基于PEBI网格油藏数值模拟器的研究、开发与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国油气田经过长期开采,井网密度大,地层油气水分布复杂,老油田开采挖潜的主要对象转向高度分散、局部相对富集的剩余油,而油藏数值模拟是开采剩余油最重要的工具之一。为此,本文研究了基于非结构网格,考虑多层多相非均质油藏的数值模拟中的关键科学问题及核心技术的实现,并利用开发的油藏数值模拟求解器研究注水井流量调配问题。论文主要工作如下:
     1、研制基于非结构网格的油藏数值模拟器:该模拟器以黑油模型为基础,应用有限体积法在混合网格(主要为PEBI和径向网格)上进行离散。重点攻克了油气互溶的变泡点,这一数值模拟中的难点问题。在考虑变泡点的数值模拟过程中,网格单元共分为四种状态:有气相存在、气相全部溶解在油相中、无气相存在和气相从油相中析出。处理方法为变量替换法,当气相饱和度大于零时,求解参数为压力、气相饱和度、水相饱和度;当气相饱和度等于零时,求解参数为压力、溶解气油比、水相饱和度。根据以上四种网格状态和求解参数,研究了渗流方程中非线性项的线性化方法,从而得到多相方程对应四种状态的离散格式。
     2、提出适合不同井型的内边界处理方法:文中对已有的井模型如Peaceman模型、Van Pollen模型进行了介绍。并针对垂直井和水平井提出了相应的内边界处理方法。针对不同的井型和生产控制模式,采用达西定律推导出相应的井的隐式处理方法。其中,控制模式包括定井底压力、定井底流量及VFP控制方法。
     3、给出了考虑重力效应下的通用的压力计算方法。该计算方法既可用于多层射开井的井筒内的压力折算,也可用于数值模拟的初始化赋值,计算各层的网格压力。同时,在静水压力平衡假设下,得到油田压力、油气水三相饱和度和溶解气油比的初始分布。
     4、建立水嘴损失的井处理模型,更准确地进行流量调配预测:针对油田调配水工艺发现,配水器的选取会对油田注水效果产生重大影响。为更好地描述注水井注入过程中井底压力和流量的动态响应,为现有的调配工艺提供有效的预测手段。本文在传统的内边界井处理模型的基础上建立了考虑水嘴压力损失影响的井处理模型。耦合求解井底压力、流量及地层流动,得到了注入过程中考虑水嘴压力损失影响的井底压力和流量响应情况。以此来分析渗透率、油水饱和度对井底压力、注入量随时间变化的影响。计算结果表明,注入过程不能简单地用定流量或定井底压力方式来描述。在相同的地层条件下,初始注入量相同时,小水嘴比大水嘴更有助于注入量的稳定。嘴径相同的情况下,地层渗透率为影响注入量变化的主要因素,油水饱和度为次要因素,为油田注水的工艺改进提供了科学依据。
After long time development of Chinese reservoir, the well density is very large and the distribution of oil and water is more complex than before. The old reservoir's potential synergistic object turns to residual oil that is highly dispersed but relatively concentrated in local. Therefore, the technique of numerical simulation considering multi-layer and multi-pahse situation of reservoir has been researched in this dissertation, which is based on unstructured grid. By using the simulator that has been developed, the water injection process has been investigated. The main works of the dissertation are as follows:
     1. The numerical simulator based on unstructured grid:On the basis of black oil model, the discretization has been implemented by using FVM on unstructured grids (PEBI and Radial grid mainly). The problem of variable bubble points has been considered in this simulator. In the process of changing bubble points, four different situations have been proposed:gas exists, gas dissolved in oil, gas does not exist and gas released from oil. The method to simulate the process is variable substitution. When gas saturation is above zero, the variables are pressure, gas saturation and water saturation; when gas saturation equals zero, the variables are pressure, gas-oil ratio and water saturation. According to these four different situations and variables, the linearization of seepage equation has been analyzed. An in result, the discrete format has been obtained.
     2. According to various well type, the inner boundary well treatment methods have been proposed:After the introduction of Peaceman well treatment and Van Pollen well treatment, the inner boundary well treatment consiedering vertical well and horizontal well has been proposed. According to various well type and production control model, the implicit well treatment has been deduced by usint Darcy rule, including BHP, Flow Rate and VFP control model.
