三维曲面柔性轧制原理及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性轧制成形是结合多点调形工艺与轧制成形工艺,用上下柔性工作辊形成的不均匀辊缝完成三维曲面成形件的快速、连续、高效轧制成形技术。具有材料利用率高,成形范围广,成形效果好等优点。柔性轧制成形可以实现凸曲面件、鞍形件、盘形件、扭曲形件等多种三维曲面件的简单易控、高效连续成形。因此,研究柔性轧制成形的工艺特性,开发新型柔性轧制成形设备具有较广阔的市场应用空间和较高的科研开发价值。
     本文建立了柔性轧制成形的有限元模型,并对模型设置不同的工艺参数后分别进行数值模拟,分析了成形结果中的应力应变特征和工艺参数对成形件成形效果的影响,并对成形情况进行了相关实验验证,探讨了柔性轧制成形缺陷问题,提出了一些改进成形实验的设想。
     主要研究内容和结论归纳如下:
     (1)柔性轧制的原理和特点
     对柔性轧制技术的原理和成形设备进行了介绍,对比分析柔性轧制技术与传统轧制技术的根本区别。介绍了柔性轧制成形装置的整体结构和使用不均匀辊缝方式完成板料成形的特点,其优势在于简单易控,出形快速高效。阐述了板形控制理论,提出了使用调形控制以一次调形工艺方式柔性轧制的方法。使用几何关系推导了板形函数、成形件厚度和双向主曲率半径三者之间关系的算法,以此作为成形件板形研究的理论依据。
     (2)柔性轧制成形有限元模型的建立
     从弹塑性有限元求解着手,使用显式动力学的有限元方法对板料成形过程进行力学分析。介绍了柔性轧制成形的数值模拟基本理论,并给出了有限元方程。建立了柔性轧制成形有限元模型,并处理了建模求解时的相关问题。对凸曲面件和鞍形件进行轧制实验与数值模拟,得到与实验结果一致的模拟结果,证明了柔性轧制成形技术的可行性。
     (3)柔性轧制成形的数值模拟
     从塑性变形理论入手,剖析了柔性轧制成形技术能够加工三维曲面件的原因。分析了与轧制参数有关的弹塑性曲线的变化情况,讨论了板料最小可轧厚度问题。对柔性轧制模型进行力学分析,从理论上解析应力应变状态,通过计算轧制力矩给出纵向曲率的计算方法。结合柔性轧制建模的模拟结果,分析了凸曲面件和鞍形件在轧制过程中的应力应变分布特征,说明了出现双向弯曲现象的原因,并对理论分析和计算方法的正确性进行了验证。
     (4)柔性轧制成形的应力应变特征
     针对柔性轧制成形的特征和工艺参数做了数值模拟分析。根据成形件的几何特征和双向弯曲变形机理,找出了影响变形的辊弯曲半径、压下量、板厚等工艺参数。结合调形技术与纵横双向的几何关系,分析工艺参数对成形效果的影响,计算出模拟轧制实验时柔性辊轮廓的排布情况。分别对凸曲面件与鞍形件进行有限元数值模拟,对得到的不同成形件进行应力应变分析,找出各成形件应力应变分布情况的区别,进而分析了出现不同形状的原因。
     (5)柔性轧制成形的板形分析
     给出了使用柔性轧制装置进行板料成形实验时某些重要问题的解决方案。对实际的调形工作进行深化分析,并针对柔性辊调形工艺精度问题提出了靠模检验方法。介绍了三维光学扫描仪对实际成形件的处理方法,为成形件的测量提供前提。从横纵双向成形两个方面入手,对模拟成形件进行了板形分析:横向成形分析时,找出了横向的成形规律以及板料厚度变化规律;纵向成形分析时,计算了纵向不同位置的弯曲半径变化趋势,并分析其变化规律。使用上述方法对实际成形件进行了板形分析,并与模拟结果做对比,得出成形规律一致的结论,验证了柔性轧制成形技术的正确性与可行性。
     (6)柔性轧制成形缺陷的数值模拟
     分析了柔性轧制成形过程中出现的起皱和压痕缺陷。针对起皱问题,主要通过对成形件失稳变形的理论分析,总结出起皱时的临界失稳条件,以鞍形件的起皱作为研究对象,通过对柔性辊弯曲半径、最大压下量以及板料厚度等工艺参数的分析,说明各参数对成形件起皱的影响。针对压痕问题,提出了柔性辊调形改进方案,给出柔性辊局部调形方法,以凸曲面件的压痕作为研究对象,说明使用权因子对柔性辊辊形做局部微调能够较好地抑制压痕。介绍了柔性轧制成形的小挠度成形特性,利用曲面光顺性判定准则对成形件成形效果进行分析验证,说明了通过该方法能得到质量较好的成形件。
Flexible roll forming (FRF) is a new process of forming method. Combined withmulti-point forming and roll forming, the basic principle is forming three-dimensionalcurves fast, continuously and efficiently by using flexible rolls, which are composed bythe uneven roll gap. The advantages are to reform the materials utilization rate, to widenthe forming range, to improve the forming effect. FRF can be easy to form thethree-dimensional curves parts, such as convex surface parts, saddle parts, disc parts andtwisted shape parts, etc. Studying the characteristics of FRF and developing the newequipment of FRF have a wider application space market and higher research anddevelopment value.
