十七β羟脱氢酶抑制剂的乳腺癌细胞内转运及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是世界发病率及死亡率最高的恶性肿瘤之一,在女性中发病率占据首位,是常见的威胁女性健康的恶性疾病。据统计,乳腺癌在我国发病率也是居于前位,发病率呈现上升并年轻化的趋势。在大多数乳腺癌患者中,体内活化雌激素水平增高是其发病及复发的主要诱因之一。体内激素分泌传统方式包括有内分泌、旁分泌及自分泌,而随着深入对局部及细胞的研究,Labrie等提出细胞内分泌概念,即局部合成的活性激素不分泌到细胞外或循环中,而是直接作用于自身细胞。其相比于传统内分泌机制,激素不会在体循环中代谢或降解,因此细胞内分泌在激素相关的肿瘤中起到直接的重要作用。这种细胞内分泌的方式不会产生分泌到血液及细胞外的激素,所以细胞内分泌的激素在代谢和生成在检测上有一定困难。因而研究催化产生雌激素的关键酶的活性和量可以起到替代的检测作用
     在绝经后的妇女体内,卵巢停止分泌,活化雌激素(主要是雌二醇)主要依靠十七β-羟脱氢酶(17β-HSD)等催化生成。该还原过程中的酶主要包括十七β-羟脱氢酶一型,五型,七型及十二型,其中十七β-羟脱氢酶一型(17β-HSD1)和十七β-羟脱氢酶七型(17β-HSD7)可以同时将雌酮转化为雌二醇(E2)并将睾酮降解为雄-5-烯-3β,17β-二醇(ADIOL)。而目前研究广泛认同雌激素可以促进乳腺癌细胞增殖而雄激素可以抑制其增殖。所以我们认为17β-HSD1和17β-HSD7有可能成为乳腺癌治疗及诊断的靶点,并将在某些个体化的乳腺癌治疗中起到关键的作用。
     我们的实验针对17β-HSD1和17β-HSD7两种酶的催化底物及生物学功能进行了初步研究,并且进一步研究了17β-HSD7在细胞内调节而导致细胞周期的改变的可能机制。我们发现低剂量的两种催化产物E2及ADIOL对于雌激素受体(ER)阳性的乳腺癌细胞的增殖都有促进作用,在两者合用时,其对增殖作用未表现出加和的加促进作用,并且在单独使用ADIOL时,随剂量的增加,对于细胞增殖表现为先促进后抑制。考虑是由于E2及ADIOL都可以与ER结合,因此可以促进乳腺细胞增殖;而前者有与ER较强的结合作用,而后者是一种雄激素代谢产物,也可以与雄激素受体结合,所以当两者联合应用是,E2与ER竞争性结合,而ADIOL与雄激素受体结合,表现出两者促增殖作用减弱;而单独应用ADIOL随剂量增加,雌激素受体饱和,其转而与雄激素受体结合,因而表现出先促进后抑制。对于17β-HSD7的细胞内调节而导致细胞周期改变,我们初步发现该酶可以使S期细胞增加,并且其表达量与细胞周期蛋白E1的表达呈现出正相关。
     17β-HSD1是E1转化为E2的关键酶,并且E2是体内主要的活化雌激素,所以课题主要针对抑制17β-HSD1的酶活性,从而抑制乳腺癌细胞增殖以达到治疗乳腺癌的作用。抑制酶活性有两种主要方法,一种是针对该酶基因,是蛋白在转录水平被抑制;另外一种是针对蛋白质结构与功能设计其抑制剂,抑制酶的活性。两种手段都有文献报道,其中小分子干扰核糖核酸(siRNA)可以在细胞水平抑制乳腺癌细胞的增殖,可以抑制多种乳腺癌细胞系的增殖,并调节细胞增值周期。siRNA的作用确切并且专一,但是在复杂的人体内,小片段RNA没有办法在血液或者局部组织中长期稳定存在并发挥干扰作用,即使使用修饰过的RNA,也使得其成本增高并不能完全解决体内降解问题,这是siRNA成为人体用药重要障碍的原因之一。但是抑制剂是通过解析酶的结构和作用的结合位点而人工合成,在稳定性方面siRNA无法相比。随着人们对蛋白质结构与功能的了解,有多种17β-HSD1的抑制剂的实验报道,其中RB-225-50和EM-1745可以在纯化的酶中发挥高效抑制作用,但在细胞水平却没有表现出突出的抑制作用。
     从这类抑制剂的结构上看,一边是类似甾体雌激素的疏水端,一边是类似腺嘌呤的亲水端,也就是该化合物为两亲性,而两亲性化合物难以穿透细胞双层磷脂膜。为解决这一问题,我们初步设计两种方案,一种是改变化合物结构,加入或改变化学集团使得两亲性质改变,另一种是使用脂质体包裹抑制剂,使脂质体成为载体。如改变抑制剂的结构,对于酶活性抑制作用可能要重新评估,实验量比较大,因此,我们选用脂质体作为载体进行进一步研究。
