低渗透油层提高采收率实验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗透砂岩储层具有巨大的资源潜力和相对较大的勘探与开发难度。储层渗透率低,自然能量不充足,靠自然能量开采,弹性能量衰竭快,开发水平低。为提高低渗透油田的开发水平,注入气、水向地层补充能量驱替开采是一种自然的思路。但注水压力较高,有些渗透率低的地层注水压力甚至超过地层破裂压力,注水困难;而且注水成本高,渗透率降低严重。注气与注水相比,气体粘度低,与原油粘度相差更大,在地层中更容易发生窜槽等现象。因此本文研究了适合低渗透油藏开发的一种新型驱替方法,即气驱的同时点滴注入水、表面活性水,通过控制气驱点滴体系的气液比以达到形成不同的渗流阻力。不同的渗流阻力注入体系,可以针对不同的低渗透率地层进行注入开发,这种新型驱替方法可以弥补气驱注入波及体积小,指进现象严重,发生气窜现象,阶段采收率低等缺点;可以弥补水驱注入压力高,注入困难等缺点。本文的研究成果不仅加深了解低渗透油藏的开发理论、渗流力学理论,而且对于实际指导低渗透油藏开发、提高低渗透油藏采收率有重大的的学术理论意义和工程实际应用意义。
     全文的研究共分四个部分,下面分别作简要叙述:
     1、气驱驱油机理和气驱驱替压力梯度低于水驱的原因研究
     本部分进行了气驱的驱油机理理论研究。对CO_2,N_2,烃类气体的提高采收率机理进行了剖析,分析了这几种气体在油藏中发生的物理化学变化,并分析气体在油藏中发生混相或非混相的原因和对提高采收率贡献的结果。这部分还对水气交替注入的特点和开采机理作了介绍。结果指出:气体注入不发生混相驱替机理是:有限量的蒸发和抽提、降低原油粘度、原油膨胀、压力下降造成溶解气驱和降低界面张力等;发生混相的气驱主要机理是体积膨胀、粘度降低、溶解气驱、相间界面张力降低、相对渗透率的改善、和井周围地层渗透率的改善等。
     从气体的粘度、气体与原油的界面张力、两相渗透率的角度分析了气体驱替压力梯度小的原因。研究表明:实际油藏中N_2、CH_4、CO_2气体的粘度范围在100~900×10~(-4)mPS之间,驱替不发生混相时,N_2、CH_4、CO_2气驱流度比M远大于1,会发生粘性指进现象,使得波及系数比水驱低,因此气驱宏观压力梯度小与水驱的压力梯度;气体与原油的界面张力小于水与原油的界面张力,相同油藏,气体驱替的压力梯度更低;虽然相同饱和度下气驱的气相相对渗透率低于水驱中水相的相对渗透率,但由于水的粘度比气体粘度大10倍以上,而相对渗透率相差不过2倍左右,相同饱和度下气体比水更容易通过岩心孔道。因此气体驱替时较水驱驱替阻力更小。
     2、气驱点滴水/活性水改变渗流阻力室内实验以及机理研究
     室内研究证明:在无油岩心上,N_2驱替的同时,点滴注入水,可以增加注入相的渗流阻力。气驱点滴注入的过程中,增加点滴注入的频率,可以增加驱替相的宏观压力梯度。采用无量纲压力梯度来衡量渗流阻力的增加值时,本次实验结论:压力上升无量纲最小值在气液比为584:1时为0.103,无量纲最大上升值在气液比为102:1时为0.607;随气液比的降低,压力上升无量纲值增加。点滴频率越快,压力上升无量纲值越大,即渗流阻力越大。点滴注入活性水体系,有同样的规律,但压力上升无量纲值更大。相同点滴频率下,压力上升无量纲值为,点滴水体系小于点滴0.05wt%活性剂溶液体系,小于点滴0.1wt%活性剂溶液体系,小于点滴0.2wt%活性剂溶液体系;相同点滴浓度的体系,气液比越小,压力上升无量纲值越大。
     本次实验结论:在饱和油的岩心上的气驱点滴实验证明,在渗透率为15~19×10~(-3)μm~2的岩心上,单独注水的渗流阻力在气驱点滴0.2wt%活性剂溶液气液比为38:1和气液比32:1之间。气驱点滴水/活性水体系,通过控制气液比可以改变驱替的压力梯度,不同的压力梯度有不同的阶段采出程度,压力梯度越高,阶段采出程度越大。
     气驱点滴体系增加渗流阻力的机理研究表明,低渗透岩心中,气驱点滴水体系有以下特点:由于毛管力的作用产生的指向岩石壁的压力p_I所造成的摩擦力和薄膜所造成的摩擦力;非混相气体有更大气水表面张力而产生更大的阻力;当毛管中液体要运动时,会产生一个附加阻力p_(II);当液珠进入到狭窄喉道时,产生第三种毛管效应附加阻力p_(III)。气体点滴活性水体系,同样可以产生p_(II), p_(III)附加阻力,增大体系的渗流阻力。
     3、低渗透油层聚合物驱可行性研究
     在聚合物溶液的驱油机理研究基础上,开展了渗透率为10~50×10~(-3)μm~2的岩心流动实验。实验结果证明:随着聚合物相对分子质量、聚合物浓度的增大,阻力系数和残余阻力系数增大。选择的400万和600万分子量的聚合物,浓度为600mg/L和800mg/L在10、30、50×10~(-3)μm~2的岩心上均为发生堵塞,说明实际油藏开发时,在地层压力允许的条件下,低渗透油藏可以采用聚合物驱进行开发。
     4、不同驱替方法下的渗流阻力计算匹配研究
     从低渗透岩心的启动压力梯度方向研究表明:由水油、气油两相驱替的最大启动压力梯度,结合地层破裂压力、井距可以确定水驱、气驱适合的最低渗透率地层。适合气驱、水驱的最低渗透率范围内,确定为适合气驱点滴水/活性水驱的渗透率范围;确定方法为:通过气驱点滴不同配方的实验确定点滴体系与油的最大启动压力梯度,根据压力梯度来确定不同配方对应的渗透率范围。
     验证聚合物驱是否适合的方法为:根据孔隙半径与聚合物分子回旋半径的比值关系,选取适合聚合物种类;开展流动实验,选取不发生堵塞的聚合物;在上面结果上,开展不同分子量聚合物驱油启动压力实验,最后确定聚合物的种类和浓度。
Low permeable sandstone reservoir has enormous reserves ,but it is more difficult to be explored and developed than nonmal reservoir. Because the low permeable sandstone reservoir has some features as follows: low permeability, lacking of natural power in reservoir, elastic energy decreasing fast when developing with natural power, low oil recovery. For enhance oil recovery of low permeable reservoir, gas or water is injected to layer to make up power of reservoir.Pressure of waterflooding is higher than breakdown pressure of stone in some lower permeable reservoir, it is not only expensive but hard to carry out water flooding. And after injection of