原子荧光测汞仪的研制及多元素原子荧光同时测定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的飞速发展,人口的持续增长,环境日益成为人们极大关注和研究的重要问题。重金属是环境中有毒有害污染物之一,研究建立快速、灵敏、准确的重金属分析检测方法和技术,对于环境监测及保护具有十分重要的意义。
     原子荧光光谱法具有测定灵敏度高、检出限低,无基体干扰等特点。已应用于As、Sb、Hg等十多种重金属元素的分析测定。本学位论文进行了原子荧光测汞仪和多元素原子荧光同时测定方法的研究。研制成功了高灵敏原子荧光测汞仪,原子荧光固体直接进样装置,提出了双化学蒸气发生系统,研究建立了多元素原子荧光同时测定方法。应用于不同样品中Hg、As、Sb、Se、Pn、Sn、Cd的分析测定,取得了满意结果。
     本文包括七个部分:
     1.绪论
     概述了原子荧光光谱法的发展历史,基本原理,仪器装置及其应用,并对原子荧光光谱法的发展进行了展望。
     2.高灵敏原子荧光测汞仪的研制
     采用光纤光束传导,自主设计的暗室原子化系统和金汞齐富集装置,成功地研制了高灵敏原子荧光测汞仪。其主要技术指标已达到(某些指标优于)国内外同类产品的水平。该仪器具有灵敏度高、检出限低、样品前处理简单等优点,实现了液体、固体样品中超痕量汞的直接测定。所采用的光纤传导技术和暗室原子化系统,可有效的减少光传输过程的损失,消除了杂散光的干扰,仪器结构紧凑;采用金汞齐富集装置,有效地消除基体干扰,提高了测定灵敏度。
     3.原子荧光测汞仪测定水中超痕量的汞
     采用研制的原子荧光测汞仪,成功地测定了西安涟漪纯净水、自来水和地表水中超痕量汞。线性范围0.005-1.000ng/mL,线性相关系数大于0.999,检出限低于0.5×10-12ng/mL,回收率在95-98%之间。结果表明,本方法是一种快速、准确、高灵敏的水中超痕量汞的测定方法。
     4.原子荧光测汞仪测定土壤中的汞
     采用设计的固体样品自动进样器,以原子荧光测汞仪进行了国家标准土壤样品中(GBW07402、GBW07423、GBW07401、GBW07404、GBW07406、GBW07411、GBW07405和GBW07302)痕量Hg的分析测定。线性相关系数大于0.998,检出限低于0.003ng,RSD小于4.0%,回收率为103%。结果表明:本方法提高了样品的分析速度,是一种快速、环保、准确的测定土壤中痕量汞的方法。
     5.固体进样-原子荧光光谱法同时测定砷和锑
     首次提出低温热释放直接进样技术,成功地设计出固体直接进样装置。与多通道原子荧光光谱仪在线连接,实现了热释放、吸收、化学蒸气发生、测定、清洗等步骤在线自动完成。固体样品直接进样,进行了土壤和岩石样品中痕量As和Sb的分析测定。以溴化铵为释放剂,实现了低温条件下元素As和Sb的溴化物定量释放,同时测定了样品中痕量As和Sb的含量。检出限分别为0.009和0.004gg/g,最小检出量分别为0.028和0.013μg/g,线性相关系数均大于0.998。
     6.原子荧光光谱法同时测定砷、锑、硒和汞
     采用多通道原子荧光光谱仪,进行了中药样品中As、Sb、Se和Hg的同时分析测定。研究优化了实验条件,包括样品预处理条件、化学蒸气发生、原子荧光的测试条件等。As、Sb、Se和Hg同时测定方法的检出限分别为0.051、0.034、0.050和0.0058ng/mL,线性相关系数均大于0.998,精密度RSD均小于1.5%。
     7.原子荧光光谱法同时测定铅、锡和镉
     首次提出双化学蒸气发生系统(即以元素Cd和部分Sn化学蒸气生成的体系为系统1,以元素铅和部分Sn化学蒸气生成的体系为系统2),以该双化学蒸气发生系统,采用多通道原子荧光光谱仪,实现了原子荧光光谱法同时测定生物样品中痕量的Pb、Sn和Cd。研究优化了元素Pb、Sn和Cd化学蒸气发生条件和测试条件。方法灵敏度高,无记忆效应,线性相关系数均大于0.996,Pb、Sn和Cd的检出限分别为0.071、0.052和0.0002ng/mL,精密度均小于3.5%。
As theworld economy was rapid developed and the population grew, the attention focused today on the environment. And the heavy metal pollution was a source of environmental contamination. The research on rapid, sensitive and accurate determination of heavy metal was very important for environment.
     Atomic fluorescence spectrometry (AFS) is famous for its high sensitivity, low detection limit and little memory effect, which is used for determination of As, Sb, Hg and so on. Trend for the development of modern AFS, the author studied the atomic fluorescence mercury analyzer and multi-elements analysis methods. The high sensitive atomic fluorescence mercury analyzer and solid sampling device have been designed and developed, dual chemical vapor generation system and atomic fluorescence multi-elements analysis methods have been studied.
     The dissertation includes the following seven chapters:
     1. Introduction
     This chapter presented the history of the development, basic principles, equipment and structure, and the application of atomic fluorescence techniques. The author reviewed the development tendency for AFS was also presented.
     2Research on high sensitive atomic fluorescence mercury analyzer
     By fiber optic technology, self-designed darkroom atomic device and gold amalgamation enrichment devices, the author developed the atomic fluorescence mercury analyzer. The results indicated the instrument's main technical parameters had already reached the level of the congener domestic and foreign products, and some of technical parameters were better than them. And it has high sensitivity, low detection limit and simple sample pretreatment for direct analysis of liquid and solid samples. The author developed the fiber optic technology and the darkroom to the atomic fluorescence instrument for the first time, reduced effectively the loss of light propagation in air, descended the interference of the external light and made it compact in the design. With the application of enrichment devices, it effectively not only eliminated matrix interference, but also increased the sensitivity of determination.
     3. Determination of ultra trace mercury by atomic fluorescence mercury analyzer in water
     By the atomic fluorescence mercury analyzer, the author successfully determined ultra trace mercury in pure water, tap water and ground water. Linear range was0.005-1.000ng/mL, the Correlation coefficient(r) was more than0.999, detection limit is less than0.5x10-12ng/mL, and the recovery was from95%to98%. Thus, it was a rapid, accurate and high sensitive method of ultra trace mercury analysis in water.
     4. Direct determination of mercury in soil by atomic fluorescence mercury analyzer
     By the fluorescence mercury analyzer, the author designed automatic injector for solid samples to achieve direct solid sampling, and successfully detected Hg in different soil samples (GBW07402、GBW07423、GBW07401、GBW07404、GBW07406、GBW07411、 GBW07405and GBW07302). The Correlation coefficient (r) was more than0.998, the detection limit is less than0.003ng, the relative standard deviation (R.S.D.) was less than4.0%and the recovery was103%. The method increased the speed of sample analysis and reduced the cost of determination, which was very rapid, accurate for ultra trace mercury analysis in soil.
     5. Solid sampling-simultaneous determination of arsenic and antimony by AFS
     The author first proposed the low-temperature heat release for solid samples for AFS. The solid sampling device was designed, and connected to multi-channel atomic fluorescence spectrometer successfully. The steps were online operated that release, absorption, chemical vapor generation, determination and purge. According to volatile characteristics of the elements halide of AFS measurement, the author added NH4Br into solid samples for reducing the heat release temperature, and achieved rapid and quantitative release target elements at low temperature. The author succeeded in direct solid sampling and simultaneous determination of trace As and Sb in soil and rock. The detection limit of As and Sb was respectively0.009and0.004μg/g, the least detection concentration was respectively0.028and0.013, and the Correlation coefficient (r) was all more than0.998.
     6. Simultaneous determination of arsenic, antimony, selenium and mercury by AFS
     The author studied and optimized experimental conditions of simultaneous determination of As, Sb, Se and Hg by multi-channel atomic fluorescence spectrometer, including sample preparation, chemical vapor generation and atomic fluorescence detection. The author achieved to determinate simultaneously As, Sb, Se and Hg in traditional Chinese medicine by AFS. The detection limit of As, Sb, Se and Hg was respectively0.051、0.034、0.050and0.0058ng/mL, the Correlation coefficient (r) was all more than0.998, and the relative standard deviation (R.S.D.) was all less than1.5%.
     7. Simultaneous determination of lead, tin and cadmium by AFS
     The author proposed dual chemical vapor generation system for the first time for AFS (The system1included Cd and part of the Sn chemical vapor generation, and the system2 included Pb and part of the Sn chemical vapor generation). The author achieved to determinate simultaneously Pb, Sn and Cd in biological samples by dual chemical vapor generation system chemical and multi-channel atomic fluorescence spectrometer. And the experimental conditions of simultaneous determination of Pb, Sn and Cd were studied and optimized. The method had high sensitivity and little memory effect. The Correlation coefficient (r) was all more than0.996, the relative standard deviation (R.S.D.) was all less than3.5%, and detection limit of Pb, Sn and Cd was respectively0.071、0.052and0.0002ng/mL.