     In this paper, the finite element model of the flexible roll forming was established,and the model parameters are set for numerical simulation. The stress-straincharacteristics in the forming results have been analyzed. The influence of processparameters on the forming effect has been discussed. Some experiments have beencarried out to verify the plate forming conditions. Defects problem in the process offorming has been studied. Some ideas have been proposed to improve the formingexperiment.
     The main contents and conclusions are summarized as follows:
     (1) The principle and characteristics of FRF
     The principle of FRF and forming equipment were described, and it shows thedifference between FRF and traditional rolling fundamental through the comparativeanalysis. The device and structural characteristics of FRF were introduced. Theadvantage is simple and easy to control, and fast and efficient to form. The shape controltheory was described, and using method of the sole tune-shaped process was proposed.As the theory basis of plate-shaped study, plate-shaped function, forming part thicknessand bidirectional primary curvature radius were deduced by using the geometricrelationship.
     (2) The establishment of the finite element model for FRF
     Proceed from the elastic-plastic finite element solution, mechanical analysis wasperformed by using explicit dynamic finite element method for forming process. Thebasic theory of FRF numerical simulation was introduced, and finite element equationwas given. The finite element model of FRF was established, the related problems in theprocess of solving Model were processed. Experiment and numerical simulation wereperformed to form the convex curved part and the saddle part, and the simulated resultsand experimental results were consistent. It is proved the feasibility of FRF.
     (3) Numerical simulation for the process of FRF
     According to plastic deformation theory, it was explained the reason forthree-dimensional surface parts processing can be completed by F RF. The changes ofelastic-plastic curve were analyzed, and the minimum rolling thickness of the sheet wasdiscussed. The model of FRF was studied with mechanical analysis of stress and strainstate in theory, and longitudinal curvature calculation method was given by calculatingthe relationship of the rolling moment. Combined with the simulation result of FRF,stress and strain distribution characteristics were analyzed in the process of rollingforming parts. It illustrated the reasons for a two-way bending phenomenon and formingthe three-dimensional curves parts, and the correctness of the theoretical analysis andcalculation method was verified.
     (4) The stress and strain characteristics of FRF
     The characteristics and process parameters of FRF were analysis in the numericalsimulation. According to the geometric characteristics of FRF, two-way bendingdeformation mechanism of the forming parts was analyzed, and process parametersaffecting the bending deformation were identified. According to the geometri calrelationship of the adjustment technology and two-way bending, the flexible roll contourwas calculated. Different process parameters were compared as the known conditions tocomplete the simulation experiments. The finite element numerical simulation ofConvex Curves parts and saddle parts were completed, and the results obtained wereanalyzed for stress and strain. Parameter conditions were different, and the results ofstress and strain distribution are also different. It can be able to analyze the c auses ofdifferent shapes sheet.
     (5) The shape analysis of FRF
     Here were some solutions to some important issues when forming experiment byusing the FRF experimental apparatus. Actual adjustment work was calculated detailed,and the inspection method was introduced for the flexible roller adjustment precision of experiment device. The processing method of three-dimensional optical scanner wasintroduced to measure the forming parts. Shape analysis was considered from theforming of transverse and longitudinal bidirectional. The regular was found out for thetransverse forming and the thickness changes, and radius of curvature change trend wascalculated and analyzed for the longitudinal forming. The shape analysis was carried outon the experimental results, which was compared with simulation and obtained similarconclusion. It verified the correctness and feasibility of FRF.
     (6) Numerical simulation of defects for FRF
     The wrinkle defects and indentation defects were analyzed, which were oftenencountered in the process of FRF. The critical condition of wrinkling was summarizedthrough the analysis of forming a buckling deformation theory for wrinkle defects.Through the analysis of process parameters, the influences of the wrinkle on formingparts were interpreted for saddle parts as research subjects. The flexible rollerimprovement program of FRF was put forward to indentation defects, which is themethod of Local adjustment to the shape of flexible roller. Using weight factors tofine-tune flexible roll, indentation defects were able to suppress better for convex curvesparts as research subjects. The characteristics of the small deflection for FRF wereintroduced, and the criteria of surface fairing were used to verify the effect of formingparts. It is proved that the better quality of forming parts can be obtained by using thismethod.
引文
[1] M. Ishiyama, Y. Tango, Y. Nakamura. Studies of plate bending for practical use by computeraided line heating system (in Japanese)[J]. Journal of Society of Naval Architects of Japan,1998,183(6):335-342.
    [2] M. Ishiyama, Y. Tango. Advanced line-heating process for hull-steel assembly [J]. Journal ofShip Production,2000,16(2):121-132.
    [3] Y. Tomita, N. Osawa, K. Hashimoto, et al. Study on heat transfer phenomena between thecombustion flow field and the heating plate during line heating process(in Japanese)[J].Journal of Society of Naval Architects of Japan,2001,190(11):579-587.
    [4] J. Sawamura, Y. Tomita, N. Osawa, et al. Study on combustion analysis in the impinging jetflame during line heating process(in Japanese)[J]. Journal of Society of Naval Architects ofJapan,2001,190(11):589-597.