     脂质体是人工制备的双层或多层磷脂双分子微球囊,作为药物载体具备有延长药效、改善耐受性、提高药效及降低副作用等优点,拥有广阔的应用前景。本实验预计将抑制剂包封入脂质体双层磷脂间,以达到载药的目的,并验证其对于酶活性的抑制作用。实验中我们尝试应用三嵌段共聚物(F-68)修饰脂质体改善脂质体稳定性,应用阳离子脂质体改善细胞对脂质体的摄取,以及尝试市面上出售的前脂质体,最终确定了卵磷脂、胆固醇以及十八胺为主要材料的脂质体。经过试验不同的成膜材料及比例,确定了膜材料成分比例,检测了一个月四摄氏度保存后脂质体的粒径稳定性。并用异硫氰酸荧光素标记脂质体膜成分,检测细胞对该成分脂质体的摄取情况。最终得到一种制备相对简便、可以稳定保存并且容易被多种类型乳腺癌细胞系摄取的脂质体。
     本研究通过上述脂质体将抑制剂转运进入高表达17β-HSD1的细胞后,表现出与对照相比无明显差异的的抑制率,接下来的实验中证实该脂质体因为可以抑制17β-HSD1的活性而不适宜成为该类固醇代谢的酶抑制剂的载体。未来的实验中考虑使用材料成分较单一的胶束作为药物载体。但是该实验首次将纳米药物载体技术应用于17β-HSD家族的酶功能研究中,为该领域研究开辟了新方向。
Breast cancer is one of the world's highest morbidity and mortality tumor infemales. According to statistics, breast cancer is also one of the most commonmalignancies in China. The morbidity of this disease is increase and its incidencetrends to become younger in average age. The high estrogen level in the blood or localmaybe is one of the major reasons of the most patients with breast cancer and itsrecurrence. The traditional endocrine theory includes the endocrine, paracrine andexocrine ways. The discovery of cell biology and molecularbiology opens up a theoryfor studying endocrine function and offers a new concept, the intracrine, which is firstnamed by Labrie, etc. The theory here is that the activity hormone synthesis inside thecells and direct effects on their own but not secreted to the outside of the cells or theblood. Compared to traditional endocrine mechanism, the sex hormones will notmetabolism or break down in the systemic circulation in the process of intracrine andit play a key role in the hormone-dependent tumors. It is difficult to determine directlythe hormones because of the metabolic and endocrine hormone is an intracellularprocess. The activity and the amount of the key enzyme could substitute formeasurement the cell intracrine.