引文
[1]Wood R.W.. On the fluorescence and absorption spectrum of sodium vapour[J]. Astrophysical Journal,1903,18:94-111
    [2]Nichols E. L., Howes H. L.. The Photoluminescence of Flames.Ⅰ[J]. Physical Review.1923,22:425-431
    [3]Nichols E. L., Howes H. L.. The Photoluminescence of Flames.Ⅱ[J]. Physical Review.1924,23:472-477
    [4]Terenin A.. Anregung von Atomen und Molekulen zur Lichtemission durch Einstrahlung. 1 [J]. Z. Physik,1925,31:26-49
    [5]Terenin A.. Anregung von Atomen und Molekulen zur Lichtemission durch Einstrahlung. 2 [J]. Z. Physik,1926,31:98-125.
    [6]Badger R. M.. Flame fluorescence and quenching of fluorescence in gas mixtures at high pressure [J]. Z. Physik,1929,55:56-64
    [7]Boers A.L., Alkemade C.T.J., Smit J.A.. The yield of resonance fluorescence sodium in a flame [J]. Physica,1956,22:358-360
    [8]Winefordner J.D., Staab, R.A.. Determination of Zinc, Cadmium, and Mercury by Atomic Fluorescence Flame Spectormetry [J]. Analytical Chemistry,1964,36:165-168
    [9]Winefordner J.D., Vickers T.J.. Atomic Fluorescence Spectrometry as a Means of Chemical Analysis [J]. Analytical Chemistry,1964,36:161-165
    [10]Winefordner J.D., Staab, R.A.. Study of Experimental Parameters in Atomic Fluorescence Flame Spectrometry [J]. Analytical Chemistry,1964,36:1367-1369
    [11]West T.S.. Some sensitive and selective reactions in inorganic spectroscopic analysis [J]. Analyst,1966,91:69-77
    [12]Dagnall R.M., Thompson K.C., West T.S.. An investigation of some experimental parameters in atomic fluorescence spectrophotometry [J]. Analytica Chimica Acta,1966, 36:269-277
    [13]Dagnall R.M., West T.S., Yong P.. Determination of cadmium by atomic fluorescence and atomic absorption spectrophotometry [J]. Talanta,1966,13:803-808.
    [14]Dagnall R.M., Kirkbright G. F., West T.S, et al. Atomic fluoresence spectrometry of aluminum, molybdenum, titanium, vanadium, and zirconium in inert gas separated nitrous oxide-acetylene flames [J]. Analytical Chemistry,1970,42:1029-1033
    [15]Cresser M. S., West T.S.. Some interference studies in atomic fluorescence spectroscopy with a continuum source [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,1970, 25:61-68
    [16]Dagnall R.M., Thompson K.C., West T.S.. Study in atomic fluorescence spectroscopy-Ⅲ[J].Talanta,1967,14:551-555.
    [17]Dagnall R.M., West T.S. Some applications of Microwave-Excited Electrodeless Discharge Tubes in Atomic Spectroscopy [J]. Applied. Optics,1968,7:1287-1294
    [18]Zacha K. E., Bratzel M. P., Winefordner J.D., et al. Improvements in preparation and operation of electrodeless discharge lamps as high intensity sources in atomic fluorescence flame spectrometry [J]. Analytical Chemistry,1968,40:1733-1736
    [19]Larkins P. L.. Non-dispersive systems in atomic fluorescence spectroscopy—Ⅰ:A single-channel system employing a solar-blind detector and an air-acetylene flame [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,1971,26:477-478, E3-E6,479-489
    [20]Larkins P. L., Willis J. B.. Non-dispersive systems in atomic fluorescence spectroscopy—Ⅱ:Comparison of nitrous oxide-supported and air-supported flames [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,1971,26:491-503
    [21]Prugger H., Grosskopf R., Torge R.. Spectral and time distribution of resonance radiation from hollow cathode lamps operated on the short pulse mode [J].Spectrochimca Acta Part B:Atomic Spectroscopy,1971,26:191
    [22]Lowe R.M.. A high-intensity hollow-cathode lamp for atomic fluorescence [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,1971,26:201-205
    [23]Hussen C. A. M., Nickless G.. Atomic fluorescence in the Inductively Coupled Plasma. England, Sheffield, ICCAAS Meeting:1969
    [24]Fraser L. M., Winefordner J.D.. Laser-excited atomic fluorescence spectrometry [J]. Analytical Chemistry,1971,43:1693-1696
    [25]Denton M. B., Malmstadt H. V.. Tunable organic dye laser as an excitation source for atomic-flame fluorescence spectrometry [J]. Applied Physics letter,1971,18:485-487
    [26]Massmann H.. Atomic absorption and atomic fluorescence in a graphite cell [J]. Spectrochimca Acta Part B:Atomic Spectroscopy,1968,23:215-226
    [27]West T.S., Williame X. K.. Atomic absorption and atomic fluorescence with a carbon filament atom reservoir:Part Ⅰ. Construction and operation of atom reservoir [J]. Analytical Chimica Acta,1969,45:27-41
    [28]Amos M. D., Bennett P. A., Brodie K. G., et al. Carbon rod atomizer in atomic absorption and fluorescence spectrometry and its clinical application [J]. Analytical Chemistry,1971, 43:211-215
    [29]Bratzel E. P., Dagnall R.M.,Winefordner J.D.. A new simple atom reservoir for atomic fluorescence spectrometry [J]. Analytica Chimica Acta,1969,48:97-203
    [30]Bratzel E. P., Dagnall R.M., Winefordner J.D.. A hot wire loop atomizer for atomic fluorescence spectrometry [J]. Applied Spectroscopy,1970,24:518-521
    [31]Montaser A., Fassel V. A.. Inductively coupled plasmas as atomization cell for atomic fluorescence spectrometry [J]. Analytical Chemistry,1976,48:1490-1499
    [32]Tsujiu K., Kuga. The determination of arsenic by non-dispersive atomic fluorescence spectrometry with a gas sampling technique [J]. Analytical Chemistry Acta,1974,72: 85-90
    [33]Thompson K. C.. The atomic-fluorescence determination of antimony arsenic, selenium and tellurium by using the hydride generation technique [J]. Analyst,1975,100:307-310
    [34]Van Loon J. C., Lichwa J., Radziuk B.. Non-dispersive atomic fluorescence spectroscopy, a new detector for chromatography [J]. Chromatography,1977,136:301-305
    [35]Radziuk B., Thomassen Y., Butler L. R. P., et al. A study of atomic absorption and atomic fluorescence atomization systems as detectors in the gas Chromatographic determination of lead [J]. Analytica Chimica Acta,1979,108:31-38
    [36]Dulivo A., Papoff P.. Simultaneous detection of alkylselenide, alkyl lead and alkyl tin compounds by gas-chromatography using a multichannel nondispersive atomic-fluorescence spectrometric detector and a miniature flame as the atomizer [J]. Journal of Analytical Atomic Spectrometry,1986,1:479-484.
    [37]Bloom N. S., Fitzgerald W. F.. Determination of volatile mercury species at the pictogram level by low-temperature gas-chromatography with cold-vapor atomic fluorescence detection [J]. Analytica Chimica Acta,1988,208:151-161
    [38]Liang L., Horvat M., Bloom N. S.. An improved speciation method for mercury by GC/CV AFS after aqueous phase ethylation and room temperature precollection [J]. Talanta,1994,41:371-379
    [39]Cai Y, Jaffe R., Alli A., et al. Determination of organomercury compounds in aqueous samples by capillary gas chromatography atomic fluorescence spectrometry following solid-phase extraction [J]. Analytica Chimica Acta,1996,334:251-259
    [40]Liang L., Horvat M., Cernichiari E., et al. Simple solvent extraction technique for elimination of matrix interferences in the determination of methylmercury in environmental and biological samples by ethylation gas chromatography cold vapor atomic fluorescence spectrometry [J]. Talanta,1996,43:1883-1888
    [41]Bowles K. C., Apte S. C.. Determination of methylmercury in natural water samples by steam distillation and gas chromatography atomic fluorescence spectrometry [J]. Analytical Chemistry,1998,70:395-399
    [42]Armstrong H. E. L., Corns W. T., Stockwell P. B., et al. Comparison of AFS and ICP-MS detection coupled with gas chromatography for the determination of methylmercury in marine samples [J]. Analytica Chimica Acta,1999,390:245-253
    [43]Cai Y., Monsalud S., Furton K. G. Determination of methyl— and ethylmercury compounds using gas chromatography atomic fluorescence spectrometry following aqueous derivatization with sodium tetraphenylborate [J]. Chromatographia,2000,52: 82-86.