    [5] J. Sawamura, Y. Tomita, N. Osawa, et al. Study on combustion model and turbulent modelfor thermal flow analysis of impinging jet flame during line heating process(in Japanese)[J].Journal of Society of Naval Architects of Japan,2002,192(11):531-543.
    [6] T. Terasaki, K. Yamaguehi, T. Nomoto, et al. Study on transverse shrinkage and angulardistortion generated by line heating (in Japanese)[J]. Journal of the Society of NavalArchitects of Japan.2003,6(193):65-74.
    [7] J. G. Shin, J. H. Lee, S. K. Park. A numerical thermoplastic analysis of line heatingprocesses for saddle-type shells with the application of an artificial neural network [J].Journal of Ship Production,1999,15(1):10-20.
    [8] J. G. Shin, J. H. Lee. Nondimensionalized relationship between heating conditions andresidual deformations in the line heating process [J]. Journal of Ship Research,2002,46(4):229-238.
    [9]刘玉君,纪卓尚,戴寅生.水火弯板成型参数回归分析[J].中国造船,1994,2(1):65-73.
    [10]刘玉君,王东,纪卓尚,邓燕萍.水火弯板工艺参数优化设计[J].大连理工大学学报,2000,40(2):207-209.
    [11]张雪彪,纪卓尚,刘玉君,邓燕萍.水火弯板工艺参数和角变形关系的有限元分析[J].船舶力学,2008,12(4):607-618.
    [12]齐亮,杨平,张成龙.水火弯板成形因素对钢板表面温度和变形的影响[J].船舶工程,2013,35(6):87-91.
    [13]朱秀莉.水火弯自动加工闭环系统中关键技术研究[D].大连:大连理工大学博士学位论文,2006.
    [14]曾元松,黄遐,李志强.先进喷丸成形技术及其应用与发展[J].塑性工程学报,2006,13(3):23-29.
    [15] Benedetti M, Fontanari V, H hn B R, et al. Influence of shot peening on bending toothfatigue limit of case hardened gears[J]. International journal of fatigue,2002,24(11):1127-1136.
    [16] Nguyen V B, Poh H J, Zhang Y W. Predicting shot peening coverage using multiphasecomputational fluid dynamics simulations[J]. Powder Technology,2014,256:100-112.
    [17] Shukla P P, Swanson P T, Page C J. Laser shock peening and mechanical shot peeningprocesses applicable for the surface treatment of technical grade ceramics: A review[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of EngineeringManufacture,2013:0954405413507250.
    [18] Uematsu Y, Kakiuchi T, Tokaji K, et al. Effects of shot peening on fatigue behavior in hig hspeed steel and cast iron with spheroidal vanadium carbides dispersed withinmartensitic-matrix microstructure[J]. Materials Science and Engineering: A,2013,561:386-393.
    [19]李雁淮,王飞,吕坚,徐可为.单丸粒喷丸模型和多丸粒喷丸模型的有限元模拟[J].西安交通大学学报,2007,41(3):348-352.
    [20]杜建钧,周建忠,张兴权,倪敏熊.金属板料的机械喷丸成形与激光喷丸成形技术[J].电加工与模具,2006(1):4-8
    [21]张兴权.金属板料激光喷丸成形机制研究与数值分析[D].江苏大学,2007.
    [22]凌祥,彭薇薇,倪红芳.喷丸三维残余应力场的有限元模拟[J].机械工程学报,2006,42(8):182-189.
    [23]闫五柱,章刚,温世峰,刘军,岳珠峰.表面粗糙度对喷丸残余应力场的影响[J].材料科学与工艺,2010(4):523-527.
    [24]张洪伟,张以都,吴琼.喷丸强化过程及冲击效应的数值模拟[J].金属学报,2010,46(1):111-117.
    [25]张洪伟,张以都,吴琼.喷丸强化残余应力场三维数值分析[J].航空动力学报,2010,25(3):603-609.
    [26]刘顺洪,方雄,周龙早.三维激光弯曲成形研究的新进展及发展趋势[J].电加工与模具,2003(6):5-9.
    [27] Magee J, Watkins K G, Steen W M. Advances in laser forming[J]. Journal of LaserApplications,1998,10(6):235-246.
    [28] Magee J, Watkins K G, Steen W M, et al. Laser bending of high strength alloys[J]. Journalof Laser Applications,1998,10(4):149-155.
    [29] Kyrsanidi A K, Kermanidis T B, Pantelakis S G. An analytical model for the prediction ofdistortions caused by the laser forming process[J]. Journal of Materials ProcessingTechnology,2000,104(1):94-102.
    [30] Marya M, Edwards G R. A study on the laser forming of near-alpha and metastable betatitanium alloy sheets[J]. Journal of Materials Processing Technology,2001,108(3):376-383.
    [31] Hennige T. Development of irradiation strategies for3D-laser forming[J]. Journal ofMaterials Processing Technology,2000,103(1):102-108.
    [32] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laserforming[J]. International Journal of Machine Tools and Manufacture,2006,46(12):1459-1468.
    [33] Maji K, Pratihar D K, Nath A K. Analysis and synthesis of laser forming process usingneural networks and neuro-fuzzy inference system[J]. Soft Computing,2013,17(5):849-865.