     3. The method of pressure calculation considering gravity has been given. The method is applicable to the pressure calculation in well case perforated and the initialization of numerical simuation. Under the hydrostatic hypothesis, the initial pressure, oil/gas/water saturation and gas-oil ratio can be obtained.
     4. The well treatment considering water injector has been build up to predict the process of water injection more precisely:According to the engineering of water injection, the selection of water separator greatly influences the water injection processes of oil field. To analyze the influences of water separator to bottom hole pressure(BHP) and injection rate in the injection process, a new well treatment model has been proposed on the basis of conventional inner boundary of well treatment. By this means, the response of BHP and flow rate in the process of water injection has been surveyed by the coupled solution of BHP, injection rate and reservoir fluids dynamics. The computational results indicated that the water injection can not either be regarded as constant pressure nor constant flow process. Through using different nozzles, simulations under same reservoir conditions showed that when initializing injection flow rate is constant, smaller nozzles have better smoothing effect on injection flow rate than larger nozzles. When the diameter of nozzle is constant, permeability is the main factor which will influence the response of injection flow rate and the oil-water saturation is the minor one.
引文
Abdou M K, Pham H D, Alaqueeli A S. Impact of Grid Selection on Reservoir Simulation[J]. JPT(July 1993):664-669.
    Aguliar C, Ozkan E, Kazemi H, Al-Kobaisi M, Ramirez B. Transient Behavior of Multilateral Well in Numerical Models:A Hybird Analytical-Numerical Approach[J]. SPE 104581.2007.
    Al-Mohannadi N, Ozkan E, Kazemi H. Grid-System Requirements in Numerical Modeling of Pressure-Transients Tests in Horizontal Well[J]. SPE 92041-PA.2007.
    Aavatsmark, I., Barkve, T. and Mannseth, T.:"Control Volume Discretization Methods for 3D Quadrilateral Grids in Inhomogeneous, Anisotropic Reservoirs", paper SPE 38000, proceedings of the 14th SPE Symposium on Reservoir Simulation, Dallas, TX, June 8-11,1997
    Behie, A. and Forsyth Jr., P.A.:"Practical Considerations for Incomplete Factorization Methods in Reservoir Simulation", paper SPE 12263, proceedings of the 7th SPE Symposium on Reservoir Simulation, San Francisco, CA, November 15-18,1983
    Bruce G H, Peaceman D W, Rachford H H, Rice J D. Calculationsof unsteady-state gas flow through porous media[J]. Transactions, American Institute of Mining and Metallurgical Engineers, 198 (1953),79-91.
    Carlson, F. M. Simulation of Relative Permeability Hysteresis to the Non-Wetting Phase SPE 10157, San Antonio,1981
    Chen, W.H., Durlofsky, L.J., Engquist, B. and Osher, S.:"Minimization of Grid Orientation Effects Through Use of Higher-Order Finite Difference Methods," paper SPE 22887, proceedings of the 66th SPE Annual Technical Conference and Exhibition, Dallas, TX, October 6-9,1991
    C.Aguilar, BP Alaska, E.Ozkan, et al. Transient behavior of Multilateral Wells in Numerical Models:A Hybrid Analytical-Numerical Approach. Paper SPE 104581 presented at 15th SPE Middle East Oil & Gas Show and Conference held in Bahrain International Exhibition Centre, Kingdom of Bahrain,11-14 March 2007.
    Coats K H, Nielsen, R L, Terhune M H, Weber A G. Simulation of Three-Dimensional, Two-Phase Flow in Oil and Gas Reservoirs [J]. SPE Journal. December,1967.
    Coats K H. An equation of state compositional model. SPE J.1:363-376.1980.
    Douglas J, Blair P M, Wagner R J. Calculation of linear waterflood behavior including the effects of capillary pressure[J]. Petroleum Trans., AIME.1958.213,96-102.
    Douglas J, Peaceman D W, Rachford H H. A method for calculating multi-dimensional displacement[J]. Trans AIME,216 (1959) 297-308.
    Douglas J, Rachford H H. On the numerical solution of the heat conduction problem in two and three space variables[J]. Transactions of the American Mathematical Society 82,1956:421-439. Fetkovic, M.J. A simplified Approach to Water Influx Calculation-Finite Aquifer System. J.Pet.Tech.1971:814-828
    Fung, L.S., Hiebert, A.D. and Nghiem, L.X.:"Reservoir Simulation With a Control Volume Finite Element Method", paper SPE 21224, proceedings of the 11th SPE Symposium on Reservoir Simulation, Anaheim, CA, February 17-20,1991
    Fussell, L.T. and Fussell, D.D. A new mathematical technique for compositional models incorporating the Redlich-Kwong equation of state, SPE6891,52nd Annual Technical Conference and Exhibition, Denver.1977 gulf moon.数值模拟技术发展史.http://www.petro-china.com/admin/journal/No1.pdf.
    Gunasekera, D., Childs, P., Herring, J. and Cox, J.:"A Multi-Point Flux Discretization Scheme for General Polyhedral Grids", paper SPE 48855, proceedings of the 6th SPE International Oil&Gas Conference and Exhibition, Beijing, China, November 2-6,1998
    Heinemann Z E. Interactive Generation of Irregular Simulation Grids and Its Practical Applications[J]. SPE 27998.1994:409-428.
    Kazemi, H., Shank, G.D. and Vestal, C.R. An efficicient multicomponent numerical simulator, SPE 6890,52nd Annual Technical Conference and Exhibition, Denver.1977
    Killough, J. E. Reservoir Simulation with History-dependent Saturation Functions Trans. AIME 261, Page 37-48,1976
    K.L. Farnstrom, T. Ertekin. A Versatile, Fully Implicit, Black Oil Simulator With Variable Bubble-Point Option. Presented at the SPE Califonia Regional Meeting Held in Ventura,1987. SPE:16342.
    Melichar H, Reingruber A, Shotts, D, Dobbs W. Use of PEBI Grids for a Heavily Faulted Reservoir in the Gulf of Mecxico Source[C]. SPE Annual Technical Conference and Exhibition. SPE 84373.2003
    Nghiem L X, Fong D K, Aziz K. Compositional modeling with an equation of state[J]. SPEJ (1981), pp.687-698 (Dec.).
    Peaceman, D.W. Interpretation of Wellblock Pressures in Numerical Reservoir Simulationi with Nonsquare Gridblocks and Anisotropic Permeability. SPEJ 531.
    Peaceman D W, Rachford H H. The numerical solution of parabolic and elliptic differential equations[J]. J. Soc. Indust. Appl. Math.3 (1) (1955) 28-41.
    Peng, D-Y. and Robinson, D.B. A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, No.1, pp.59-64.1976.
    Pointing D K. Corner Point Geometry in Reservoir Simulation[C]. Paper presented at the 1992 3rd European on the Mathematics of Oil Recovery Oxford, England.
    Sammon, P.H.:" A Nine-Point Differencing Scheme Based on High-Order Stream Tube Modeling", paper SPE 21223, proceedings of the 11th SPE Symposium on Reservoir Simulation, Anaheim, CA, February 17-20,1991
    Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci.,27, pp.1197-203.1972.
    Spivak, A. and Dixon, T.N. Simulation of gas condensate reservoirs, SPE 4271,3rd Symposium on Numerical Simulation of Reservoir Performance, Houston,1973
    Stone H L. Estimation of three-phase relative permeability and residual oil data[J]. J. Can. Pet. Technol.,12,53-61,1973.
    Stone H L. Probability model for estimating 3-phase relative permeability[J]. Trans. Soc. Petrol. Eng. AIME 249:214-218.1970.
    Sukirman, Y.B. and Lewis, R.W.:"Three-Dimensional Fully Coupled Flow:Consolidation Modeling Using Finite Element Method", paper SPE 28755, proceedings of the SPE Asia Pacific Oil & Gas Conference, Melbourne, Australia, November 7-10,1994
    Stueben, K.:"Algebraic Multigrid (AMG):Experiences and Comparisons",proceedings of the International Multigrid Conference, Copper Mountain, CO, April 6-8,1983
    Van Poollen, H.K., Breitenback, E.A. and Thurnau, D.H. Treatment of Individual Wells and Grids in Reservoir Modeling. SPEJ341.