    [44]Cai Y., Monsalud S., Jaffe R., et al. Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylb orate—Comparative study of gas chromatography coupled with atomic fluorescence spectrometry[J]. Journal of Chromatography A,2000,876:147-155
    [45]Ebdon L., Foulkes M. E., Le Roux S., et al. Cold vapour atomic fluorescence spectrometry and gas chromatography-pyrolysis-atomic fluorescence spectrometry for routine determination of total and organometallic mercury in food samples [J]. Analyst, 002,127:1108-1114
    [46]Diez S., Bayona J. M.. Determination of methylmercury in human hair by ethylation followed by headspace solid-phase microextraction-gas chromatography -old -vapour atomic fluorescence spectrometry [J]. Journal of Chromatography A,2002,963:345-351
    [47]Leermakers M., Nguyen H. L., Kurunczi S., et al. Determination of methylmercury in environmental samples using static headspace gas chromatography and atomic fluorescence detection after aqueous phase ethylation [J]. Analytical and Bioanalytical Chemistry,2003,377:327-333
    [48]Siemer D. D., Koteel P., Haworth D. T., et al. Continuum source atomic fluorescence detector for liquid-chromatography [J]. Analytical Chemistry,1979,51:575-579
    [49]Mackey D. J.. Metal organic-complexes in seawater-an investigation of naturally-occurring complexes of Cu, Zn, Fe, Mg, Ni, Cr, Mn and Cd using high-performance liquid-chromatography with atomic fluorescence detection [J]. Marine Chemistry,1983, 13:169-180
    [50]Walton A. P., Wei G. T., Liang Z., et al. Laser-excited atomic fluorescence in a flame as a high-sensitivity detector for organomanganese and organotin compounds following separation by high-performance liquid-chromatography [J]. Analytical Chemistry,1991, 63:232-240
    [51]Woller A., Mester Z., Fodor P.. Determination of arsenic species by high- performance liquid-chromatography ultrasonic nebulization atomic fluorescence spectrometry [J]. Journal of Analytical Atomic Spectrometry,1995,10:609-613
    [52]Mester Z., Woller A., Fodor P.. Determination of arsenic species by high- performance liquid chromatography hydride generation (ultrasonic nebulizer) atomic fluorescence spectrometry [J].Microchemical Journal,1996,54:184-194
    [53]Mester Z., Fodor P.. Analytical system for arsenobetaine and arsenocholine speciation [J]. Jounal of Analytical Atomic Spectrometry,1997,2:363-367
    [54]Van Elteren J. T., Slejkovec Z.. Ion-exchange separation of eight arsenic compounds by high-performance liquid chromatography-UV decomposition-hydride generation-atomic fluorescence spectrometry and stability tests for food treatment procedures [J]. Journal of Chromatography A,1997,789:339-348
    [55]Falter R., Ilgen G. Coupling of the RP C18 preconcentration HPLC-UV-PCO system with atomic fluorescence detection for the determination of methylmercury in sediment and biological tissue [J]. Fresenius' Journal of Analytical Chemistry,1997,358:407-410
    [56]Le X. C., Ma M. S.. Short-column liquid chromatography with hydride generation atomic fluorescence detection for the speciation of arsenic [J]. Analytical Chemistry, 1998,70:1926-1933
    [57]Slejkovec Z., Van Elteren J. T., Byrne A. R.. Determination of arsenic compounds in reference materials by HPLC-(UV)-HG-AFS [J]. Talanta,1999,49:619-627
    [58]Gdmez-Ariza J. L., Sanchez-Rodas D., Giraldez I., et al. A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples [J]. Talanta,2000,51: 257-268
    [59]Vilano M., Padro A., Rubio R.. Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation [J]. Analytica Chimica Acta,2000, 411:71-79
    [60]Suner M. A., Devesa V., Rivas I., et al. Speciation of cationic arsenic species in seafood by coupling liquid chromatography with hydride generation atomic fluorescence detection [J]. Journal of Analytical Atomic Spectrometry,2000,15:1501-1507.
    [61]Slejkovec Z., Salma I., Van Elteren J. T., et al. Speciation of arsenic in coarse and fine urban aerosols using sequential extraction combined with liquid chromatography and atomic fluorescence detection [J]. Fresenius' Journal of Analytical Chemistry,2000,366: 830-834
    [62]He B., Jiang G-B., Xu X.-B.. Arsenic speciation based on ion exchange high-performance liquid chromatography hyphenated with hydride generation atomic fluorescence and on-line UV photo oxidation [J]. Fresenius'Journal of Analytical Chemistry,2000,368:803-808
    [63]Gallardo M. V., Bohari Y., Astruc A., et al. Speciation analysis of arsenic in environmental solids Reference Materials by high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry following orthophosphoric acid extraction [J]. Analytica Chimica Acta,2001,441:257-268
    [64]He B., Fang Y., Jiang G.B., et al. Optimization of the extraction for the determination of arsenic species in plant materials by high-performance liquid chromatography coupled with hydride generation atomic fluorescence spectrometry [J]. Spectrochimica Acta part B,2002,57:1705-1711
    [65]Sanchez-Rodas D., Geiszinger A., Gomez-Ariza J. L., et al. Determination of an arsenosugar in oyster extracts by liquid chromatography-electrospray mass spectrometry and liquid chromatography-ultraviolet photo- oxidation-hydride generation atomic fluorescence spectrometry [J]. Analyst,2002,127:60-65
    [66]梁立娜,江桂斌.高效液相色谱及其联用技术在汞形态分析中的应用[J].分析科学学报,2002,18:338-343
    [67]Coelho N. M. M., Parrilla C. N., Cervera M. L., et al. High performance liquid chromatography-atomic fluorescence spectrometric determination of arsenic species in beer samples [J]. Analytica Chimica Acta,2003,482:73-80
    [68]Stoichev T., Rodriguez Martin-Doimeadios R. C., Tessier E., et al. Donard O. F. X. Improvement of analytical performances for mercury speciation by on-line derivatization, cryofocussing and atomic fluorescence spectrometry [J]. Talanta,2004,62:433-438.
    [69]Simon S., Tran H., Pannier H., et al. Simultaneous determination of twelve inorganic and organic arsenic compounds by liquid chromatography-ultraviolet irradiation-hydride generation atomic fluorescence spectrometry [J]. Journal of Chromatography A,2004, 1024:105-113