     In postmenopausal women, the ovaries stop produce hormones, the production ofactivated sex hormone (17beta-estradiol) mainly depends on a group reduced17beta-hydroxysteroid dehydrogenases. The enzymes include17beta-hydroxysteroiddehydrogenases type1,17beta-hydroxysteroid dehydrogenases type5,17beta-hydroxysteroid dehydrogenases type7and17beta-hydroxysteroiddehydrogenases type12.17Beta-hydroxysteroid dehydrogenases type1and type7can both participate in synthetic estrogens from estrogen and degrade testosterone todihydrotestosterone. Recent research widely accepted that estrogen can promoteestrogen receptor positive breast cancer cells proliferation and androgen can have theopposite effect. So we think17beta-hydroxysteroid dehydrogenases type1and type7May become a target of treatment and diagnosis of breast cancer.
     This paper studies the effect of cell proliferation by the catalytic substrates whichare the above two kinds of enzymes and focused on cell cycle regulation when17beta-hydroxysteroid dehydrogenases type7changes in breast cancer cells. We foundthat above enzyme influence the S phase of cancer cells and there is positivecorrelation between the expression of17beta-hydroxysteroid dehydrogenases type7and cyclin E1.
     At present, we do more researches about17beta-hydroxysteroid dehydrogenasestype1than type7. Because17beta-hydroxysteroid dehydrogenases type1isconsidered as a key enzyme for the transformed from estrone into estradiol and ourmajor topic is aimed at the inhibitor of17beta-hydroxysteroid dehydrogenases type1.
     There are two key methods to quell the enzyme activity and both methods arepublished now. One is to reduce gene expression and the transcription of protein willsuppressed. The other one is to use inhibitor which is designed by the protein structureinhibit the activity of the enzyme. Small interfering ribonucleic acid can reduce geneof17beta-hydroxysteroid dehydrogenases type1expression and inhibit proliferationof two breast cells lines in vitro. The effect of small interfering ribonucleic acid isexactly and specificity, however, the small snippets or even modification ofribonucleic acid can little stable exist in the blood or tissue of human body. Then thesynthetic inhibitor become the important way. With the knowledge development ofthe structure of17beta-hydroxysteroid dehydrogenases type1, there are many kindsof inhibitors be found. One of these kinds including RB-225-50and EM–1745, theyshowed more significantly inhibit17beta-hydroxysteroid dehydrogenases type1inthe purified protein of than in the cells.
     Structurally, the inhibitor has both hydrophilic (adenine) and hydrophobic(steroid estrogen) parts is kind of amphiphilic polymer, so it hard to across cancer cellmembranes. In order to solve the above problem, we select liposome as the inhibitorcarrier to block the function of17beta-hydroxysteroid dehydrogenases type1.
     Liposome is an artificial lipid microparticulate with the structure of the lipidbilayer. It has the following advantages as the inhibitor carrier to prolong drugduration, combat multi-drug resistance reduce toxicity and sustained-release in some degree. Our study is expected to encapsuled the inhibitor in liposome and deliver theinhibitor into cancer cells. Furthermore, the inhibitor block the function of theenzymes. In our research we try to use poly (ethylene oxide)-poly (propyleneoxide)-poly (ethylene oxide)(F-68)modified liposome, positively charged liposomeimprove intake liposome by cell and the pre-liposome already on the market. At lastwe determine the lecithin, cholesterol, and octadecylamine as the main materials ofliposome. This liposome with suitable particle size will have a large uptake when itlabelled with fluorescein isothiocyanate. Finally we get a kind of stable liposome withsimple way to prepare.
     This study used the above liposome as a carrier of inhibitor of17β-HSD1deliver it into cells which is high level of17β-HSD1. And the rate of inhibitioncompared to the control was not significantly difference. The experiment confirmedthis kind of liposome was not suitable to be the carrier of the enzyme inhibitorsinsteroid metabolism. We may use micelle as a carrier develier the inhibitor of17β-HSD1. However,the experiment of nano drug carrier technology was used onthefunction of the family of17β-HSD for thefirst time, and it provides a newdirectionof research.
引文
[1] Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics.2009[J].CA Cancer J Clin,2009,59(4):225-49.