    Verma, S. and Aziz, K.:"Two-and Three-Dimensional Flexible Grids for Reservoir Simulation", proceedings of the 5th European Conference on Mathematics of Oil Recovery, Leoben, Austria, September 3-6,1996
    Verma, S. and Aziz, K.:"A Control Volume Scheme for Flexible Grids in Reservoir Simulation", paper SPE 37999, proceedings of the 14th SPE Symposium on Reservoir Simulation, Dallas, TX, June 8-11,1997
    Van Everdingen, A.F., Hurst,W. The application of the Laplace Transformation to Flow Problems in Reservoirs. Trans.1949, AIME.186:350-324
    Van Everdingen A F.. The Skin effect and its influence on the productive capacity of a well. Trans.1949, AIME,198:171-176
    Walas, S.M.:"Phase Equilibria in Chemical Engineering", Butterworth Publishers, Boston, MA, 1985.
    Warren G M. Numerical Solutions for Pressure Transient Analysis[J]. SPE 26177-MS.1993.
    Wilson, G.M. A modified Redlich-Kwong equation of state, application to general physical data calculations, Paper 15C,65th National A.I.Ch.E. Meeting, Cleveland,1969.
    Yanosik, J.L. and McCracken, T.A. A nine-point finite difference reservoir simulator for realistic prediction of unfavorable mobility ratio displacements. SPE 5734,4th Symposium on Numerical Simulation of Reservoir Performance, Los Angeles,1976.
    Yuanlin Jiang. Techniques for Modeling Complex Reservoirs and Advanced Wells. Stanford university Ph.D. Dissertation,2007.
    Young, L.C.:"An Efficient Finite Element Method for Reservoir Simulation", paper SPE 7413, proceedings of the 53rd SPE Annual Technical Conference and Exhibition, Houston, TX, October 1-3,1978
    Young L C, Stephenson R E. A generalized compositional approach for reservoir simulation, SPE 10516.1982.
    安永生,吴晓东,韩国庆.基于混合PEBI网格的复杂井数值模拟应用研究[J].中国石油大学学报:自然科学版.2007,31(6):60-63.
    蔡强,杨钦,李吉刚,等.三维PEBI网格生成的初步研究[J].计算机工程与应用.2004,40(22):97-99.
    蔡强,杨钦,李吉刚,陈其明.三维PEBI网格生成的初步研究.计算机工程与应用2004,22:97-99.
    蔡强,杨钦,孟宪海,等.二维PEBI网格的生成[J].工程图学学报.2005,26(2):69-72.
    邓英尔.刘慈群.低渗油藏非线性渗流规律数学模型及其应用.石油学报.2001,22(4):72-76.
    邓刚,王琦,高哲.桥式偏心分层注水及测试新技术[J].油气井测试,2002,11(3):45~48.
    董平川,牛彦良,李莉.各向异性油藏渗流的有限元数值模拟[J].岩石力学与工程学报.2007(z1):2633-2640.
    郭永存,曾清红,王仲勋.动边界低渗透油藏的无网格方法数值模拟.工程力学.2006,23(11):188-192.
    郭永存,卢德唐,曾清红,曾亿山.有启动压力梯度渗流的数学模型.中国科学技术大学学报.35(4):492-498.
    侯鹏倩.2005.自力式调节阀及其应用[J].石油化工自动化(1):83-85.
    黄咏梅.非均质油藏水平井数值试井分析技术应用研究.石油天然气学报(江汉石油学院学报).2009,31(1):112-114.
    敬小军,张志强,乔玖春.油藏数值模拟技术在新14延9油藏开发中的应用.内蒙古石油化工.2007,12:362-363.
    孔祥言.1999.高等渗流力学[M].合肥:中国科学技术大学.
    雷征东,袁士义,宋杰.三元复合体系乳状液渗流对采收率影响.辽宁工程技术大学学报(自然科学版).2009,28:76-78.
    李丽丽,宋考平,杨 晶,张继成,王晓红.聚合物驱后剩余油存在的地质界限.大庆石油学 院学报.2009,33(5):47-51.
    李玉坤,姚军.复杂断块油藏Delaunay三角网格自动剖分技术[J].油气地质与采收率.2006,13(3):58-60.
    李增仁.2003.高压注水井分注技术研究[J].钻采工艺,26(3):109-111.
    刘立明,陈钦雷.试井理论发展的新方向—数值试井[J].油气井测试.2001,10(1):78-82.
    刘立明,陈钦雷,王光辉.油水两相渗流压降数值试井模型的建立[J].石油大学学报:自然科学版.2001a,25(2):42-45.
    刘立明,陈软雷.单相流数值试井模型[J].油气井测试.2001,10(4):11-14.
    刘立明,廖新维,陈钦雷.混合PEBI网格精细油藏数值模拟应用研究[J].石油学报.2003,24(3):64-67.
    刘立明,廖新维,刘柏良,等.油气两相压降数值试井模型及其典型曲线的规律[J].石油勘探与开发.2002,29(4):77-79.
    刘洪,王新海,李玉姣,孙吉军.非均质油藏抽汲井压力导数典型曲线[J]. 油气井测试.2009,18(1):5-6.
    梁卫东,姜贵璞,王丽敏等.2004.砂岩油田合理注水压力的确定[J].大庆石油学院学报,28(4):42-44.
    林春阳,郭冀义,马水龙,卢德唐.注水井地层吸水规律实验研究[J].实验力学,2008,23(6):
    凌福海,刘伟新.采用滚动油藏数值模拟研究惠州26-1油田的增储挖潜措施.中国海上油气(地质).1999,13(3):217-223.
    刘慈群.双重介质非线性渗流.科学通报.1980,17:1081-1085.
    刘玉山,杨耀忠.油气藏数值模拟核心技术进展.油气地质与采收率[J].2002,9(5):31-33.
    吕秀凤,刘振宇,张瞳阳.数值试井分析的有限元法[J].大庆石油学院学报.2005,29(5):12-15
    罗海山,王晓宏,施安峰.非均匀裂缝性油藏蒸汽驱的自适应网格计算.2009,28:89-92.
    罗蛰潭.1985.油层物理[M].北京:地质出版社.
    T厄特金,J.H.阿布-卡森,G.R.金.2004.实用油藏模拟技术[M].石油工业出版社.
    王新海,张冬丽,李江龙.含有大尺度裂缝、溶洞的缝洞型油藏的数值试井模型.石油天然气学报(江汉石油学院学报).2009,31(6):129-135.
    王志军,刘秀航,谭志安等.2004.水井增注措施优化设计方法[J].大庆石油学院学报,28(4):39-41.
    吴洪彪,佟斯琴,兰丽凤.考虑层间窜流的多层多相数值试井方法研究[J].大庆石油地质与开发.2003,22(6):40-43.
    吴明录,姚军,黎锡瑜,赵春旭.应用流线数值试井方法研究聚合物驱油藏剩余油分布.石油钻探技术.2009,37(3):95-98.
    吴忠宝,胡文瑞,宋新民,郝明强.整体水裂压力油藏裂缝——油藏耦合数值模拟研究.油气地质与采收率.2009,16(2):70-73.
    吴忠宝,胡文瑞,宋新民,冉启全,甘俊奇.天然微裂缝发育的低渗透油藏数值模拟.石油学报.2009,30(4):727-730.
    向祖平,张烈辉,陈中华,等.油藏任意约束平面域PEBI网格的生成算法[J].西南石油学院学报.2006,28(2):32-35.
    尹中民,武强,刘建军等.2004.注水井泄压对套管挤压力影响的数值模拟[J].岩石力学与工程学报,23(14):2390-2395.
    袁士义.聚合物地下交联调剖数学模型.石油学报.1991,12(1):49-59.
    袁士义,刘尚奇,张义堂,张世民,赵郭平.热水添加氮气泡沫驱提高稠油采收率研究.石油学报.2004,25(1):57-65.
    岳玉全,王立洋,刘振宇.油藏数值模拟中井筒压力梯度的校正方法[J].力学与实践,2008,30(4):15~18.
    查文舒,李道伦,卢德唐,孔宪辉.井间干扰条件下PEBI网格划分研究[J].石油学报,2008,29(5):741~746.
    张迎进,刘刚,朱忠喜等.2004.注水井配水工具智能排布软件开发[J].断块油气田,11(2):67-69.
    周运义,任路.八面河油田面14区沙三中剩余油分布数值模拟研究.资源环境与工程.2009,23(1):66-68
    邹先雄,吴亚红.复杂断块稠油油藏剩余油分布规律及挖潜研究.重庆科技学院学报(自然’科学版).2009,11(1):12-15
    邹艳华,李远,那贺忠.注水井分层流量调配方法研究[J].油气井测试,2003,12(3):4~6.
    张烈辉.2005.油气藏数值模拟基本原理[M].北京石油工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700