    [70]Zheng C. B, Li Y, He Y. H., et al. Hoto-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water [J]. Journal of Analytical Atomic Spectrometry,2005,20:746-750
    [71]Wua H., Jin Y, Han W. Y., et al. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry [J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2006,61:831-840
    [72]Berzas Nevadoa J.J.. Rodriguez Martin-Doimeadiosb R.C., Guzman Bernardob F. J., Jimenez M. M., Determination of monomethylmercury in low-and high-polluted sediments by microwave extraction and gas chromatography with atomic fluorescence detection [J]. Analytica Chimica Acta,2008,608:30-37
    [73]Matos Reyesa M. N., Luisa Cerverab M., Camposa R. C., et al. Non-chromatographic speciation of toxic arsenic in vegetables by hydride generation-atomic fluorescence spectrometry after ultrasound-assisted extraction [J]. Talanta,2008,75,811-816
    [74]Tua C. S., Fan Y. C., Hou Y. Z., et al. Arsenic species analysis by ion chromatography-bianode electrochemical hydride generator-atomic fluorescence spectrometry [J]. Journal of Chromatography A,2008,1213:56-61
    [75]Yin Y.G., Wang Z.H., Peng J.F., et al. Direct chemical vapour generation-flame atomization as interface of high performance liquid chromatography-atomic fluorescence spectrometry for speciation of mercury without using post-column digestion [J]. Journal of Analytical Atomic Spectrometry,2009,24:1575-1578
    [76]Carrasco L., Diez S., Bayona J.M.. Simultaneous determination of methyl-and ethyl-mercury by solid-phase microextraction followed by gas chromatography atomic fluorescence detection [J]. Journal of Chromatography A,2009,1216:8828-8834
    [77]Li N., Fang G. Z., Zhu H. P., et al. Determination of As (Ⅲ) and As (Ⅴ) in water samples by flow injection online sorption preconcentration coupled to hydride generation atomic fluorescence spectrometry [J]. Microchimica Acta,2009,165:135-141
    [78]Quiroza W., Olivaresa D., Bravoa M., et al. Antimony speciation in soils:Improving the detection limits using post-column pre-reduction hydride generation atomic fluorescence spectroscopy [J]. Talanta,2011:593-598
    [79]He Q., Zhu Z., Hu S., et al. Solution cathode glow discharge induced vapor generation of mercury and its application to mercury speciation by high performance liquid chromatography-atomic fluorescence spectrometry [J]. Journal of Chromatography A, 2011,1218:4462-4467
    [80 Jesus J. P., Suarez C. A., Ferreira J. A., et al. Sequential injection analysis implementing multiple standard additions for As speciation by liquid chromatography and atomic fluorescence spectrometry (SIA-HPLC-AFS) [J]. Talanta,2011,85:1364-1368
    [81]Chen M.L., Ma H. J., Zhang S. Q., et al. Mercury speciation with L-cysteine functionalized cellulose fibre as adsorbent by atomic fluorescence spectrometry [J]. Journal Analytical Atomic Spectrometry,2011,26:613-617
    [82]Shi J. B., Jiang G. B.. Application of Gas Chromatography-Atomic Fluorescence Spectrometry Hyphenated System for Speciation of Butyltin Compounds in Water Samples [J]. Spectroscopy Letters:An International Journal for Rapid Communication, 2011:393-398
    [83]Gao Y., Yang W. L., Zheng C. B., et al. On-line preconcentration and in situ photochemical vapor generation in coiled reactor for speciation analysis of mercury and methylmercury by atomic fluorescence spectrometry [J]. Journal of Analytical Atomic Spectrometry,2011,26:126-132
    [84]杜文虎.原子荧光光度法[J].西北大学学报,1975,1:110-126
    [85]汤键,武荣生,杜文虎.冷原子荧光光度法测定痕量汞[J].分析化学,1976,4:94-99
    [86]上海冶金研究所分析室.原子荧光光谱法测定铝合金中锌、镁和锰[J].分析化学,1977,5:101-104
    [87]郭小伟.一种无色散原子荧光分析装置及其应用[J].冶金部第一届原子吸收经验交流会论文集,冶金工业出版社,1977
    [88]郭小伟,杨密云.氢化物一无色散原了荧光法在分析中的应用Ⅰ.氢化物一无色散原了荧光法的装置及应用展望[J].分析化学,1980,8:466-470
    [89]郭小伟,张锦茂,双道氢化物无色散原了荧光光谱仪的研制[J].光谱学与光谱分析,1983,3:124-129
    [90]刘明钟,郭小伟,张锦茂.脉冲空心阴极灯作为氢化物发生一非色散原了荧光法的光源研究[J].分析化学1988,16:34-39
    [91]张锦茂,张勤,陈浩.用于氢化物原了荧光光谱法中特种空心阴极灯的某些性能的研究[J].光谱学与光谱分析,1994,14:89-96
    [92]郭小伟,郭旭明.饮用水中超痕量镉的蒸气发生-原子荧光光谱法测定[J].上海环境科学,1994,13:12-14
    [93]郭小伟,郭旭明.硼氢化钠与锌在水溶液中反应研究及其分析应用[J].分析化学,1998,26:674-678
    [94]张锦茂,宁建统.XGY 1011 A原了荧光光谱仪[J].分析测试仪器通讯,1996,6:16-17
    [95]张锦茂,张勤,陈浩.氢氢火焰低温自动点燃装置用于氢化物发生-原了荧光光谱分 析中的研究[J].岩矿测试,1998,17:22-28
    [96]梁立娜,江桂斌,胡敬田.冷蒸气发生-原子荧光光谱法测定化工废水中的无机汞和总有机汞[J].分析化学,2001,49
    [97]何滨,江桂斌.汞形态分析中的前处理技术[J].分析测试学报,2002,1
    [98]梁立娜,江桂斌.高效液相色谱及其联用技术在汞形态分析中的应用[J].分析科学学报,2002,4
    [99]史建波,廖春阳,王亚伟,等.气相色谱和原子荧光联用测定生物和沉积物样品中甲基汞[J].光谱学与光谱分析,2006,2
    [100]张雨,苑春刚,高尔乐,等.高效液相色谱-氢化物发生-原子荧光光谱在线联用系统分析中成药中砷化合物形态[J].分析试验室,2006,25:22-25
    [101]墨淑敏,梁立娜,蔡亚岐,等.高效液相色谱与原子荧光光谱联用分析汞化合物形态的研究[J].分析化学,2006,4
    [102]滕曼,梁立娜,蔡亚岐,等.离子色谱-氢化物发生原子荧光光谱联用技术在砷形态分析中的应用[J].分析试验室,2007,26
    [103]王振华,何滨,史建波,等.液相色谱-双通道原子荧光检测联用法同时测定砷和硒[J].色谱,2009,5:203-208
    [104]Shi J.B., Jiang G.B.. Spectroscopy Letters:An International Journal for Rapid Communication [J].2011,44:393-398
    [105]Chen M.L., Tian Y., Wang J.H.. Integrating preconcentration, tetrahydroborate immobilization, elution and chemical vapor generation onto a cellulose surface for the determination of cadmium with atomic fluorescence spectrometry [J]. Journal of Analytical Atomic Spectrometry,2008,23:876-880
    [106]Chen M.L., Ma H.J, Zhang S.Q., et al. Mercury speciation with L-cysteine functionalized cellulose fibre as adsorbent by atomic fluorescence spectrometry [J]. Journal of Analytical Atomic Spectrometry,2011,26:613-617
    [107]吴晰.氢化物发生原子荧光法测定天然矿泉水中的微量硒.分析实验室[J].2000,19:87-88
    [108]纪峰.同时、快速测定饮用水中微量砷和汞.中国给水排水[J].2000,16:51-52
    [109]高炯,陶锐.水中痕量铅的断续流动氢化物发生—原子荧光光谱测定法[J].环境与健康杂志,2005,22:379-381
    [110]陶刚,王红.气动进样原子荧光法测定环境水样中痕量汞和砷[J].中国环境监测,2000,16:19-20
    [111]施宏亮.氢化物发生—原子荧光法测定水中痕量碘[J].仪器仪表学报,2001,22:359-360
    [112]罗国兵,邱会东.氢化物发生—原子荧光法同时测定污水中的砷和硒[J].化工环保,2005,25:247-250
    [113]赫旭,刘吉良.氢化物—原子荧光法测定排污河水中砷[J].理化检验,2000,36:400-401
    [114]侯静.流动注射—氢化物发生—非色散原子荧光光谱法直接测定海水中的砷(Ⅲ)和砷(V)的研究[J].分析实验室,2000,19:13-16
    [115]刘应希.氢化物发生—原子荧光光谱法测定土壤中的总砷[J].中国环境监测,2005,21:22-24
    [116]熊伟.氢化物—原子荧光法测定土壤中痕量汞[J].光谱学与光谱分析,2001,21:382-383
    [117]王铮,付学起.铅的氢化物—原子荧光测定方法研究及土壤中痕量铅的测定[J].农业环境保护,2002,21:263-265
    [118]杨定清,谢永红,黄惠兰,等.王水浸提-原子荧光法测定土壤中砷方法改进[J].西南农业学报,2007,6:1419-1421
    [119]黄志勇,黄智陶,张强,等.原子荧光光谱法测定环境水及土壤样品中的汞形态含量[J].光谱学与光谱分析,2007,11:2361-2366