    [34]季忠,吴诗惇,李淼泉.板料激光成形时的温度场研究[J].塑性工程学报,1997,4(2):14-18.
    [35]季忠,王忠雷,焦学健,贾玉玺.板料激光弯曲成形工艺参数优化设计[J].锻压技术,2002,27(6):38-41.
    [36]张鹏,季忠.基于VB和ANSYS接口的板料激光成形有限元分析系统[J].锻压装备与制造技术,2006,41(3):56-59.
    [37]管延锦,孙胜,赵国群,张红梅.激光弯曲成形设备及其闭环成形过程[J].应用激光,2001,21(5):303-305.
    [38]管延锦,孙胜,赵国群,栾贻国.材料性能参数与板料激光弯曲成形角度的相关性研究[J].中国激光,2004,31(4):499-504.
    [39]裴继斌.船用钢板激光弯曲成形机理及成形规律的研究[D].大连理工大学,2008.
    [40]张立文,朱智,顾森东,张建林.单曲率板材激光弯曲成形过程的有限元模拟[J].锻压技术,201,37(001):45-48.
    [41]王续跃,陶春华,许卫星.金属管材激光弯曲成形的扫描路径规划[J].中国激光,2009,35(11):1813-1820.
    [42]松原茂夫.板材の逐次张出し绞り成形[A][J].平成7年度塑性加工春季讲演会论文集.东京:日本塑性加工学会,1995:209-210.
    [43]松原茂夫.ダイレスフオヘン一ミソクとしての数值制御逐次成形法[J].プレス技术,1998,36(10):109-115.
    [44] Jeswiet J, Micari F, Hirt G, et al. Asymmetric single point incremental forming of sheetmetal[J]. CIRP Annals-Manufacturing Technology,2005,54(2):88-114.
    [45]松原茂夫.数値制御逐次成形法[J].塑性と加工,1994,35(406):1258-1263.
    [46] Duflou J, Tunckol Y, Szekeres A, et al. Experimental study o n force measurements for singlepoint incremental forming[J]. Journal of Materials Processing Technology,2007,189(1):65-72.
    [47] Duflou J R, Verbert J, Belkassem B, et al. Process window enhancement for single pointincremental forming through multi-step toolpaths[J]. CIRP Annals-ManufacturingTechnology,2008,57(1):253-256.
    [48] Micari F, Ambrogio G, Filice L. Shape and dimensional accuracy in single point incrementalforming: state of the art and future trends[J]. Journal of Materials Processing Technology,2007,191(1):390-395.
    [49] Fratini L, Ambrogio G, Di Lorenzo R, et al. Influence of mechanical properties of the sheetmaterial on formability in single point incremental forming[J]. CIRP Annals-ManufacturingTechnology,2004,53(1):207-210.
    [50] Ambrogio G, Cozza V, Filice L, et al. An analytical model for improving precision in singlepoint incremental forming[J]. Journal of materials processing technology,2007,191(1):92-95.
    [51] Young D, Jeswiet J. Wall thickness variations in single-point incremental forming[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of EngineeringManufacture,2004,218(11):1453-1459.
    [52] Martins P A F, Bay N, Skj dt M, et al. Theory of single point incremental forming[J]. CIRPAnnals-Manufacturing Technology,2008,57(1):247-252.
    [53]莫健华,丁勇,黄树槐.金属板材数控单点渐进成形加工轨迹优化研究[J].中国机械工程,2004,14(24):2138-2140.
    [54]韦红余,胡铭明,高霖,周晚林.圆锥形渐进成形制件成形精度研究[J].机械工程学报,2010(9):193-198.
    [55]李磊,周晚林.金属板料单点渐进成形极限的数值模拟预测[J].机械工程学报,2010,46(18):102-107.
    [56]崔震,高霖,陆启建.复杂钣金零件渐进成形方法[J].机械工程学报,2008,43(12):235-239.
    [57]肖旭东,王永军,张纪春,魏生民.金属板料点压渐进成形试验与模拟研究[J].机械工程学报,2013,49(16):107-113.
    [58]李湘吉,李明哲,蔡中义,孙云明.板料渐进成形数值模拟与实验研究[J].材料科学与工艺,2009,17(1):66-69.
    [59]李湘吉,李明哲,蔡中义.板料单点渐进成形数值模拟研究[J].锻压技术,2009,34(4):79-83.
    [60]宋修成,陆彬,陈军,王宇乐.板料渐进成形件表面质量的影响因素分析[J].机械工程学报,2013,49(8).
    [61]徐梁,高锦张,贾俐俐,蒋松.渐进成形直壁筒形件圆角缺陷的模拟分析[J].锻压技术,2010,35(3):52-56.
    [62]肖士昌,高锦张,贾俐俐,徐梁.单道次渐进成形锥形件壁厚均匀临界成形角的研究[J].锻压技术,2012,37(1):49-54.
    [63]李军超,毛锋,周杰.板材单点渐进成形工艺数值模拟与成形缺陷研究[J].热加工工艺,2010(5):71-75.
    [64]中岛尚正.针金束を用いた金型o电极の研究[J].日本机械学会志,1969,72(603):32-40.