water, the permeability went down sharply in low permeable reservoir. Compare with water flooding, it was lower viscosity of gas than water, the viscosity of gas was far from oil, so phenomenon of bypass channel happen often.This paper make a research of a new displacement technique which is gas flooding with liquid(water or surfactant solution) droping ,and it will apply to low permeable reservoir. This flooding system can chance filtrational resistance at will by adjusting gas fluid ratio. The different filtrational resistance flooding system can apply to develop different permeability reservoir, and the system can improve problems, which were small swepting volume and finger advance and lower period oil recovery, of gas flooding; it can make up both higt pressure and difficult of water flooding as well. The research result of this paper is not only to make deeply understanding of low permeable reservoirs develop theory and filtration theory, but also to have a enormous meaning of both technicality and engineering with conducting oilfield developing and enhanve oil recovery in low permeable reservoirs.
     There are four parts in this dissertation, brief introduce as follows:
     1.The mechanism of gas flooding and why pressure gradient of gas flooding is low than water flooding.
     This part conduct a gas flooding mechanism research. The research is about recovery of CO_2,N_2,gaseous hydrocarbon flooding, analyse physical and chemic changing of some kind gas above injecting to reservoir, and the reason and effect in oil recovery of miscible phase happen or not happen between gas and oil. This part have introduced the feature and mechanism of WAG yet. It is shown that: the mechanisms of non-miscible phase gas flooding are that limited gas evaporating and extracting from oil, decreasing oil viscosity, oil expanding, gas extracting from oil after pressure low than bubble point pressure, decreasing interfacial tension force etc. the mechanisms of miscible phase gas flooding are that volume swelling, decreasing oil viscosity, gas extracting from oil after pressure low than bubble point pressure, decreasing interfacial tension force, improving relative permeability and imprving permealility near around well etc.
     The gas flooding pressure gradient is low than water flooding was analysed from gas viscosity, the IFT between gas and oil, two-phase permeability. It is shown that: the viscosity spectrum of N_2、CH_4、CO_2 is 100~900×10~(-4)mPS, N_2、CH_4、CO_2 gas flooding’s mobility ratio is more than 1 when non-miscible phase happened, because of that, the sweep efficiency of gas flooding is less than water flooding, so at same reservior, the pressure gradient of gas flooding is more lower. Gas-phase’s relative permeability in gas flooding is lower than water-phase’s relative permeability in water flooding at same oil saturation, but gas is easy to go through porous channel than water at same oil saturation, because the viscosity of water is 10 times bigger than that of gas, and gas relative permeability is only 2 times smaller than that of water.