    [120]艾伦弘,汪模辉,朱霞萍.微波样品消解-氢化物发生-原子荧光光谱法测定土壤中镉[J].理化检验:化学分册,2009,9:1103-1105
    [121]于兆水,张勤.氢化物发生-原子荧光光谱法直接测定土壤水溶态Sb(Ⅲ)和Sb(V)[J].光谱学与光谱分析,2009,12:3405-3408
    [122]秦海波,朱建明,李社红,等.高压密闭罐溶样-氢化物原子荧光法测定环境样品中的砷[J].矿物学报2010,3:398-402
    [123]史佳铭,王微.氢化物发生——原子荧光光谱法测定土壤中砷和锑[J].有色矿冶,2011,4:51-52
    [124]孙汉文,锁然.碱式模式氢化物发生原子荧光法测定食用菌中痕量锗[J].分析实验室,2001,20:82-84
    [125]郑文兰.氢化物发生—原子荧光光谱法测食品中的锑[J].中国公共卫生,2001,17: 79-84
    [126]阮新,杨立红.断续流动—氢化物发生原子荧光法测定浓缩苹果汁中的砷[J].分析科学学报,2002,18:152-154
    [127]易国庆,陈庆胜.氢化物发生—原子荧光光度法测定方便面中微量砷[J].理化检验,2002,38:145-147
    [128]阮新,杨立红.氢化物—原子荧光法测定葡萄原酒中的砷和铅[J].酿酒,2002,29:95-96
    [129]徐凤云,张春华.氢化物发生—原子荧光光谱法测定乳品中微量砷[J].中国奶品工业,2004,32:33-34
    [130]伍云卿,范超福.氢化物发生原子荧光法同时测定食品中砷和锡[J].中国公共卫生,2005,21:239-240
    [131]段敏,王波HG-AF S法测定甲鱼肉中硒[J].光谱学与光谱分析,2005,25:1358-1360
    [132]石杰,宋庆国.断续流动氢化物发生—原子荧光光谱法同时测定茶叶中的痕量铋、镉[J].食品科学,2005,26:163-165
    [133]李明远.微波消解-氢化物原子荧光光谱法测定食品中的微量元素硒[J].光谱实验室,2007,4:618-621
    [134]刘裕婷,朱力.原子荧光光谱法同时测定食品中汞和锡[J].中国卫生检验杂志,2008,7:1308-1309
    [135]王玉萍,吴刚,周历,等.高压罐消解-氢化物发生原子荧光法测定食品中的硒[J].分析试验室,2007,z1:261-263
    [136]李晓蓉.氢化物发生——原子荧光光谱法快速测定食品中的砷和铅[J].甘肃农业科技,2008,12:21-23
    [137]邓全道,刘灵芝,李爱力,等.氢化物发生-原子荧光光谱法同时测定食品添加剂碳酸钙中的砷和汞[J].分析试验室,2009,B05:185-187
    [138]施家威,帅春江.改进前处理氢化物发生-原子荧光法快速测定食品中无机砷[J].中国卫生检验杂志,2010,5:1003-1004
    [139]张坤,彭科怀,杨长晓.原子荧光法测定食品中的硒[J].中国卫生检验杂志,2010,8:1915-1917
    [140]赵凯,杨大进.高效液相色谱原子荧光分光光度联用法测定海产品中的甲基汞含量[J].中国食品卫生杂志,2011,6:60-65
    [141]邓源喜,许晖,李妍,等.氢化物发生—原子荧光法测定食品中砷研究[J].粮食与油脂,2011,6:40-43
    [142]吕运开,孙汉文.尿中痕量蹄测定的萃取—氢化物发生原子荧光光谱法[J].分析测试学报,2000,19:24-27
    [143]杨君,马永民.氢化物—原子荧光法测定人体血、尿、发中的痕量硒[J].中国公共卫生,2000,16:543-544
    [144]张朝辉.海洋生物样品中硒的氢化物发生—原子荧光分析(HG-AF S) [J]青岛海洋大学学报,2001,31:375-381
    [145]江志刚,牟志春.原子荧光法快速测定海藻低聚糖中的硒[J].分析实验室,2002,21:85-86
    [146]解清,王京宇.氢化物发生—原子荧光法测定细胞内痕量锑[J].卫生研究,2004,33:347-349
    [147]何祥来.原子荧光光谱法测定鹅组织样品中的砷、汞.中国家禽[J].2004,8:86-89
    [148]程晓天,张杰,李军.氢化物发生—原子荧光法分析尿中砷[J].中国地方病学杂志,2004,23:371-372
    [149]朱永芳.连续流动氢化物发生原子荧光光谱法测定尿中微量镉[J].中国卫生检验杂志,2005,15:1337-1363
    [150]王凯,彭珊茁.氢化物发生—原子荧光光谱法测定人发中砷含量[J].中国工业医学杂志,2005,18:331-333
    [151]邬春华,吕元琦,袁倬斌.微波消解原子荧光光谱法测定生物样品中砷汞[J].理化检验:化学分册,2006,1:41-42
    [152]杨凤华,陈爱国.微波消解-原子荧光光谱法测定生物样品中微量汞[J].中国职业医学,2007,4:324-325
    [153]周姣花,汪建宇,钟莅湘,等.氢化物发生-原子荧光光谱法测定生物样品中的硒[J].岩矿测试,2011,2:214-216
    [154]曹晓真,何生虎,马建春,等.氢化物原子荧光法测定鸡血清硒[J].甘肃畜牧兽医,2011,4:1-2
    [155]解清,王京宇,欧阳荔.改进的原子荧光光谱法测定人尿中硒的水平[J].实验技术与管理,2011,7:36-38
    [156]孙汉文,锁然.氢化物原子荧光法测定中草药中痕量铅[J].理化检验,2002,38:506-508
    [157]石杰,朱永琴.氢化物发生—原子荧光法测定中药中痕量汞[J].光谱学与光谱分析,2004,24.893-895
    [158]石杰,宋庆国.氢化物发生—原子荧光法测定中草药中的痕量秘.光谱学与光谱分析[J].2005,25:1355-1357
    [159]杨莉丽,李娜.蒸气发生—原子荧光光谱法测定中草药中不同形态的汞[J].光谱学与光谱分析,2005,25:286-289
    [160]曾宇崇,林章金.原子荧光光谱法测定芦荟中铅和镉[J].岩矿测试,2005,24:157-158
    [161]赵志军,韩桂茹,常晓强.氢化物发生-原子荧光光谱法同时测定红景天胶囊中的砷和汞[J].中成药,2009,2:243-245
    [162]陈晋红,汤毅珊,刘大伟,王宁生,姜黄药材中6种重金属残留量测定[J].中药新药与临床药理,2009,5:457-460
    [163]李楠,李莉,张钢平,等.原子荧光法测定复方铝酸铋胶囊中铋的含量[J].河北医科大学学报,2009,9:939-940
    [164]邹亮,周浓,杨颖,等.不同产地滇重楼中重金属含量的湿法消解-原子荧光光度法测定[J].时珍国医国药,2010,4:1014-1015
    [165]黄铭,符传武,蓝晓玉.原子荧光法测定中药材中镉的含量[J].药物分析杂志,2010,10:1918-1920
    [166]沈晓君,孙全乐,殷丹,等.原子荧光法在中草药砷、汞含量测定上的应用[J].药物分析杂志,2010,10:1957-1959
    [167]陈超,訾晓伟,马军,等.原子荧光光谱法同时测定药用玻璃容器中砷和锑的溶出量[J].中国药品标准,2011,4:311-313
    [168]龚雪云,张磊,缪娟,等.氢化物发生-原子荧光法测定不同产地牛膝中痕量锑[J]安徽农业科学,2011,10:5778-5779
    [169]谭春华,汤志勇.流动注射在线共沉淀HG-AF S测定地质样品中痕量锡[J].光谱学与光谱分析,2001,21:661-663
    [170]方宇,江桂斌.氢化物发生原子荧光光谱法测定烧结物中的总砷含量[J].环境科学,2002,23:117-120
    [171]肖灵,张培新,胡月华.原子荧光光谱法测定地质样品中的痕量锗[J].岩矿测试,2004,23:231-234
    [172]陈志兵,肖灵,张培新.氢化物发生—原子荧光光谱法测定多金属矿中的锡[J].岩矿测试,2004,23:70-72
    [173]李岩.氢化物—原子荧光光谱法连续测定锌精矿中砷、锑、秘、锡[J].分析化学,2004,32:205-208
    [174]于兆水,李淑娟.氢化物发生—原子荧光光谱法测定地球化学样品中痕量秘[J].岩矿测试,2005,24:217-220
    [175]范凡.氢化物发生—原子荧光光谱法测定地球化学样品中痕量蹄[J].岩矿测试,2005,24:225-228
    [176]樊海峰,温汉捷,胡瑞忠,等.巯基棉富集-氢化物发生原子荧光法测定地质样品的总硒含量[J].矿物学报,2008,2:181-186
    [177]徐国栋,葛建华,贾慧娴,等.水浴浸提-氢化物发生-原子荧光光谱法同时测定地质样品中痕量砷和汞[J].岩矿测试,2010,4:391-394
    [178]朱园园,宋虎跃,邱海鸥,等.碱性体系-蒸汽发生-原子荧光光谱法测定地质样品中的锌[J].岩矿测试,2010,6:691-694
    [179]马建学,路学东,许卓.化学蒸气发生-无色散原子荧光光谱法测定地质样品中微量和痕量金[J].岩矿测试,2011,3:343-348
    [180]郭开强,祝智.氢化物发生-原子荧光光谱法测定地质样品中痕量锗[J].新疆有色金属,2011,3:64-65
    [181]刘庆彬.氢化物发生原子荧光光谱法测定钢铁及合金材料中痕量铋[J].光谱学与光谱分析,2000,20:84-86
    [182]李岩,万秉忠.氢化物—原子荧光光谱法同时测定黄铜中的砷与锑[J].分析实验室,2000,19:75-77
    [183]贾进铎.氢化物发生原子荧光光谱法测定镍基高温合金中痕量硒和蹄.理化检验[J].2001,37:104-106
    [184]张小红.氢化物发生原子荧光光谱法测定聚氯化铝中的砷[J].中国卫生检疫杂志,2005,15:1378
    [185]谢绍金.氢化物发生—原子荧光光谱法测定镍基高温合金中痕量铋[J].理化检验,2005,41:381-387
    [186]韩华云,唐静,王哲光,等.氢化物发生-原子荧光光谱法测定钢中微量锡[J].冶 金分析,2008,28:5-48
    [187]郝志红,廖圆圆,任小荣,等.流动注射在线离子交换分离富集-氢化物发生原子荧光光谱法测定铜合金中痕量铋[J].冶金分析,2008,28:11-15
    [188]张遴,乐爱山,王昌钊,等.氢化物发生-原子荧光光谱法测定铝锭及铝合金中砷和汞[J].理化检验:化学分册,2009,10:1197-1199
    [189]吴良俊,邱海鸥,郝志红,等.流动注射在线离子交换分离富集-氢化物发生原子荧光光谱法测定铜合金中痕量锑[J].分析仪器,2009,6:58-61
    [190]杨国武,王明海,李杰,等.氢化物发生-原子荧光光谱法测定镀锌板镀层中痕量镉[J].冶金分析,2009,29:32-35
    [191]申志云,李莎莎,马冲先,等.氢化物发生-原子荧光光谱法测定铝合金中痕量锑[J].理化检验:化学分册,2010,8:908-910
    [192]王丽,陆建平,张云飞.聚环氧琥珀酸掩蔽基体—氢化物发生原子荧光光谱法测定铅锭中砷和汞[J].冶金分析,2011,31:34-37
    [193]Braman R. S., Justen L. L., Foreback C. C.. Direct volatilization-spectral emission type detection system for nanogram amounts of arsenic and antimony [J].Analytical Chemistry,1972,44:2195-2199
    [194]Schmidt F. J., Royer J. L.. Sub microgram determination of arsenic, selenium, antimony and bismuth by atomic absorption utilizing sodium borohydride reduction [J]. Analytical Letter,1973,6:17-21
    [195]Femandez B. A., Temprano M. C. V.. Determination of arsenic by inductively-coupled plasma atomic emission spectrometry enhanced by hydride generation from organized media [J]. Talanta,1992,39:1517-1519
    [196]Qui D. R., Vandecasteele K.. Dams R.Continous hydride generation inductively Coupled plasma atomic emission spectrometry for tin:Optimization of working parameters and an approach to clarifying the mechanism of stannane generation [J]. Spectrochim Acta,1990, Part B 45:439-451
    [197]Rigin V. I., Verkhoturov G. N.. Atomic absorption determination of arsenic using prior electrochemical reduction [J]. Zh Aanl Khim,1977,33,1966
    [198]Sturgeon R. E., Guo X. M., Mester Z.. Chemical vapor generation:are further advances yet possible? [J]. Anal Bioanal Chem.,2005,382:881-883.