    [2] Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics.2014[J]. CA Cancer J Clin,2014,64:9–29.
    [3]黄哲宙,陈万青,吴春晓,郑荣寿,陈建国,程兰萍,王宁,张思维,郑莹.北京、上海、林州和启东地区女性乳腺癌发病及死亡的时间趋势[J]. Tumor,2012,(8):605-9.
    [4]李可,吕章春,黄金莲,朱永红,毛晓明.浙江省永康市2008~2010年女性乳腺癌发病分析[J]. China Cancer,2013,22(11):877-80.
    [5]郑莹,吴春晓,张敏璐.乳腺癌在中国的流行状况和疾病特征[J]. ChinaOncology,2013,23(8):561-569.
    [6] Robert W, Carlson D, Craig A, Benjamin OA. National comprehensive cancernetwork.2012, http://www.nccn.org/index.asp
    [7] Beatson GW. On the treatment of inoperable cases of carcinoma of the mamma:suggestions of a new method of treatment with illustrative cases [J]. Lancet,1896,2:162–5.
    [8] Jensen EV, Block GE, Smith S, Kyser K, DeSombre ER. Estrogen receptors andbreast cancer response to adrenalectomy [J]. Natl Cancer Inst Monogr,1971,34:55–70.
    [9] DeSombre ER, Greene GL, Jensen EV. Estrophillin and endocrine responsivenessof breast cancer [M]. New York: Raven Press,1978.
    [10] Schairer C, Byrne C, Keyl PM, Brinton LA, Sturgeon SR, Hoover RN.Menopausal estrogen and estrogen-progestin replacement therapy and risk ofbreast cancer (United States)[J]. Cancer Causes Control.1994,5:491–500.
    [11] Sprague BL, Trentham-Dietz A, Remington PL. The contribution ofpostmenopausal hormone use cessation to the declining incidence of breast cancer[J]. Cancer Causes Control.2011,22:125–34.
    [12] Nilsson S, M kel S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E,Pettersson K, Warner M, Gustafsson JA. Mechanisms of estrogen action [J].Physiol Rev,2001,81:1535–65.
    [13] Jensen EV, Jacobson HI. Basic guides to the mechanism of estrogen action [J].Recent Prog Horm Res,1962,18:387–414.
    [14] Chamness GC, McGuire WL. Estrogen receptor in the rat uterus. Physiologicalforms and artifacts [J]. Biochemistry,1972,11(13):2466-72.
    [15] Gorski J, Welshons W, Sakai D. Remodeling the estrogen receptor model [J].Mol Cell Endocrinol,1984,36(1-2):11-5.
    [16] Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P. Humanoestrogen receptor cDNA: sequence, expression and homology to v-erb-A [J].Nature.1986,320(6058):134-9.
    [17] Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of anovel receptor expressed in rat prostate and ovary [J]. Proc Natl Acad Sci U S A.1996,93(12):5925-30.
    [18] Mosselman S, Polman J, Dijkema R. ER beta: identification and characterizationof a novel human estrogen receptor [J]. FEBS Lett.1996,392(1):49-53.
    [19] Todo T, Adachi S, Yamauchi K. Molecular cloning and characterization ofJapanese eel estrogen receptor cDNA. Mol Cell Endocrinol [J].1996,119(1):37-45.
    [20] Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G,Nordenskj ld M, Gustafsson JA. Human estrogen receptor beta-gene structure,chromosomal localization, and expression pattern [J]. J Clin Endocrinol Metab.1997,82(12):4258-65.
    [21] Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F,Giguère V. Cloning, chromosomal localization, and functional analysis of themurine estrogen receptor beta [J]. Mol Endocrinol.1997,11(3):353-65.
    [22] Tchoudakova A, Pathak S, Callard GV. Molecular cloning of an estrogen receptorbeta subtype from the goldfish, Carassius auratus [J]. Gen Comp Endocrinol.1999,113(3):388-400.