     2.The experiment and mechanism research on gas flooding with water/surfactant solution dropping changing filtrational resistance
     The finished experimental results, which was completed once, of non-oil saturated experiment research in room are that: N_2 gas flooding with water dropping system can increase filtrational resistance. The injecting system pressure gardient went up when increase frequency of dropping water. Use zero dimention pressure gradient to measure filtrational resistance, the least zero dimention pressure gradient is 0.103 when gas fluid ratio is 584:1, the biggest zero dimention pressure gradient is 0.607 when gas fluid ratio is 102:1. The least zero dimention pressure gradient increase by gas fluid ratio decreasing. The faster frequence of dropping, the bigger zero dimention pressure gradient increasing value. That mean more filtrational resistance were produced. It were same rules when gas flooding with dropping surfactant soultion. Moreover, it is more bigger zero dimention pressure gradient increasing value. At same dropping frequence, the zero dimention pressure gradient increasing values sorted form samll to big were that dropping water, dropping 0.05wt% surfactant solution, dropping 0.1wt% surfactant solution, dropping 0.2wt% surfactant solution. There is a rule that the samller gas fluid ratio, the bigger zero dimention pressure gradient increasing value.
     The results of oil saturated experiment research in room are that: experiments were taken on 15~19×10~(-3)μm~2 artificial core. The filtrational resistance of water flooding is near same to gas flooding dropping 0.2wt% surfactant solution at gas fluid ratio between 38:1 to 32:1. The dropping system can chance filtrational resistance at will by control gas fluid ratio. There are different period oil recovery when different pressrue gradient flooding. The bigger pressure gradient, the bigger period oil recovery.
     The results of mechanism research of dropping system are that: at low permeable reservoir, gas flooding droping system have some feature as follows: there is a force p_I point to wall of pore,which caused by capillary force.The p_I and film of bubble can bring a friction force. Non-miscible phase gas meet water have bigger IFT, it can produce bigger resistance force. When the liquid is going to move, there is a new resistance force p_(II) pop up. When liquid dropping move to narrow throat, a new resistance force p_(III) was shown. It is same that when gas flooding with dropping surfactant solution, there are also p_(II), p_(III).
     3.Research on incresing filtrational resistance of Polymer flooding
     Base on flooding oil mechanism of HPAM, there are some flooding experiment on 10~50×10~(-3)μm~2 were carried on. It is shown that: coefficient of resistance and residual resistance factor increase by incresing polymer molecular weight or concentration. It did not block when inject 400×104 and 600×10~4 polymer molecular weight at concentration of 600mg/L and 800mg/L to 10、30、50×10~(-3)μm~2 artificial core. So some low permeable reservoirs can flooding by HPAM.
     4.Research on filtrational resistance of different way flooding calculate corresponding to different permeablitity.
     Results of research on threshold pressure gradient of low permeability are that: Base on the biggest water-oil and gas-oil threshold pressure, breakdown pressure and distance between wells, it can be calculated that the least permeability fitting for gas or water flooding. Between gas and water flooding fitting permeability area, it fit for gas flooding with drop water or surfactant solution. The way of connect different dropping system to different permeability: To make it clear that the biggest threshold pressure gradient dropping system and oil, base on threshold pressure gradient, figure out this dropping system fit what permeability.
     To prove it is fitting or not that polymer flooding in different permeable reservoir: calculate the ratio of pore body radius and molecule circle round of polymer, make sure the ratio is rational, base on that to slect polymer; conduct flowing experiments, screen out non-block polymer system; after that, carry on different concentration threshold pressure gradient experiment, final figure out which polyer at how many concentration is suitable.
引文
[1]延吉生,孟英峰.我国低渗透油气资源开发中的问题和技术需求[J].西南石油学院学报,2004,26(5):46~50
    [2]李凤杰,王多云.郑希民等.陕甘宁盆地华池地区延长组缓坡带三角洲前缘的微相构成[J].沉积学报,2002,4(20):582~587.