    [199]Medez H., Lavilla I., Bendicho C.. Mild sample pretreatment procedures based on photolysis and sonolysis-promoted redox reactions as a new approach for determination of Se(Ⅳ), Se(Ⅵ) and Se(-Ⅱ) in model solutions by the hydride generation technique with atomic absorption and fluorescence detection [J]. Journal of Analytical Atomic Spectrometry,2004,19:1379-1385.
    [200]Zheng C. B., Li Y., He Y. H., et al. Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury:potential application to mercury speciation in water [J]. Journal of Analytical Atomic Spectrometry,2005,20:746-750
    [201]Liu L. W., Deng H., Wu L., et al. UV-induced carbonyl generation with formic acid for sensitive determination of nickel by atomic fluorescence spectrometry [J]. Talanta,2010, 80:1239-1244
    [202]Gao Y, Yang W. L., Zheng C. B., et al. On-line preconcentration and in situ photochemical vapor generation in coiled reactor for speciation analysis of mercury and methylmercury by atomic fluorescence spectrometry [J]. Journal of Analytical Atomic Spectrometry,2011,26:126-132
    [203]Hou X. D., Ai X., Jiang X. M., et al. UV light-emitting-diode photochemical mercury vapor generation for atomic fluorescence spectrometry [J]. Analyst,2012,137:686-690
    [204]Evans W. H., Jackson F. J., Dellar D.. Evaluation of a method for the determination of total antimony, arsenic and tin in foodstuffs using measurement by atomic-absorption spectrometry with atomization in a silica tube using the hydride generation technique [J]. Analyst,1979,104:16-34
    [205]Dedina J., Rubeska I.. Hydride atomization in a cool hydrogen-oxygen flame burning in a quartz tube atomizer [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,1980, 35:119-128
    [1]Clarkson T. W., Magos L.. The Toxicology of Mercury and Its Chemical Compounds [J]. Toxicology,2006,36:609-662
    [2]Hodgson S., Nieuwenhuijsen M. J., Elliott P., et al. Kidney Disease Mortality and Environmental Exposure to Mercury [J]. American Journal of Epidemiology,2007,165: 72-77.
    [3]Burbacher T.M., Shen D.D., Liberato N., et al. Comparison of Blood and Brain Mercury Levels in Infant Monkeys Exposed to Methylmercury or Vaccines Containing Thimerosal [J]. Environ Health Perspect.2005,113:1015-1021
    [4]Cao Y., Chen A., Jones R.L., et al. Does background postnatal methyl mercury exposure in toddlers affect cognition and behavior? [J]. NeuroToxicology,2010,31:1-9
    [5]Scheuhammer A. M., Basu N., Burgess N. M., et al. Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus) [J]. Ecotoxicology,2007,17:93-101
    [6]Pacyna E.G., Pacyn J.M., Steenhuisen F., et al. Global anthropogenic mercury emission inventory for 2000 [J]. Atmospheric Environment,2006,40:4048-4063
    [7]Pacyna E.G., Pacyna J.M., Sundseth K., Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020 [J], Atmospheric Environment,2010,44:2487-2499
    [8]Jackson B., Taylor V, Baker R.A., et al. Low-Level Mercury Speciation in Freshwaters by Isotope Dilution GC-ICP-MS [J]. Environmental Science & Technology,2009,43: 2463-2469
    [9]Dittert I.M., Maranhaoa T.A., Borges D.L.G, et al. Determination of mercury in biological samples by cold vapor atomic absorption spectrometry following cloud point extraction with salt-induced phase separation [J]. Talanta,2007,72:1786-1790
    [10]Yin Y.G.., Liu J.F., He B., et al. Jiang G.B., Photo-induced chemical vapour generation with formic acid:novel interface for high performance liquid chromatography-atomic fluorescence spectrometry hyphenated system and application in speciation of mercury [J]. Journal of Analytical Atomic Spectrometry,2007,22:822-826
    [11]Pena-Pereira F., Lavilla I., Bendicho C., et al. Speciation of mercury by ionic liquid-based single-drop microextraction combined with high-performance liquid chromatography-photodiode array detection [J]. Talanta,2009,78:537-541
    [12]Vieira M.A, Ribeiro A.S., Curtius A.J., et al. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation [J]. Analytical and Bioanalytical Chemistry,2007,388:837-847
    [13]郑礼胜,王士龙,安红.双硫腙水相分光光度法测定废水中汞[J].环境监测管理与技术,1996,16:32-33
    [14]倪坤仪,耿惠珍,程光炘.双硫腙水相比色法测定含朱砂中成药中的微量汞[J].中国药科大学学报,1996,12:726-729
    [15]梁云生.双硫腙—四氯化碳萃取光度法测定锑矿中汞[J].云南冶金,1996,25:47-50
    [16]李瑜华,陈乃燐.改进的双硫腙汞比色法[J].华南师范大学学报(自然科学版),1980
    [17]孟素玲,陈令娟,卫敬生.热解-金丝富集法冷原子吸收测汞仪测定生物样品中的痕量汞[J].山东国土资源,2007,23:45-47
    [18]李鸿业,高宏,刘玉凤.冷原子吸收法测定水中总汞量、无机汞量和有机汞量[J].分析实验室,1990,31:72
    [19]汪士蔷,冷原子吸收测定水中汞方法的改进[J].环境与职业医学,2006,23:85-86
    [20]王帅,王鹏,汪细河.单光路冷原子吸收法在线测量气态痕量汞的研究[J].光谱学与光谱分析,2009,6:2262-2265
    [21]蒲朝文,谢朝怀.高温处理-冷原子吸收法测定土壤样品中总汞含量[J].环境与健康杂志,2001,18:41-42
    [22]杨娟芬,任飞,金婉芳.微波消解-冷原子吸收光谱法测定食品中汞的讨论[J].光谱实验室,2008,25:65-68
    [23]王飞,闰树峰,王硕.微波消解-冷原子吸收法定量测定人参中汞的研究[J].广东微量元素科学,2001,8:49-53
    [24]张优珍.冷原子吸收法测定植物样品中痕量汞[J].测试仪器通讯,1996,6:56-58
    [25]吴抒怀,蔡怡鹃.微波微化-连续流动进样冷原子吸收法测定中成药中痕量汞[J].光谱实验室,1998,15:46-50
    [26]杨文丽.氢化物发生—原子荧光光谱法测定地表水中微量汞[J].水利技术监督,2006,14:36-38
    [27]李劲峰,邵歆.采用微波消解-氢化物发生原子荧光光谱法同时测定茶叶中汞和砷[J].浙江农业科学,2007,3:349-351
    [28]李艳松.原子荧光光谱法测定大米中的汞[J].粮食与食品工业,2007,14:48-49
    [29]黄显屏,王晓燕,张召.微波消解—冷原子荧光法测定香菇、木耳中汞[J].河南预防 医学杂志,2007,18:100-101
    [30]胡娟,程永华,赖源发.微波消解-冷原子荧光分析法测定泽泻和南板蓝根的痕量汞[J].福建医科大学学报,2007,41:81-84
    [31]王安俊,郎春燕.微波消解冷原子荧光法测定市售猪肉中的痕量汞[J].广东微量元素科学,2005,12:44-46
    [32]高卫东,微波消解-原子荧光法测定化妆品中的汞[J].中国医学创新,2009,6:20-21
    [33]杨正标,杜青,任兰.氢化物发生-原子荧光光谱法测定气态总汞[J].化学分析计量,2010,3:29-31
    [34]许建华,田锋,杜青.微波消解-原子荧光法测定土壤中汞、砷、硒[J].环境监测管理与技术,2007,19:34-35
    [35]吕海涛,马传利.离子色谱法测定头发中汞的含量[J].烟台师范学院学报,2002,18:95-97
    [36]徐青,殷学锋.汞的形态分析研究:Ⅱ.固相萃取预富集-液相色谱分离测定不同形态的有机汞[J].分析化学,1995,23:1305-1307
    [37]李妍,刘书娟,江冬青.气相色谱-电感耦合等离子体质谱联用技术应用于水产品中汞形态分析[J].分析化学,2008,36:793-798
    [38]王萌,丰伟悦,张芳.高效液相色谱-电感耦合等离子体质谱联用测定生物样品中无机汞和甲基汞[J].分析化学,2005,33:1671-1675
    [39]刘少轻,刘翠梅,施燕支.电感耦合等离子体质谱法测定化妆品中八种有害金属元素[J].环境化学,2006,25:802-804
    [40]王英锋,施燕支,张华,微波消解-电感耦合等离子体质谱法测定丙烯腈-丁二烯-苯乙烯共聚物塑料中的铅、镉、汞、铬、砷[J].光谱学与光谱分析,2008,28:191-194
    [41]中国科学院高能物理研究所中子活化分析实验室.中子活化分析在环境学、生物学和地学中的应用[J].原子能出版社,北京:1992
    [42]杨瑞瑛.生物样品中微量元素的中子活化分析[J].现代仪器使用与维修,1998,4:1-4
    [43]杨瑞瑛,现代核分析技术在生命科学中的应用[J].现代仪器,2001,3:7-10
    [44]杨瑞瑛,张智勇.核分析技术与预防医学[J].中华预防医学杂志,2003,37:458-459
    [45]丰伟悦,钱琴芳,柴之芳.两种新的测定人发中无机汞和甲基汞的中子活化法[J],核化学与放射化学,1996,18(3):187-191.
    [46]丰伟悦,钱琴芳,柴之芳.用中子活化分析法研究产妇及其新生儿发中汞含量的相关性[J].核技术,1994,17:182-185
    [47]丰伟悦,钱琴芳,柴之芳.我国高汞低硒地区母子体头发中汞和硒的相关性研究[J].核技术,1997,20:356-361
    [48]赵九江,章佩群,陈春英.汞与硒在不同汞暴露水平地区猪肝脏与肾脏蛋白质中的分布[J].中国生物化学与分子生物学报,2003,19:377-382
    [49]章佩群,陈春英,赵九江.不同汞暴露水平地区鱼组织中汞和硒及其他元素的相关性[J].环境科学,2004,25:149-154
    [1]谢少涛.原子荧光光谱法测定水中微量汞[J].仪器仪表与分析监测,1999,2:54-56
    [2]侯韬乔,张丽敏,冷原子荧光法测定生活饮用水中汞的含量[J].中国职业医学,2003,30
    [3]谢勇坚.冷原子荧光和热原子荧光法测定水中痕量汞的比较[J].城镇供水,2002,4:10-12
    [4]任卉,王英,杨静.氢化物发生-原子荧光光谱法测定水中的砷、硒、汞[J].环境科学与管理,2009,5:109-111
    [5]葛菊,张国明.双道原子荧光光谱法同时测定饮用水中的砷和汞[J].鞍山师范学院学报,2003,5
    [6]郑瑾,边文耀.冷原子荧光法测定饮用水中痕量汞[J].内蒙古科技与经济,2003,8
    [7]Jones R. D., Jacobson M. E., Jaffe R., et al. Method development and sample processing of water, soil, and tissue for the analysis of total and organic mercury by cold vapor atomic fluorescence spectrometry [J]. Water, Air,& Soil Pollution,1995,80:1285-1294
    [8]Zheng C.B, Li Y.,He Y.H., et al. Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water [J]. Journal of Analytical Atomic Spectrometry,2005,20:746-750
    [9]Allibone J.,Fatemian E., Walker P.J.. Determination of mercury in potable water by ICP-MS using gold as a stabilising agent [J]. Journal of Analytical Atomic Spectrometry, 1999,14:235-239
    [10]Wan C.C., Chen C.S., Jiang S.J., Determination of Mercury Compounds in Water Samples by LiquidChromatography-Inductively Coupled Plasma Mass Spectrometry WithanIn Situ Nebulizer/Vapor Generator [J]. Journal of Analytical Atomic Spectrometry, 1997,12:683-687
    [11]Stroh A., Vollkopf U.. Optimization and use of flow injection vapour generation inductively coupled plasma mass spectrometry for the determination of arsenic, antimony and mercury in water and sea-water at ultratrace levels [J]. Journal of Analytical Atomic Spectrometry,1993,8:35-40
    [12]中华人民共和国国家标准.地表水环境质量标准.GB3838-2002.
    [1]Bar B., Anotonio C.. Indices of mercury contam ination du ring breast feed ing in the Am azon Basin [J]. Environmental Toxicology and Pharmacology,1998,6:71-79
    [2]王定勇,牟树森.大气汞对土壤-植物系统汞累积的影响研究[J].环境科学学报,1998,18:194-198
    [3]薛栋森,Harr, R. B., Tacom A冶炼厂下风区林地土壤植物中汞的含量和分布[J].农业环境保护,1995,14:54-57
    [4]李春兰.北京地区土壤中汞含量较高的原因分析[J].中国环境监测,1992,8:78-80
    [5]王宏康.汞对农业环境的污染[J].环境质量,1980,3:27-34
    [6]Rogers R. D., Mcfarlane J. C.. Factors influence the volatilization of mercury from soil [J]. J Environ. Qual.,1979,8:255-260
    [7]宋菲,刘玉机.含汞磷肥对土壤环境影响的研究[J].环境科技,1995,15:34-36
    [8]田丽梅,徐震.天津市蔬菜生产环境污染现状及治理对策[J].天津农林科技,2001,213-15.
    [9]和文祥,韦革宏.汞对土壤酶活性的影响[J].中国环境科学,2001,21:279-283
    [10]和文祥,朱铭莪,土壤脲酶与汞关系中的作物效应[J].西北农林科技大学学报,2002,30:68-72
    [11]何振立,周启星,谢正苗.污染及有意元素的土壤化学平衡[M].北京:中国环境科学出版社.1998,244-276
    [12]青长乐,牟树森.抑制土壤汞进入陆生食物链[J].环境科学学报,1995,15:148-155
    [13]刘德绍,青长乐.大气和土壤汞对蔬菜的贡献[J].应用生态学报,2002,13:315318
    [14]Anthony C.. Methylmercury contamination and emission to the atmosphere from soil am ended with municipal sew age sludge [J]. J. En viron. Qual.,1997,26:1650-1654
    [15]熊伟.氢化物—原子荧光法测定土壤中痕量汞[J].光谱学与光谱分析,2001,3:382-383
    [16]丁振华,王文华.不同消解方法对土壤样品中汞含量测定的影响[J].生态环境,2003,12:1-3
    [17]蔡顺香.双道原子荧光光谱法同时测定土壤中的砷和汞[J].光谱实验室,2005,1:120-122
    [18]汪禄祥,刘家富,董宝生,等.微波消解氢化物-原子荧光法同时测定土壤中的砷和 汞[J].西南农业学报,2006,2:211-213
    [1]张锦茂,范凡,郭小伟,等.双道氢化物原子荧光法同时测定地球化学样品中的微量砷和锑[J],物探与化探,1984,8:151-161
    [2]乔晋.氢化物原子荧光法快速测定化探样品中痕量砷、锑、铋[J].理化检验:化学分册,1993,29:265-267
    [3]毛振.氢化物原子荧光法测定化探样品中汞、砷、锑、铋[J].岩矿测试,1986,5:209-213
    [4]孙伟.原子荧光光谱法快速测定化探样品中的微量砷、锑、铋、汞[J].光谱实验室,2001,4:513-516
    [5]Feng X.J., Fu B.. Determination of arsenic, antimony, selenium, tellurium and bismuth in nickel metal by hydride generation atomic fluorescence spectrometry [J]. Analytica Chimica Acta,1998,371:109-113
    [6]Cava-Montesinos P., Cervera M.L., Pastor A., et al. Determination of As, Sb, Se, Te and Bi in milk by slurry sampling hydride generation atomic fluorescence spectrometry [J]. Talanta,2004,62:173-182
    [7]Fuentes E., Pinochet H., Gregori I.D, et al. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2003,58:1279-1289
    [8]Zhang W.B., Yang X.A.. Determination of the different oxidation states of As and Sb by a new electrochemical hydride generator coupled with atomic fluorescence spectrometry [J]. Analytica Chimica Acta,2008,611:127-133
    [9]胡净宇,王海舟ICP-MS中进样方法的综述[J].冶金分析,2001,21:26-33
    [10]胡净宇,王海舟.激光烧蚀进样电感耦合等离子体质谱分析技术的进展及应用[J].冶金分析,2004,24:29-36
    [11]Gray A.L.. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry [J]. Analyst,1985,110:551-556
    [12]Martin-Estebana A., Slowikowski B.. Electrothermal Vaporization—Inductively Coupled Plasma-Mass Spectrometry (ETV-ICP-MS):A Valuable Tool for Direct Multielement Determination in Solid Samples [J]. Critical Reviews in Analytical Chemistry,2003,33:43-55
    [13]Resano M., Garcia-Ruiz E., Vanhaecke F., et al. Evaluation of solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry and solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of Cr in various materials using solution-based calibration approaches [J]. Journal of Atomic Analytical Spectrometry,2004,19:958-965
    [14]Hahn E., Hahn K., Mohl C., et al. Zeeman SS-GFAAS—an ideal method for the evaluation of lead and cadmium profiles in bird's feathers [J]. Fresenius' Journal of Analytical Chemistry,1990,337:306-309
    [15]Nowka R., Marr I.L., Ansari T.M., et al. Direct analysis of solid samples by GFAAS-determination of trace heavy metals in barites [J]. Journal of Analytical Chemistry,1999, 364:533-540
    [16]Marcos D.R., Jason P., Humberto G., et al. Comparison of ICP-OES and XRF Performance for Pb and As Analysis in Environmental Soil Samples from Chihuahua City, Mexico [J]. Physical Review & Research International,2011,1:29-44
    [1]Edzard E.. Toxic heavy metals and undeclared drugs in Asian herbal medicines [J]. Trends in Pharmacological Sciences,23:136-139
    [2]Chan K..Some aspects of toxic contaminants in herbal medicines [J]. Chemosphere,2003, 52:1361-1371
    [3]Kam P. C. A., Liew S.. Traditional Chinese herbal medicine and anaesthesia [J]. Anaesthesia,2002,57:1083-1089
    [4]Matos-Reyes M.N., Cervera M.L., Campos R.C.. Guardia, M. Total content of As, Sb, Se, Te and Bi in Spanish vegetables, cereals and pulses and estimation of the contribution of these foods to the Mediterranean daily intake of trace elements [J]. Food Chemistry,2010, 122:188-194
    [5]Sergio A., Miguel G... Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence:A Green Analytical Chemistry Laboratory Experiment [J]. Chem. Educ, 2011,88:488-491
    [6]Zhang N., Fu N., Fang Z., et al. Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves [J]. Food Chemistry,2010,124:1185-1188
    [7]Guo Y., Li Z., Feng Y..2003, ZL pat.,03262710.0
    [8]Li Z., Guo Y. Simultaneous determination of trace arsenic, antimony, bismuth and selenium in biological samples by hydride generation -four- channel atomic fluorescence spectrometry [J]. Talanta,2005,65:1318-1325
    [9]Li Z., Yang X., Guo Y, et al. Simultaneous determination of arsenic, antimony, bismuth and mercury in geological materials by vapor generation -four- channel non-dispersive atomic fluorescence spectrometry [J]. Talanta,2008,74:915-921
    [1]Wang J. H, Yu Y. L., Du Z., et al. A Low cost and sensitive procedure for lead screening in human whole blood with sequential injection-hydride generation atomic fluorescence spectrometry [J]. Journal of Analytical Atomic Spectrometry,2004,19:1559-1563
    [2]Gan W.E., Shi W. W., Su Q. D.. Simultaneous determination of trace mercury and cadmium in tobacco samples by cold vapor generation-atomic fluorescence spectrometry [J]. Journal of Analytical Atomic Spectrometry,2004,19,911-916
    [3]Luna A. S., Sturgeon R. E., de Campos R. C. Chemical vapor generation:atomic absorption by Ag, Au, Cu, and Zn following reduction of aqua ions with sodium tetrahydroborate(Ⅲ) [J].Analytical Chemistry,2000,72:3523-3531
    [4]Kratzer J., Dedina J.. In situ trapping of stibnite in externally heated quartz tube atomizers for atomic absorption spectrometry [J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2005,60:859-864
    [5]Ma H. B., Fan X. F., Zhou H.Y., et al. Preliminary studies on flow-injection in situ trapping of volatile species of gold in graphite furnace and atomic absorption spectrometric determination [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2003,58:33-41
    [6]Bermejo-Barrera P., Moreda-Pineiro J., Moreda-Pineiro A., et al. SeLective medium reactions for the 'arsenic(Ⅲ)','arsenic(Ⅴ)', dimethylarsonic acid and monomethylarsonic acid determination in waters by hydride generation on-Line electro thermal atomic absorption spectrometry with in situ preconcentration on Zr-coated graphite tubes [J]. Analytica Chimica Acta,1998,374:231-240
    [7]Lu Y. K., Sun H. W., Yuan C.G., et al. Simultaneous Determination of Trace Cadmium and Arsenic in Biological Samples by Hydride Generation-Double Channel Atomic Fluorescence Spectrometry [J]. Analytical Chemistry,2002,74:1525-1529
    [8]Yin X. B., Yan X. P., Jiang Y., et al. On-Line Coupling of Capillary Electrophoresis to Hydride Generation Atomic Fluorescence Spectrometry for Arsenic speciation [J]. Analytical Chemistry,2002,74:3720-3725
    [9]Masson P., Orignac D., Prunet T.. Optimization of selenium determination in plant samples by hydride generation and axial view inductively coupled plasma atomic emission spectrometry [J].Analytica Chimica Acta,2005,545:79-84
    [10]Suarez C. A., Gine M. F.. A reactor/phase separator coupling capillary eLectrophoresis to hydride generation and inductively coupled plasma optical emission spectrometry (CE-HG-ICP OES) for arsenic speciation [J]. Journal of AnaLytical Atomic Spectrometry,2005,20:1395-1397
    [11]Pohl P.. Hydride generation-recent advances in atomic emission spectrometry [J]. Trends in Analytical Chemistry,2004,23:87-101
    [12]Dedina J., TsaLev J.. Hydride Generation Atomic Absorption Spectrometry, John Wiley, Chichester,1995
    [13]Tsalev D.L., Hyphenated vapor generation atomic absorption spectrometric techniques [J]. Journal of Analytical Atomic Spectrometry,1999,14:147-162
    [14]Chen M.L., Zou A.M., Yu Y.L., et al. Hyphenation of flow injection/sequentialinjection with chemical hydride/vapor generation atomic fluorescence spectrometry [J]. Talanta, 2007,73:599-605
    [15]Zhang Z. F., Chen S. Y., Yu H.M., et al. Simultaneous determination of arsenic, selenium, and mercury by ion exchange-vapor generation-inductively coupled plasma-mass spectrometry [J]. Analytica Chimica Acta,2004,513:417-423
    [16]Ribeiro A. S., Vieira M. A., Curtius A. J.. Determination of hydride forming elements (As, Sb, Se, Sn) and Hg in environmental reference materials as acid slurries by on-Line hydride generation inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2004,59:243-253
    [17]Matusiewicz H., Sturgeon R. E.. Atomic spectrometric detection of hydride forming elements following in situ trapping within a graphite furnace [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,1996,51:377-397
    [18]Thompson M., Pahlavanpour B., Walton S.J., et al. Simultaneous determination of trace concentrations of arsenic, antimony, bismuth, selenium and tellurium in aqueous solution by introduction of the gaseous hydrides into an inductively coupled plasma source for emission spectrometry. Part Ⅰ. Preliminary studies [J]. Analyst,1978,103:568-579
    [19]Zhang L., Shan X.Q., Ni Z.M.. An oblique section hydride generator for the simultaneous determination of arsenic, antimony and bismuth in geological samples by inductively coupled plasma-atomic emission spectrometry [J]. Fresenius'Journal of Analytical Chemistry,1988,332:764-768
    [20]PohlP., Zyrnicki W.. Study of chemical and spectral interferences in the simultaneous determination of As, Bi, Sb, Se and Sn by hydride generation inductively coupled plasma atomic emission spectrometry [J]. Analytica Chimica Acta,2002,468:71-79
    [21]Pohl P., Lesniewicz A., Zyrnicki W.. Determination of As, Bi, Sb and Sn in conifer needles from various Locations in Poland and Norway by hydride generation inductively coupled plasma atomic emission spectrometry [J]. International Journal of Environmental Analytical Chemistry,2003,83:963-970
    [22]Rojas I., Murillo M., Carrion N., et al. Investigation of the direct hydride generation nebulizer for the determination of arsenic, antimony and selenium in inductively coupled plasma optical emission spectrometry [J]. Analytical and Bioanalytical Chemistry,2003, 376:110-117
    [23]Matusiewicz H., SLachcinski M.. Simultaneous determination of hydride forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elements in sonicate slurries of analytical samples by microwave induced plasma optical emission spectrometry with dual-mode sample introduction system [J]. Microchemical Journal, 2007,86:102-111
    [24]Li Z.X., Guo Y. A..Simultaneous determination of trace arsenic, antimony, bismuth and selenium in biological samples by hydride generation -four- channel atomic fluorescence spectrometry [J]. Talanta,2005,65:1318-1325.
    [25]Li Z. X., Yang X. M., Guo Y. A.,et al. Simultaneous determination of arsenic, antimony, bismuth and mercury in geological materials by vapor generation -four-channel non-dispersive atomic fluorescence spectrometry [J]. Talanta,2008,74:915-921
    [26]Zhang N., Fu N., Fang Z., Fen Y., et al. Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea Leaves [J]. Food Chemistry,2010,124:1185-1188
    [27]Wan Z., Xu Z. R., Wang J.H.. Flow injection on-line solid phase extraction for ultra-trace Lead screening with hydride generation atomic fluorescence spectrometry [J]. Analyst, 2006,131:141-147
    [28]Duan T.C., Song X.J., Jin D., et al. Preliminary results on the determination of ultra trace amounts of cadmium in tea samples using a flow injection on-Line solid phase extraction separation and preconcentration technique to couple with a sequential injection hydride generation atomic fluorescence spectrometry [J]. Talanta,2005,67:968-974
    [29]Guo X.W., Guo X.M.. Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its appLication in atomic fluorescence spectrometry [J]. Analytical Chimica Acta,1995,310,337-385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700