    [23] Pasqualini JR, Chetrite GS. Recent insight on the control of enzymes involved inestrogen formation and transformation in human breast cancer [J]. J SteroidBiochem Mol Biol.2005,93(2-5):221-36.
    [24] Li X, Huang J, Yi P, Bambara RA, Hilf R, Muyan M. Single-chain estrogenreceptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions ofthe ERalpha dimer in genomic estrogen signaling pathways [J]. Mol Cell Biol.2004,24(17):7681-94.
    [25] Gunnarsson C, Olsson BM, St l O; Southeast Sweden Breast Cancer Group.Abnormal expression of17beta-hydroxysteroid dehydrogenases in breast cancerpredicts late recurrence [J]. Cancer Res.2001,61(23):8448-51.
    [26] Levin ER. Integration of the extranuclear and nuclear actions of estrogen [J]. MolEndocrinol.2005,19(8):1951-9.
    [27] Fox EM, Andrade J, Shupnik MA. Novel actions of estrogen to promoteproliferation: integration of cytoplasmic and nuclear pathways [J]. Steroids.2009,74(7):622-7.
    [28] Suzuki T, Miki Y, Nakamura Y, Moriya T, Ito K, Ohuchi N, Sasano H. Sexsteroid-producing enzymes in human breast cancer [J]. Endocr Relat Cancer.2005,12(4):701-20
    [29] Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA,Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA. InternationalUnion of Pharmacology. LXIV. Estrogen receptors [J]. Pharmacol Rev.2006,58(4):773-81.
    [30] Miyoshi Y, Ando A, Shiba E, Taguchi T, Tamaki Y, Noguchi S. Involvement ofup-regulation of17β-hydroxysteroid dehydrogenase type1in maintenance ofintratumoral high estradiol levels in postmenopausal breast cancers [J]. Int JCancer.2001,94(5):685-9
    [31] Jansson A, Delander L, Gunnarsson C, Fornander T, Skoog L, Nordenskj ld B,St l O. Ratio of17HSD1to17HSD2protein expression predicts the outcome oftamoxifen treatment in postmenopausal breast cancer patients [J]. Clin CancerRes.2009,15(10):3610-6.
    [32] Aka JA, Mazumdar M, Chen CQ, Poirier D, Lin SX.17beta-hydroxysteroiddehydrogenase type1stimulates breast cancer by dihydrotestosterone inactivationin addition to estradiol production [J]. Mol Endocrinol.2010,24(4):832-45.
    [33] Aka JA, Mazumdar M, Lin SX. Reductive17beta-hydroxysteroid dehydro-genases in the sulfatase pathway: critical in the cell proliferation of breast cancer[J]. Mol Cell Endocrinol.2009,301(1-2):183-90.
    [34] Laplante Y, Rancourt C, Poirier D. Relative involvement of three17beta-hydroxysteroid dehydrogenases (types1,7and12) in the formation ofestradiol in various breast cancer cell lines using selective inhibitors [J]. Mol CellEndocrinol.2009,301(1-2):146-53.
    [35] Penning,T.M. Molecular endocrinology of hydroxysteroid dehydrogenases [J].Endocr Rev.1997,18(3):281-305.
    [36] Adamski J, Jakob FJ. A guide to17beta-hydroxysteroid dehydrogenases [J]. MolCell Endocrinol.2001,171(1-2):1-4.
    [37] Nobel S, Abrahmsen L, Oppermann U. Metabolic conversion as a pre-receptorcontrol mechanism for lipophilic hormones [J]. Eur J Biochem.2001,268(15):4113-25.
    [38] Peltoketo H, Luu-The V, Simard J, Adamski J.17Beta-hydroxysteroiddehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature andmain characteristics of the17HSD/KSR enzymes [J]. J Mol Endocrinol.1999,23(1):1-11.
    [39] Mindnich R, M ller G, Adamski J. The role of17beta-hydroxysteroiddehydrogenases [J]. Mol Cell Endocrinol.2004,218(1-2):7-20.