    [3]王渝明,庞颜民,杨树锋等.基于启动压力梯度的低渗透砂岩储层分类研究[J].高校地质学报,2005,11(4):617~621
    [4]朱义吾,徐安新,吕旭明等.长庆油田延安组油层光刻显微孔隙模型水驱油研究[J].石油学报,1989,10(3):40~47
    [5]李德生、重新认识鄂尔多斯盆地油气地质学[J].石油勘探与开发,2004,31(6):l~6
    [6]李道品等.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003:3~8
    [7]李道品等.低渗透油田概念及我国储量分布状况[J].低渗透油气田,vol1(1),1997
    [8]苏海芳编,国内外低渗透油田开发技术调研[C].胜利油田2003年低渗透油藏开发技术座谈会
    [9]罗蛰潭、王允成.油气储集层的孔隙结构[M].北京:科学出版社,1986
    [10]邱勇松.低渗透油藏渗流机理及开发技术研究[D].中科院博士生论文
    [11]裘怪楠、刘雨芬等编著.低渗透砂岩油藏开发模式[M].北京:石油工业出版社,1999
    [12]黄延章等.低渗透油层渗流机理[M].北京:石油工业出版社,1998
    [13]李道品等.低渗透油田开发[M].北京:石油工业出版社,1997
    [14]阎庆来.单相均质液体低速渗流机理及流动规律[C].第二界全国流体力学学术会议论文集:北京,科学出版社,1983年
    [15]阎庆来等.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院院报,1990,5(2):1~6
    [16]刘建军,刘先贵.裂缝性低渗透油藏流一固祸合理论与数值模拟[J].力学学报,2002,34(5)
    [17]杨正明等.低渗透裂缝性油藏渗流机理研究及其数学模型[J].江汉石油学院学报,2001,23(1)
    [18]Davies, D. R. et al.水力压裂开发油FIB:高技术成功之路[C].SPE22392:第四次国际石油工程会议论文
    [19]李青,金东明等.低产油井提捞采油技术研究与应用[J].石油规划设计.1999,10(2)
    [20]胡博仲等.大庆长垣外围低渗透油田开采配套工艺技术[C].低渗透油田开发技术一全国低渗透油田开发技术座谈会论文选.北京:石油工业出版社,1994
    [21] Holm, L.W. AND Josendal, V.A.: Mechanisms of Oil Displacement by Carbon Dioxide, J.Pet. Tech. (Dec. 1974) 1427-36; Trans., AIME, 257.
    [22] Holm, L.W. AND Josendal, V.A.: Effect of Oil Composition on Misible-Type Displacement by Carbon Dioxide, Soc. Pet. Eng. J. (Feb. 1982) 87-98.
    [23] Yellig, W.F. and Metcalfe, R.S.: Determination and Prediction of CO2 Minimum Misciblitity Presssures, J. Pet. Tech. (Jan. 1980) 160-65.
    [24]Mungan,N.:Carbon Dioxide Flooding-Fundamentals,J.Cdn.Tech.(Jan.-March 1981)87-92.
    [25]Warner,H.R.:An Evaluation of Miscible CO2 Flooding in Waterflooded Sandstone Reservoirs, J. Pet. Tech. (Oct. 1977) 1339-47.
    [26]R.E.Hadlow,Exxon Co. USA, Update of Industry Experience with CO2 Injection,SPE24928, paper for presentation at the 6T" Annual Technical Conference and exhibition held in Washington, DC, October, 4-7 1992.
    [27]Vega Sankur and A. S. Emanuel, A Laboratory Study of Heavy Oil Recovery with CO2 Injection, SPE11692 paper for presentation at the 1983 Galifornia Regional Meeting held in Ventura, DC, Galifornia March 23-25 1983.
    [28]Abdassah, Siregar, and Kristanto. The Potential of Carbon Dioxide Gas Iejection Application in Improving Oil Recovery, SPE64730, paper for presentation at the SPE Seventh Oil and Gas Confence and Exhibition held in Beijing, China, 7-10 November 2000.
    [29]Kamal Morsi, John Leslie, and Doug Macdonald, CO2 Recovery and Utilization for EOR, SPE88641 paper for presentation at the 11 t" Abu Dhabi international petroleum exhibition and conference held in Abu Dhabi, U. A. E., 10-13 October 2004.
    [30]B.Li and F.Friedmann. A Novel Response Surface Methodology Based on "Amplitude Factor" Analysis for Model Nonlinear Responses Caused by both Reservoir and Controllable Factors. SPE 95283
    [31]P.J. van den Hoek, Shell Int1.E&P.B.V.A Simple and Accurate Description of Nonlinear Fluid Leakoff in High-Permeability Fracturing. SPE 77183
    [32]A.Vakili,J.D.Jansen,C.P.J.W van Kruijsdijk. On the Adjoint of a Nonlinear Diffusion-Convection Equation to Describe Flow in Porous Media. SPE 93556
    [33]Fair.P.S. Investigation of Diffusivity Equation with General Pressure-Dependent Rock and Fluid Properties as Applied to Well Testing. SPE 24409
    [34]赵辉.低渗透油藏非线性渗流理论及其应用[D],大庆石油学院硕士学位论文,2006.
    [35]T.Heijin, R.Markovinovic, J.D.Jansen. Generation of Low-Order Reservoir Models Using System Theoretical Concepts. SPE 79674
    [36]吴景春改善低渗透油藏注水开发效果技术及机理研究[D]大庆石油学院博士学位论文, 2002.
    [37]吕成远,等.低渗透砂岩油藏渗流启动压力梯度实验研究[J].石油勘探与开发,2002,29 (2) .
    [38]吴景春,等.大庆东部低渗透油藏单相流体低速非达西渗流特征[J].大庆石油学院学报,1999 ,23 (2) .
    [39]阮敏,等.低渗透非达西渗流综合判据初探[J].西安石油学院学报,1999 ,4 (4) .
    [40]阮敏,等.低渗透非达西渗流临界点及临界参数判别法[J].西安石油学院学报,1999 ,14 (3) .
    [41]刘曰武,等.确定低渗透油藏启动压力梯度的三种方法[J].油气井测试,2002 ,11 (4) .
    [42]贾振岐,王延峰,付俊林等.低渗低速非达西渗流特征及影响因素[J].人庆石油学院学报,2001,25(3):73-76
    [43]孙守港,贾庆升,宋月一,等.低渗透油藏注气提高采收率配套技术[J].油气地质与采收率,2002,9(2): 28-30.
    [44]吴元.CO2提高采收率技术的新进展给中小油田带来经济效益[J].小型油气藏,1996,1(2):52-53.
    [45]罗景琪,陈学周.继注水后向轻质油油藏注空气的探索[J].石油钻采工艺,1996,18(4):68-74. [46赵炜1996译自Petroleum Engineer International .1995,(10).实施水和气交替注入措施可最大限度地提高油气藏可采储量[C],世界石油工业,1996,3(10):52~55.
    [47]A.A.Zick:“A Combined Condensing/Vaporizing Mechanism in the Displacement of Oil by Enriched Gases”.paper SPE 15493,1986.
    [48]Z.Novosad and T.G Costain,“Mechanisms of Miscibility Development in Hydrocarbon Gas Drives: New Interpretation.". paper SPE 16717,1987.
    [49]F.I. Stalkup:“Effect of Gas Enrichment and Numerical Dispersion on Compositional Simulator Predictions of Oil Recovery in Reservoir Condensing and Condensingl Vaporizing Gas Drives". paper SPE18060.1988
    [50]S.T.Lee et al:“Analysis of Mass Transfer Mechanisms Occurring in Rich Gas Displacement Process“.Paper SPE18062.1998
    [51]Shen Pingping:“In-Door Study of Hydrocarbon Miscible Flooding Cases”. paper SPE50917,1998.
    [52]沈平平,施文.烃类混相驱的室内研究[C].世界石油工业,1998.5
    [53] K.Jessen,“Gas Cycling and the Development of Miscibility in Condensate Reservoir",paper SPE 84070,2003
    [54]李士伦,张正卿,冉新权等.注气提高石油采收率技术[M].成都:四川科学技术出版社,2001. 11
    [55]庞彦明等编译,国外油田注气开发实例[M],石油工业出版社,2001. 4
    [56]Kuo,J.World’s largest N2-generation plant starts up for cantarell reservoir pressure maintenance[J] .Oil Gas J,2001,99(11):41-47
    [57]郭平,刘建仪等.提高采收率的注气实验评价体系[J].新疆石油地质,2002, 023(005):408-410
    [58]郭平,彭鹏商.不同种类气体注入对原油物性的影响研究[J]西南石油学院学报,2000, 22 (3):57-60
    [59]曹贤辉,彭鹏商等.中原油田低渗透油藏氮气驱矿场先导试验[J].大庆石油地质与开发,2002, 021(003) : 68-69
    [60]刘萍,赵忠贤等.卫42块特低渗透油藏氮气驱研究[J].江汉石油学院学报,2001,023 (002) 29:58-60
    [61]Mungan N. High pressure nitrogen injection for miscible/immiscible enhanced oil recovery. SPE 81008
    [62] Mungan N. Enhanced oil recovery with high pressure nitrogen injection. SPE 62547
    [63]Boersma D.M. Displacement characteristics of nitrogen vs.methane flooding in volatile-oil reservoir. SPE20187
    [64]Taber J.J. FOR screening criteria revisited. SPE/DOE 35385
    [65]Arevalo.V J.A. On the exploitation conditions of the Akal reservoir consideringgas cap nitrogen injection. SPE 35319
    [66]R桑德拉, R F尼尔森合著.油藏注气开采动力学[M].张晓宜译.北京:石油工业出版社,1987.1~200.
    [67]MOHAMMED R F ,KEVIN O M. Low temperature oxidation of viscous crude oils[J].SPE Reservoir Engineering,1990,5 (4):609-616.
    [68]庞彦明,郭洪岩等.国外油田注气开发实例[M],石油工业出版社,2001.4
    [69]李士伦等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002年4月
    [70]谭光天.注烃混相驱提高石油采收率机理及其在葡北油田应用研究[D].西南石油学院博士论文.2005.
    [71]李士伦,周守信,杜建芬等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002.(02)
    [72]Ganesan Nadeson, Nor Aidil B Anua, Dr.Ashok Singhal. "Water-Alternating-Gas (WAG) Pilot Implementation, A First FOR Development Project in Dulang Field, Offshore Peninsular Malaysia", SPE88499, SPE Asia Pacific Oil and Conference, 18-20 October 2004.
    [73]Manrique E.,Calderon G.,Mayo L. and Stiripe M. T.,"Water-Alternating-Gas Flooding in Venezuela:Selection of Candidates Based on Screening Criteria of International Field Experiences", SPE 50645,SPE European Petroleum Conference, October 1998.
    [74]郭平,罗玉琼,何建华等.注水开发油田进行注气开发的可行性研究[J].西南油学院学报.第25卷,第4期.2003年8月:37-40.
    [75]徐艳梅.水驱-聚驱后气水交替提高采收率研究[D],西南石油学院硕士研究生论文.2005.
    [76]李孟涛.低渗透油田注气驱油实验和渗流机理研究[D].中科院渗流力学研究所博士学位论文.2005.
    [77]王瑞飞.低渗砂岩储层微观特征及物性演化研究[D].西北大学博士学位论文.2005.
    [78]曹瑞波,丁志红,刘海龙等.低渗透油层聚合物驱渗透率界限及驱油效果实验研究[J].大庆石油地质与开发,2005(10).
    [79]卢祥国,高振环.聚合物分子量与岩心渗透率配伍性—孔隙喉道半径与聚合物分子线团回旋半径比[J].油田化学,1996,13(1):72~75
    [80]王玉普,罗健辉,卜若颖,王平美,刘玉章,梳形KYPAM抗盐聚合物在油田中的应用[J],化工进展, 2003,22(5): 508-511
    [81]姜言里等.聚合物驱油最佳技术条件优选[M].北京:石油工业出版社,1994,51-60
    [82]姜言里等.聚合物驱油经济最佳用量的优选[J].大庆石油地质与开发,1995,14(3),46-51
    [83]韩培慧,董志林,张庆茹.聚合物驱油合理用量的选择[J].大庆石油地质与开发,1999,18(1),40-41
    [84]隋军,廖广志,牛金刚.大庆油田聚合物驱油动态特征及驱油效果影响因素分析[J].大庆石油地质与开发,1999,18(5),16-20
    [85]程杰成,王德民,吴军政,李群等.驱油用聚合物的分子量优选[J].石油学报,2000,21(1),102-106
    [86]R. S. Seright. The Effects of Mechanical Degradation and Viscoelastic Behavior on Injectivity of Polyacrylamide Solutions[R]. SPE,June 1983
    [87]Dunleavy, et al. Process for Restoring the Permeability of a Subterranean Formation[M]. US5,038,864
    [88]Ferrell, et al. Polymer Flood Filtration Improvement[M]. US4,212,748
    [89]Miller, et al. Surfactant Enhanced Injectivity of Xanthan Mobility Control Solutions for Tertiary Oil Recovery[M]. US4,406,798
    [90]Yang. Process for Reducing Polymer Plugging during Polymer Injection into Oil Reservoir[M]. US4,662,444
    [91]韩冬,韩大匡,杨普华.一种提高油藏聚合物注入能力的方法[M].CN1144256A
    [92]杨付林,聚合物驱油机理及高质量浓度聚合物驱油方法的研究[D],大庆石油学院博士学位论文,2004年
    [93]姜海峰,粘弹性聚合物驱提高驱油效率机理的实验研究[D],大庆石油学院博士学位论文,2008年
    [94]Amaefule, J. O., et al. The Effect of Interfacial Tensions on Relative Oil/Water Permeabilities of Consolidated Porous Media. SPEJ (June 1982) 371.
    [95]Leverett, M. C.: "Flow of Oil-Water Mixtures Through consolidated Sands," Trans., AIME (1939)132, 149-171.
    [96]Mungan, N.: "interfacial Effects in Immiscible Liquid-Liquid acement on Porous Media," Soc. Pet. Eng. J. (June 1966) 247-253.
    [97] Batycky, J. P. and McCaffery, F. G.: "Low Interfacial Tension Displacement Studies," paper 78.29.26 presented at the Petroleum Soc. of CIM, 29th Annual Technical Meeting, Calgary, June l3-16, 1978.
    [98]Bardon, C. and Longeron, D.: "Influence of Very Low Interfacial Tensions on Relative Permeability," Soc. Pet. Eng. J. (Oct. 1980) 391-401.
    [99]孙守港,贾庆升,宋月一,等.低渗透油藏注气提高采收率配套技术[J].油气地质与采收率,2002,9(2): 28-30.
    [100]吴元.CO2提高采收率技术的新进展给中小油田带来经济效益[J].小型油气藏,1996, 1(2):52-53.
    [101]小斯托卡F I .混相驱开发油田[M].北京石油工业出版社,1989
    [102]杨承志,岳清山.混相驱提高石油采收率(上册)[M].北京石油工业出版社,1991
    [103]高振环,刘中春,杜兴家.油田注气开采技术[M].北京石油工业出版社,1994
    [104]郭平;孙雷;孙良田等.不同种类气体注入对原油物性的影响研究[J].西南石油学院学报.2000,8(3) vol.22
    [105] M. A.克林斯,程绍进译.二氧化碳驱油机理及工程设计[M].北京.石油工业出版社,1989:82-138.