    [65]西冈富仁雄.ュニバサル多点ブレス法にょる船体外板曲げ作业の自勤化に关する研究(第一报基础の研究)[J].日本造船学会论文集,1972,132:481-501.
    [66]野本敏治,大塚守三,横山保.多点プレス法による船体外板の曲げ加工に関する基礎的研究[J].日本造船学会論文集,1991(170):587-598.
    [67]野本敏治,大塚守三,岡村俊哉.多点プレス法による船体外板の曲げ加工に関する実験的研究[J].日本造船学会論文集,1993(174):635-650.
    [68] Li M, Liu Y, Su S, et al. Multi-point forming: a flexible manufacturing method for a3-dsurface sheet[J]. Journal of Materials Processing Technology,1999,87(1):277-280.
    [69]李明哲,赵晓江.多点分段成形中的几种成形方法[J].中国机械工程,1997,8(1):87-90.
    [70]李明哲,苏世忠.金属板材无模多点成形专用CAD/CAM与CAT软件的开发[J].中国机械工程,1999,10(3):298-300.
    [71] Cai Z Y, Li M Z. Multi-point forming of three-dimensional sheet metal and the control of theforming process[J]. International Journal of Pressure Vessels and Piping,2002,79(4):289-296.
    [72]陈建军,李明哲.多点分段成形技术应用研究[J].哈尔滨工业大学学报,2000,32(4):65-67.
    [73]郝瑞霞,付文智,李明哲.多道次多点成形过程的数值模拟研究[J].塑性工程学报,2006,13(1):18-21.
    [74]李明哲,姚建国.利用多点反复成形法减小回弹的研究[J].塑性工程学报,2000,7(1):22-25.
    [75]付文智,李明哲,严庆光,隋振,金昕.多点成形压力机的反复成形技术研究[J].农业机械学报,2004,35(2):126-128.
    [76]刘纯国,李明哲.大型3维板类件多点闭环成形的研究[J].中国机械工程,2000,11(12):1326-1329.
    [77]李明哲,蔡中义.多点成形金属板材柔性成形的新技术[J].金属成形工艺,2002,20(6):5-9.
    [78]龚学鹏,李明哲,胡志清.连续多点成形设备的研究[J].锻压装备与制造技术,2008,43(1):23-25.
    [79] Zhongyi C, Mingzhe L. Optimum path forming technique for sheet metal and its realizationin multi-point forming[J]. Journal of Materials Processing Technology,2001,110(2):136-141.
    [80] Cai Z Y, Li M Z. Multi-point forming of three-dimensional sheet metal and the control of theforming process[J]. International Journal of Pressure Vessels and Piping,2002,79(4):289-296.
    [81]龚学鹏,李明哲,胡志清.连续多点成形过程中应力应变场数值分析[J].北京理工大学学报,2009,28(12):1043-1047.
    [82]龚学鹏,李明哲,卢启鹏,彭忠琦.连续多点成形中的成形载荷分析[J].光学精密工程,2012,20(6):1288-1295.
    [83]李淑慧,林忠钦,李明哲.板条多点成形中曲率分布及回弹控制的研究[J].机械工程学报,2001,37(11):92-95.
    [84]裴永生,彭加耕,李明哲.多点成形过程中基本体群调形技术[J].机械工程学报,2008,44(1):150-154.
    [85]刘志卫,李明哲,韩奇钢.防皱多点成形及其误差分析[J].机械工程学报,2012,48(12):56-62.
    [86] Qiu N J, Li M Z, Sui Z, et al. Analysis and Synthesis of6-DOF Robot MeasurementErrors[J]. Advanced Materials Research,2013,718:455-459.
    [87]邱宁佳,隋振,李明哲.六自由度机器人空间划线轨迹规划算法[J].吉林大学学报:工学版,2013(5):1307-1313.
    [88]孙刚,李明哲,邓玉山,李湘吉.柔性压边和刚性压边技术在薄板类件多点成形中的对比分析[J].机械工程学报,2008,44(5):147-151.
    [89]谭富星,李明哲,蔡中义.带孔网板数字化多点成形过程中拉裂缺陷的有限元分析[J].机械工程学报,2008,44(6):120-124.
    [90]古川高人.薄板高精度品质制御技术[J]. NKK technical review,1995,152:38-44.
    [91] Fukumura M, Fujikake M, Fujita F. Elastic-plastic finite element simulation of the flatrolling process by dynamic explicit method[J]. NKK technical review,1998(79):8-14.
    [92] Iguchi T, Owen D R J, Liu C Q. Analysis of rolling processes by dynamic explic itelastic-plastic finite element method[C]. Processing of the7th International Conference onSteel Rolling, Chiba, Japan.1998:266-271.
    [93]刘立忠,周旭东.平板轧制咬入阶段非稳定变形的有限元模拟[J].塑性工程学报,2001,8(3):67-70.
    [94] Liu C, Hartley P, Sturgess C E N, et al. Simulation of the cold rolling of strip using anelastic-plastic finite element technique[J]. International journal of mechanical sciences,1985,27(11):829-839.
    [95]喻海良,刘相华,李长生.多道次立-平辊轧制轧件角部金属流动状态有限元模拟[J].东北大学学报(自然科学版),2005,26(10):982-985.