    [40] Su J, Lin M, Napoli JL. Complementary deoxyribonucleic acid cloning andenzymatic characterization of a novel17beta/3alpha-hydroxysteroid/retinoid shortchain dehydrogenase/reductase [J]. Endocrinology.1999,140(11):5275-84.
    [41] Shafqat N, Marschall HU, Filling C, Nordling E, Wu XQ, Bj rk L, Thyberg J,M rtensson E, Salim S, J rnvall H, Oppermann U. Expanded substrate screeningsof human and Drosophila type1017beta-hydroxysteroid dehydrogenases (HSDs)reveal multiple specificities in bile acid and steroid hormone metabolism:characterization of multifunctional3alpha/7alpha/7beta/17beta/20beta/21-HSD[J]. Biochem J.2003,376(Pt1):49-60.
    [42] Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V. Characteristics of a highlylabile human type517beta-hydroxysteroid dehydrogenase [J]. Endocrinology.1999,140(2):568-74.
    [43] Jansson A.17Beta-hydroxysteroid dehydrogenase enzymes and breast cancer [J].J Steroid Biochem Mol Biol.2009,114(1-2):64-7.
    [44] Suzuki T, Moriya T, Ariga N, Kaneko C, Kanazawa M, Sasano H.17Beta-hydroxysteroid dehydrogenase type1and type2in human breastcarcinoma: a correlation to clinicopathological parameters [J]. Br J Cancer.2000,82(3):518-23.
    [45] Miyoshi Y, Ando A, Hasegawa S, Ishitobi M, Taguchi T, Tamaki Y, Noguchi S.High Expression of Steroid Sulfatase mRNA Predicts Poor Prognosis in Patientswith Estrogen Receptor-positive [J]. Breast Cancer Clin Cancer Res.2003,9(6):2288-93.
    [46] Gunnarsson C, Hellqvist E, St l O.17Beta-hydroxysteroid dehydrogenasesinvolved in local oestrogen synthesis have prognostic significance in breastcancer [J]. Br J Cancer.2005,92(3):547-52.
    [47] Song D, Liu G, Luu-The V, Zhao D, Wang L, Zhang H, Xueling G, Li S, Désy L,Labrie F, Pelletier G. Expression of aromatase and17beta-hydroxysteroiddehydrogenase types1,7and12in breast cancer An immunocytochemical study[J]. J Steroid Biochem Mol Biol.2006,101(2-3):136-44.
    [48] Gunnarsson C, Jerevall PL, Hammar K, Olsson B, Nordenskj ld B, Jansson A,St l O. Amplification of HSD17B1has prognostic significance inpostmenopausal breast cancer [J]. Breast Cancer Res Treat.2008,108(1):35-41.
    [49] Foster PA. Steroid metabolism in breast cancer [J]. Minerva Endocrinol.2008,33(1):27-37.
    [50] Langer LJ. Enge LL. Human placental estradiol-17beta dehydrogenase. I.Concentration, characterization and assay [J]. J Biol Chem.1958,233(3):583-8.
    [51] Jarabak J, Adams JA, Williams-Ashman HG, Talalay P. Purification of a17beta-hydroxysteroid dehydrogenase of human placenta and studies on itstranshydrogenase function [J]. J Biol Chem.1962,237:345-57.
    [52] Jin JZ, Lin SX. Human estrogenic17beta-hydroxysteroid dehydrogenase:predominance of estrone reduction and its induction by NADPH [J]. BiochemBiophys Res Commun.1999,259(2):489-93.
    [53] Lin SX, Yang F, Jin JZ, Breton R, Zhu DW, Luu-The V, Labrie F. Subunitidentity of the dimeric17beta-hydroxysteroid dehydrogenase from humanplacenta [J]. J Biol Chem.1992,267(23):16182-7.