    [106]Pozzi, A. L. and Blackwell, R. J.: Design of laboratory models for study of miscible displacement, Soc. Pet. Eng. (March 1963) 28-40; Trans., AIME, 228.
    [107]何秋轩,王志伟.低渗透油田注气开发的探讨[J].油气地质与采收率,2002,9(6): 38-40.
    [108]程诗胜,刘松林,朱苏清.单井CO:吞吐增油机理及推广应用[J].油气田地面工程,2003, 22(10):16-17.
    [109]Tiffin, D.L.: Effects of mobile water on multiple contact miscible gas displacement, paper SPE 10687 presented at the 1982 SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, April 4-7.
    [110]Hutchinson, C.A. Jr. and Braun, P.H.:Phase relations of miscible displacement in oil recovery, AICHEJ. (1961) 7, 64-72.
    [111]Yellig, W.F.: Carbon Dioxide displacement of a West Texas reservoir oil, paper SPE 9785 presented at the 1981 SPE,DOE Enhanced Oil Recovery Symposium, Tulsa, April 5-8.
    [112]Bossier, R.B. and Crawford, P.B. Miscible-phase floods may precipitate asphalt,Oil and Gas J. (Feb. 23, 1959) 57, 137-45.
    [113]Stalkup, F.L: Carbon Dioxide miscible flooding: past, present, and outlook for the future, J. Pet. Tech. (Aug. 1978) 1102-12.
    [114]Metcalfe, R.S. and Yarborough, L.:Effect of phase equilibria on the CO2 Displacement Mechanisms, Soc. Pet. Eng. J. (AUG. 1979) 242-52.
    [115]Peterson, A. V.: Optimal recovery experiments with N2 and CO2, Pet. Eng. (Nov.1978) 40-50.
    [116]"U.S.Pushes Enhanced-Recovery Effort,”International Petroleum Encyclopedia, Petroleum Publishing Co.: Tulsa (1977) 282-94.
    [117]"New miscible method due tryout in 'Texas,”Oil and Gas J. (April. 4, 1960) 74.
    [118] "Steam dominates enhanced oil recovery," Oil and Gas J. (April. 5, 1982) 139.
    [119]杨振骄编译.混相驱油机理研究及应用前景展望[J].油气采收率技术,1998年,5(1): 69-74.
    [120]郭万奎,廖广志,邵振波,等.注气提高采收率技术[M].北京:石油工业出版社,2003.
    [121] Nelson,L.C.and E.F.Obert: Trans.ASME,76:1057(1954)
    [122]Chapman,S., and T.G. Cowling: The Mathematical Theory of Nonuniform Gases Cambridge, New York,1939
    [123]Dullien, F.A.L.,Ed., Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, 1979.
    [124]Kozeny,J. ,Uber Kapillare Leitung des Wassersim Boden,sitzungsber, Akad. Wiss.Wien .Math.Naturwiss.KL.Abt.2A,136,271,1927
    [125]Purcell, W.R., Capillary pressures—their measurement using mercury and the calculation of permeability there from, Trans, AIME, 186,39,1949
    [126]Rose, W. D.and Bruce, W.a., Evaluation fo capillary character in petroleum reservoir rock, Trans. AIME, 186,127,1949
    [127]Land C.S., Calculation of imbibition relatiov permeability for two-and three-phase flow from rock properties , Soc, pet. Eng. J., 6,149,1968
    [128]Rapoport, L.A. and Leas, W. J. ,Relative permeability to liquid in liquid-gas system, Trans. AIAM, 192,83,1951
    [129]Gates,J,I. and Leitz, W.J., Relative permeabilities of California cores by the capillary pressure method, paper presented at the API Meeting, Los Angeles, California, may 11,1950,286
    [130]Fulcher, R.A., Ertekin, T., and Stahl,C.D., Effect of capillary number and its constituents on twophase relative permeabiltity curves, J. Pet Technol.,2,249,1985.
    [131]Fatt,I. and Dykstra H., Relative Permeability studies, Trans,AIME.192,249,1951
    [132]Burdine,N.T., Relative permeability calculations form pore size distribution data,Trans.AIME,222,61,1961
    [133]Wyllic,M.R.J. and Sprangler, M. B., Application of electrical resistility measurements to problems of flow in porous media, Bull.AAPG,36,359,1952.
    [134]Wyllie,M.R.J. and Gardner, G. H. F., The generalized Kozeny-Carmen equation, its application to problems of multi-phase flow in porous media. World Oil. 146,121,1958.
    [135]Timmerman,E.H. ,Ed., Practical Reservoir Engineering, Penwell Pub. 101,1982.
    [136]Corey,A.T., The interrelation between gas and oil relative permeability, Trans.AIME,207,358,1956.
    [137]Corey,A.T. and Rathjens,C.H., Effect of stratification on relative permeability, Trans.AIME,207,358,1956
    [138]蒲万芬,彭陶钧,龚蔚等.自生泡沫驱油机理研究[J].大庆石油地质与开发,2008.4(2)vol.27
    [139]Leverett,M.S. and Lewis, W.B., Steady flow of gas-oil-water mixtures through uncosolidated sands, Trans, AIME, 142,107,1941.
    [140]Corey,A.T., Rathjens,C.H., Henderson, J.H., and Wyllie, M.R.J., Three-phase relative permeability, Trans, AIME,207,349,1956.
    [141]Demin Wang, Jiecheng Cheng, Qingyan Yang, Wenchao Gong, Qun Li, Fuming Chen. Viscous-elastic polymer can increase displacement efficiency in cores[R], SPE63227 presented at SPE Annual Technical Conference and Exhibition, 1-4 October 2000, Dallas, Texas
    [142]郭尚平.物理化学渗流微观机理[M].科学出版社
    [143]R. Seright, et al. X-Ray computed microtomography studies of fluid partitioning in drainage and imbibition before and after gel placement: Disproportionate permeability peduction[J]. SPE Journal, June 2006
    [144]王德民,王刚,吴文祥,等.黏弹性驱替液所产生的微观力对驱油效率的影响[J].西安石油大学学报(自然科学版),2008,23(1):43-55
    [145]Hongjun Yin, Demin Wang, Huiying Zhong. Study of Flow Behavior of Viscoelastic Polymer Solution in Micropore with Dead End[R], SPE 101950
    [146]夏惠芬,王德民,刘中春,杨清彦.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-65
    [147]夏惠芬.粘弹性聚合物溶液在油藏中的流动及提高微观驱油效率的机理[D].大庆石油学院博士论文, 2001
    [148]夏惠芬,王德民,侯吉瑞,辛全刚,刘义坤,聚合物溶液的粘弹性对驱油效率的影响田[J].大庆石油学院学报,2002,21(2):108-111
    [149]王德民,王刚,吴文祥,等.黏弹性驱替液所产生的微观力对驱油效率的影响[J].西安石油大学学报(自然科学版),2008,23(1):43-55
    [150]Huifen Xia, Ye Ju, Fanshun Kong. Effect of elastic behavior of HPAM solutions on displacement efficiency under mixed wettability conditions[R], SPE90234 presented ant the SPE Asia Pacific Oil and Gas Conference and Exhibition held in Perth Australia, 17-20 October 2004
    [151]A.E.薛定愕[奥]著,王鸿勋译,多孔介质中的渗流物理[M],北京,石油工业出版社,1984;
    [152]尚根华.低渗透非线性渗流规律研究[D].中科院博士研究生学位论文.2004,6
    [153]邓英尔等,界面分子力作用与渗透率的关系及其对渗流的影响[J],石油勘探与开发,25(2),1998, 6
    [154]戈尔布诺夫,A.T.(著),张树宝(译),异常油田开发[M],石油工业出版社(北京),1987.
    [155]何秋轩,阮.敏,王志伟,低渗透油藏注水开发的生产特征及影响因素[J],油气地质与采收率,9 (2), 2002, 4.
    [156]中国石油天然气总公司开发生产局,低渗透油田开发技术[M],北京:石油工业出版社,1994.
    [157]王端平,时佃海,李相远,陈光梅,低渗透砂岩油藏开发主要矛盾机理及合理井距分析[J],石油勘探与开发,30 (2), 2003, 2.
    [158]夏惠芬,低渗透油田开采工艺技术[M],北京,石油工业出版社,1996
    [159]何晓东.改善裂缝性油藏水驱效果的一种方法[J],江苏石油勘探与开发,17(1),1996,3.
    [160]刘炳官,CO2吞吐法在低渗透油藏的试验[J],特种油气藏,3(2).1996,6.
    [161]Colins M., A laboratory investigation of foam flow in low-permeability Bereasandstone cores pp261-270,SPE 37416,1997
    [162]郝斐,程林松,李春兰等.特低渗透油藏启动压力梯度研究[J].西南石油学院学报.2006,12(6).vol 28.
    [163]邓英尔,阎庆来,马宝岐.界面分子力作用与渗透率的关系及其对渗流的影响[J].石油勘探与开发,1998,25 (2) : 46~511
    [164]李爱芬,张磊,李春芹等.特低渗透油藏气驱启动压力实验研究[J].断块油气田.2008,9(5).vol 15.
    [165]贾振岐,赵辉,汶锋刚.低渗透油藏极限井距的确定[J].大庆石油学院学报.2006,2(1). vol 30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700