    [96]刘相华,喻海良,李长生.立-平轧制过程轧件角部裂纹的扩展与愈合[J].自然科学进展,2006,16(1):124-124.
    [97]李长生,宋叔尼,梅瑞斌,刘相华.板材轧制过程中快速有限元在线算法[J].机械工程学报,2009,45(6):193-198.
    [98]刘相华,王国栋,吕程.人工智能在板带轧制中的应用[J].1997中国钢铁年会论文集(下),1997.
    [99] Yang G, Mori K, Osakada K. Determination of forming path in three-roll bending usingFEM simulation and fuzzy reasoning[J]. Journal of materials processing technology,1994,45(1):161-166.
    [100] Hansen N E, Jannerup O. Modelling of elastic-plastic bending of beams using a rollerbending machine[J]. Journal of Engineering for Industry,1979,101(3):304-310.
    [101]徐辅仁.导弹壳体板成形曲率与三轴辊卷板机中心辊进给量的数学力学关系[J].兵工学报:弹箭分册,2004(2):57-70.
    [102]郑东强,阎祥安,王国栋,肖聚亮.三辊数控卷板成形过程有限元模拟系统研究[J].组合机床与自动化加工技术,2005(8):23-25.
    [103]陈兰,张新洲,孙宇,常欣,杨树田.大型船用卷板机卷板成形过程的数值模拟[J].锻压技术,2011,36(5):76-80.
    [104] Hua M, Sansome D H, Rao K P, et al. Continuous four-roll plate bending process: Itsbending mechanism and influential parameters[J]. Journal of materials processingtechnology,1994,45(1):181-186.
    [105] Hua M, Baines K, Cole I M. Bending mechanisms, experimental techniques and preliminarytests for the continuous four-roll plate bending process[J]. Journal of materials processingtechnology,1995,48(1):159-172.
    [106] Hua M, Lin Y H. Effect of strain hardening on the continuous four-roll plate edge bendingprocess[J]. Journal of Materials Processing Technology,1999,89:12-18.
    [107]李佳,王国栋,阎祥安,贾安东.大型卷板设备数控系统设计[J].重型机械,2001(6):37-40.
    [108]孙洪江,苏发,胡金平.三辊卷板机卷制任意锥筒的调整计算及卷制过程[J].煤矿机械,2005(8):8-9.
    [109]刘芳华,卢道华,王佳,张礼华.水平下调式三辊数控卷板机的设计[J].中国制造业信息化:学术版,2004,32(12):117-119.
    [110]邢伟荣.卷板机的现状与发展[J].锻压装备与制造技术,2010,45(2):10-16.
    [111]高耀东,何雪.卷板机卷板过程的动态模拟研究[J].中国重型装备,2010(2):4-7.
    [112]李明哲,胡志清,蔡中义.自由曲面工件的连续高效塑性成形方法[J].吉林大学学报:工学版,2007,37(3):489-494.
    [113]龚学鹏,李明哲,胡志清.三维曲面柔性卷板成形技术及其数值模拟[J].北京科技大学学报,2009,30(11):1296-1300.
    [114]龚学鹏,李明哲,胡志清.使用可弯曲辊的三维曲面卷板成形过程数值模拟[J].吉林大学学报:工学版,2008,38(6):1310-1314.
    [115]邓玉山,李明哲,龚学鹏.板厚对三维曲面柔性卷板成形过程影响的数值模拟研究[J].锻压技术,2010,35(4):36-39.
    [116]蔡中义,李明哲,兰英武,胡志清.三维曲面零件连续成形的形状控制[J].吉林大学学报:工学版,2011,41(4):978-983.
    [117]蔡中义,刘林,王少辉,李明哲,曹鋆汇.连续柔性成形过程控制及CAD软件开发[J].中国机械工程,2011,22(8):943-947.
    [118]隋洲,蔡中义,兰英武,李明哲.连续柔性成形三维曲面件的形状控制模型[J].吉林大学学报:工学版,2013(5):1302-1306.
    [119]隋洲,蔡中义,李明哲.连续柔性成形纵向与横向曲率的相互影响[J].塑性工程学报,2013,20(1):117-120.
    [120]王蜜,蔡中义,李明哲.柔性辊曲率及下压量对连续柔性成形曲面件形状的影响[J].塑性工程学报,2013,20(1):27-30.
    [121]孙凌燕.杯形薄壁内齿轮旋压成形机理及工艺优化研究[D].华南理工大学,2010.
    [122] Quigley E, Monaghan J. Metal forming: an analysis of spinning processes[J]. Journal ofMaterials Processing Technology,2000,103(1):114-119.
    [123] Liu J H, Yang H, Li Y Q. A study of the stress and strain distributions of first-passconventional spinning under different roller-traces[J]. Journal of Materials ProcessingTechnology,2002,129(1):326-329.
    [124] Arai H. Robotic Metal Spinning Forming Non-axisymmetric Products Using ForceControl[C]. Robotics and Automation,2005. ICRA2005. Proceedings of the2005IEEEInternational Conference on. IEEE,2005:2691-2696.
    [125] BAI Q, YANG H, Zhan M. Finite element modeling of power spinning of thin-walled shellwith hoop inner rib[J]. Transactions of Nonferrous Metals Society of China,2008,18(1):6-13.