    [54] Zhu DW, Lee X, Breton R, Ghosh D, Pangborn W, Daux WL, Lin SX.Crystallization and preliminary X-ray diffraction analysis of the complex ofhuman placental17beta-hydroxysteroid dehydrogenase with NADP+[J]. J MolBiol.1993,234(1):242-4.
    [55] Zhu DW, Lee X, Labrie F, Lin SX. Crystal growth of human estrogenic17beta-hydroxysteroid dehydrogenase [J]. Acta Crystallogr D Biol Crystallogr.1994,50(Pt4):550-5.
    [56] Fournier D, Poirier D, Mazumdar M, Lin SX. Design and synthesis of bisubstrateinhibitors of type117beta-hydroxysteroid dehydrogenase: overview andperspectives [J]. Eur J Med Chem.2008,43(11):2298-306.
    [57] Duan WR, Linzer DI, Gibori G. Cloning and characterization of anovarian-specific protein that associates with the short form of the prolactinreceptor [J]. J Biol Chem.1996,271(26):15602-7.
    [58] Nokelainen P, Peltoketo H, Vihko R, Vihko P. Expression cloning of a novelestrogenic mouse17beta-hydroxysteroid dehydrogenase/17-ketosteroid reductase(m17HSD7), previously described as a prolactin receptor-associated protein(PRAP) in rat [J]. Mol Endocrinol.1998,12(7):1048-59.
    [59] Krazeisen A, Breitling R, Imai K, Fritz S, M ller G, Adamski J.Determination ofcDNA, gene structure and chromosomal localization of the novel human17beta-hydroxysteroid dehydrogenase type7(1)[J]. FEBS Lett.1999,460(2):373-9.
    [60] Breitling R, Krazeisen A, M ller G, Adamski J.17beta-hydroxysteroiddehydrogenase type7--an ancient3-ketosteroid reductase of cholesterogenesis [J].Mol Cell Endocrinol.2001,171(1-2):199-204.
    [61] Marijanovic Z, Laubner D, Moller G, Gege C, Husen B, Adamski J, Breitling R.Closing the gap: identification of human3-ketosteroid reductase, the lastunknown enzyme of mammalian cholesterol biosynthesis [J]. Mol Endocrinol.2003,17(9):1715-25.
    [62] Jokela H, Rantakari P, Lamminen T, Strauss L, Ola R, Mutka AL, Gylling H,Miettinen T, Pakarinen P, Sainio K, Poutanen M. Hydroxysteroid (17beta)dehydrogenase7activity is essential for fetal de novo cholesterol synthesis andfor neuroectodermal survival and cardiovascular differentiation in early mouseembryos [J]. Endocrinology.2010,151(4):1884-92.
    [63] Guggenberger C, Ilgen D, Adamski J. Functional analysis of cholesterolbiosynthesis by RNA interference [J]. J Steroid Biochem Mol Biol.2007,104(3-5):105-9.
    [64] Schütze N. siRNA technology. Mol Cell Endocrinol [J].2004,213(2):115-9.
    [65] Aigner A. Gene silencing through RNA interference (RNAi) in vivo: strategiesbased on the direct application of siRNAs [J]. J Biotechnol.2006,124(1):12-25.
    [66] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthasegene into petunia results in reversible co-suppression of homologous genes intrans [J]. Plant Cell.1990,2(4):279-289.
    [67] Romano N, Macino G. Quelling: transient inactivation of gene expression inNeurospora crassa by transformation with homologous sequences. Quelling:transient inactivation of gene expression in Neurospora crassa by transformationwith homologous sequences [J]. Mol Microbiol.1992,6(22):3343-53.
    [68] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent andspecific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature.1998,391(6669):806-11.
    [69] Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification ofessential genes in cultured mammalian cells using small interfering RNAs [J]. JCell Sci.2001,114(Pt24):4557-65.
    [70] Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila usingdouble-stranded RNA [J]. Nat Biotechnol.2000,18(8):896-8.
    [71] Dykxhoorn DM, Lieberman J. