版社,2002.
    [47]袁纵横,张文涛.大气湍流对激光信号传输影响的分析研究[J].激光与红外,2006, 36(4):272-274.
    [48]温宁泉,曾宗泳,马成胜,肖黎明.合肥近地面折射率结构常数cn2分布特征及分析[J].1998,15(4):423-428.
    [49]G hler B., Lutzmann P. Range accuracy of a gated-viewing system compared to a 3-d flash ladar under different turbulence conditions [C].2010:783504.
    [50]武琳,应家驹,耿彪.大气湍流对激光传输的影响[J].激光与红外,2008,38(10):974-977.
    [51]Kohsiek W. Measuring ct2, cq2, and ctq in the unstable surface layer, and relations to the vertical fluxes of heat and moisture [J]. Boundary-Layer Meteorology,1982,24(1): 89-107.
    [52]Wyngaard JC, Pennell WT, Lenschow DH, LeMone MA. The temperature-humidity covariance budget in the convective boundary layer [J]. Journal of Atmospheric Sciences, 1978,35:47-58.
    [53]吴晓庆,饶瑞中.湿度起伏对可见光波段折射率结构常数的影响[J].光学学报,2004,24(12):1559-1602.
    [54]Zissis G.J. The infrared handbook[R]. DTIC Document,1978.
    [55]航天工业总公司第三研究院.红外与光电系统手册第2卷辐射的大气传输[M].北京:八三五八所,2002.
    [56]Miller WB, Ricklin JC, Andrews LC. Effects of the refractive index spectral model on the irradiance variance of a gaussian beam [J]. JOSAA,1994,11(10):2719-2726.
    [57]Andrews LC, Young CY, Miller WB. Coherence properties of a reflected optical wave in atmospheric turbulence [J]. JOSAA,1996,13(4):851-861.
    [58]Hill RJ. Models of the scalar spectrum for turbulent advection [J]. Journal of Fluid Mechanics,1978,88:541-562.
    [59]Andrews L.C. An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere [J]. Journal of Modern Optics,1992, 39(9):1849-1853.
    [60]张逸新.随机介质中光的传播与成像[M].北京:国防工业出版社,随机介质中光的传播与成像.
    [61]韩燕,强希文,许晓军,冯建伟,盛良.近地面湍流大气中激光传输的光强闪烁分析[J].红外与激光工程,2006,35(增刊):415-421.
    [62]Andrews LC, Phillips RL, Yu PT. Optical scintillations and fade statistics for a satellite-communication system [J]. Applied optics,1995,34(33):7742-7751.
    [63]张洪涛.空间光通信原理与技术[M].长春:吉林大学出版社,2009.
    [64]Fante R.L. Electromagnetic beam propagation in turbulent media:An update [J]. Proceedings of the IEEE,1980,68(11):1424-1443.
    [65]许正文,吴建,霍文平,吴振森.湍流介质中传播的脉冲时间展宽特性[J].中国科学(G辑),2003,33(2):139-147.
    [66]王佳,浴信.自由空间光通信系统中光脉冲展宽问题的研究[J].光学技术,2009,35(1):80-83.
    [67]Young C.Y., Andrews L.C., Ishimaru A. Time-of-arrival fluctuations of a space-time gaussian pulse in weak optical turbulence:An analytic solution [J]. Applied optics,1998, 37(33):7655-7660.
    [68]李相银,姚敏玉,李卓,崔骥.激光原理技术及应用[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [69]钱仙妹,朱文越,黄印博,饶瑞中.激光湍流大气传输数值模拟中计算参量的选取[J].光子学报,2008,37(10):1986-1991.
    [70]Martin JM, Flatte S.M. Intensity images and statistics from numerical simulation of wave propagation in 3-d random media [J]. Applied optics,1988,27(11):2111-2126.
    [71]Martin JM, Flatte S.M. Simulation of point-source scintillation through three-dimensional random media [J]. JOS A A,1990,7(5):838-847.
    [72]Joson D.Scchmidt. Numerical simulation of optical wave propagation with examples in matlab [M]. Bellingham, Washington USA:SPIE,2010.
    [73]Welsh B.M. Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution [C]. Citeseer,1997:327-338.
    [74]Coles W.A., Filice JP, Frehlich RG, Yadlowsky M. Simulation of wave propagation in three-dimensional random media [J]. Applied optics,1995,34(12):2089-2101.
    [75]Lane RG, Glindemann A., Dainty JC. Simulation of a kolmogorov phase screen [J]. Waves in random media,1992,2(3):209-224.
    [76]苏显渝,李继陶.信息光学[M].北京:科学出版社,1999.
    [77]Fried D.L. Statistics of a geometric representation of wavefront distortion [J]. JOSA, 1965,55(11):1427-1431.
    [78]梅海平,吴晓庆,饶瑞中.不同地区大气光学湍流内外尺度测量[J].强激光与粒子束,2006,18(3):362-366.
    [79]饶瑞中,王世鹏,刘晓春,龚知本.实际大气中激光闪烁的概率分布[J].光学学报,1999,19(1):81-86.
    [80]邓永军,胡立发.液晶大气湍流模拟器[J].光子学报,2006,35(12):1960-1963.
    [81]王春勇,孙楠,张春燕,李振华.基于单片机和cf卡的多路温度采集系统[J].电子 测量技术,2008,31(7):163-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700