    [126] SUN L, NIE A, HU X, et al. FE numerical simulation of automobile hub spinning formingprocess [J]. Journal of Hefei University of Technology (Natural Science),2008,4:014.
    [127] Akkus N, Kawahara M. An experimental and analytical study on dome forming of seamlessAl tube by spinning process[J]. Journal of materials processing technology,2006,173(2):145-150.
    [128]高西成,康达昌,孟晓峰.薄壁筒收口旋压过程的数值模拟[J].塑性工程学报,1999,6(4):54-57.
    [129]张涛,林刚.碟形容器封头冷旋压过程三给有限元数值分析[J].机械工程学报,2002,38(7):136-139.
    [130]张涛,刘智冲,马世成.旋压成形带内筋筒形件的工艺研究及数值模拟[J].机械工程学报,2007,43(4):109-112.
    [131]李茂盛,康达昌,张士宏,颜永年.滚珠旋压工艺中成形区接触压力的分析计算[J].材料科学与工艺,2004,12(2):125-128.
    [132]夏琴香,张赛军,梁佰祥,任晓龙,阮峰.三维非轴对称偏心类管件旋压成形时的变形力分析[J].机械工程学报,2006,41(10):200-204.
    [133]夏琴香,杨明辉,胡昱,程秀全.杯形薄壁矩形内齿旋压成形数值模拟与试验[J].机械工程学报,2007,42(12):192-196.
    [134]夏琴香,尚越,张帅斌,阮峰.倾斜管件多道次缩径旋压成形的数值模拟及试验[J].机械工程学报,2008,44(8):78-84.
    [135]江树勇,薛克敏,李春峰,张军.基于神经元网络的薄壁筒滚珠旋压成形缺陷诊断[J].锻压技术,2006,31(3):79-83.
    [136]范淑琴,赵升吨,张琦.旋辊参数对双辊夹持旋压成形的影响规律[J].机械工程学报,2012,48(18):60-66.
    [137]范淑琴,赵升吨,张琦,王春辉.直角法兰双辊夹持扩旋成形有限元模型的确定[J].西安交通大学学报,2010,44(5):66-70.
    [138]李明哲,胡志清,蔡中义,龚学鹏.自由曲面工件多点连续成形方法[J].机械工程学报,2008,43(12):155-159.
    [139]龚学鹏,李明哲,胡志清.连续多点旋压成形技术[J].锻造与冲压,2009(11):44-44.
    [140]龚学鹏,李明哲,卢启鹏,彭忠琦.基于多点调形原理的旋转曲面连续成形[J].光学精密工程,2012,20(1):117-123.
    [141]胡志清,李明哲,隋振,关文煜.基于连续多点成形原理的旋压成形技术[J].农业机械学报,2009,40(12):247-250.
    [142]胡志清,李明哲.碟形件新型旋压成形工艺实验研究[J].锻压技术,2010(2):82-85.
    [143] Yamakawa T, Yamashita I. Apparatus for forming plate with a double-curved surface: U.S.Patent4,770,017[P].1988-9-13.
    [144] Yoon S J, Yang D Y. An incremental roll forming process for manufacturing doubly curvedsheets from general quadrilateral sheet blanks with enhanced process features[J]. CIRPAnnals-Manufacturing Technology,2005,54(1):221-224.
    [145] Yoon S J, Yang D Y. Development of a highly flexible incremental roll forming process forthe manufacture of a doubly curved sheet metal[J]. CIRP Annals-Manufacturing Technology,2003,52(1):201-204.
    [146] Shim D S, Yang D Y, Kim K H, et al. Numerical and experimental investigation into coldincremental rolling of doubly curved plates for process design of a new LARS (line arrayroll set) rolling process[J]. CIRP Annals-Manufacturing Technology,2009,58(1):239-242.
    [147] Shim D S, Yang D Y, Kim K H, et al. Investigation into forming sequences for theincremental forming of doubly curved plates using the line array roll set (LARS) process[J].International Journal of Machine Tools and Manufacture,2010,50(2):214-218.
    [148] Cai Z Y, Li M Z, Lan Y W. Three-dimensional sheet metal continuous forming process basedon flexible roll bending: Principle and experiments[J]. Journal of Materials ProcessingTechnology,2012,212(1):120-127.
    [149]王鹏飞,张殿华,刘佳伟,王军生,俞小峰.冷轧板形测量值计算模型的研究与应用[J].机械工程学报,2011,47(004):58-65.
    [150]董永刚,张文志,宋剑锋.钢轨万能轧制过程金属延伸规律的理论与试验研究[J].机械工程学报,2010(6):87-92.
    [151]吉林大学.一种曲面轧制方法.201110368823.6[P].2011-11-19.
    [152]吉林大学.用于板材三维曲面成形的曲面轧制装置和方法.201110368871.5[P].2011-11-19.
    [153]吉林大学.用于板材三维曲面成形的曲面轧制装置.201120461304.X[P].2011-11-19.
    [154]李明哲,蔡中义,李任君,兰英武,邱宁佳.基于弯曲辊轧制的曲面零件连续成形方法[J].机械工程学报,2012,48(14):44-49.
    [155] Cai Z, Li M, Feng Z. Theory and method of optimum path forming for sheet metal[J].Chinese Journal of Aeronautics,2001,14(2):118-122.
    [156] Zhongyi C A I, Xiangji L I, Mingzhe L I. Static Implicit Approach of Springback Simulationfor Sheet Metal Forming[J]. China Mechanical Engineering,2002,17:005.
    [157]蔡中义,李明哲.三维曲面连续辊压成形的力学机制及弯曲变形的计算[J].机械工程学报,2013,49(2):35-41.
    [158] Cai Z Y, Li M Z, Chen X D. Digitized die forming system for sheet metal and springbackminimizing technique[J]. The International Journal of Advanced Manufacturing Technology,2006,28(11-12):1089-1096.
    [159] Li M Z, Cai Z Y, Liu C G. Flexible manufacturing of sheet metal parts based ondigitized-die[J]. Robotics and Computer-Integrated Manufacturing,2007,23(1):107-115.
    [160] Cai Z Y, Li M Z. Principle and theoretical analysis of continuous roll forming forthree-dimensional surface parts[J]. Science China Technological Sciences,2013,56(2):351-358.
    [161] Wang D, Li M, Cai Z. Research on forming precision of flexible rolling method forthree-dimensional surface parts through simulation[J]. The International Journal ofAdvanced Manufacturing Technology,2014:1-11.
    [162] Wang D, Li M, Cai Z. Continuous-forming method for three-dimensional surface partscombining rolling process with multipoint-forming technology[J]. The International Journalof Advanced Manufacturing Technology,2014:1-7.
    [163] Li R J, Li M Z, Qiu N J. Development of flexible rolling device for3D plate[J]. AppliedMechanics and Materials,2013,271:852-857.
    [164] Li R J, Li M Z, Qiu N J, et al. Surface flexible rolling for three-dimensional sheet metalparts[J]. Journal of Materials Processing Technology,2014,214(2):380-389.
    [165]李任君,李明哲,薛鹏飞,蔡中义,邱宁佳.板材曲面柔性轧制方法[J].吉林大学学报:工学版,2013(6):1529-1535.
    [166] Qiu N J, Li M Z, Li R J, et al. Shape Analysis of Three-Dimensional Curve Surface forFlexible Rolling Metal Plate[J]. Advanced Materials Research,2014,834:820-824.
    [167]薛鹏飞.三维曲面柔性轧制成形方法及其数值模拟研究[D].吉林大学,2012.
    [168]王欣桐.三维曲面柔性轧制过程的有限元分析[D].吉林大学,2012.
    [169]孟凡中.弹塑性有限变形理论和有限元方法[M].清华大学出版社,1985.
    [170]时旭.薄带钢冷轧过程的弹塑性有限元模拟[D].东北大学,2005.
    [171]殷有泉.非线性有限元基础[M].北京大学出版社,2007.
    [172] Huo T, Nakamachi E.3D Dynamic Explicit Finite Element Simulation of Sheet Forming,Advanced Technology of Plasticity[J]. Int. Academic Publishers, Beijing, China,1993:1828-1833.
    [173]樊莉,谭南林,沈栋平.基于显式动力学的滚动轴承接触应力有限元分析[J].北京交通大学学报,2006,30(4):109-112.
    [174] Dhatt G, Lefran ois E, Touzot G. Finite element method[M]. John Wiley&Sons,2012.
    [175] Belytschko T, Liu W K, Moran B, et al. Nonlinear finite elements for continua andstructures[M]. John Wiley&Sons,2013.
    [176]龚学鹏.三维曲面板类件的多点滚压成形研究[D].吉林大学,2010.
    [177]钱直睿.多点成形中的几种关键工艺及其数值模拟研究[D].长春:吉林大学,2007.
    [178]喻葭临,于玉贞,张丙印.基于扩展有限元方法的界面接触算法[J].工程力学,2011,28(4):13-17.
    [179]周富强,曹建国,张杰.冷连轧机轧制力在线计算模型[J].北京科技大学学报,2006,28(9):859-862.
    [180]连家创.冷轧薄板轧制压力和极限最小厚度的计算(Ⅱ)[J].重型机械,1979,27(3):21-34.
    [181]连家创,戚向东.板带轧制理论与板形控制理论[M].机械工业出版社,2013.
    [182]刘士光.弹塑性力学基础理论[M].华中科技大学出版社,2008.
    [183] HOU G, NIU X. Perfect elasto-plastic solution of axisymmetric circular openings in rockmass based on Levy-Mises constitutive relation and DP yield criterion[J]. Rock and SoilMechanics,2009,6:005.
    [184]韩志武,聂毓琴,刘才.薄板结构弹塑性大挠度样条有限条分析[J].兵工学报,2002,23(1):94-97.
    [185] Kumar P, Olson M D, Anderson D L. Large deflection elastic‐plastic analysis of cylindricalshells using the finite strip method[J]. International journal for numerical methods inengineering,1991,31(5):837-857.
    [186] Lian J, Duan Z, Lu S. Study on the large deflection buckling deformation for rolled striplosing stability[C].4th international steel rolling conference--the science and technology offlat rolling.1987,2.
    [187]施法中.计算机辅助几何设计与非均匀有理B样条:CAGD&NURBS[M].北京航空航天大学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700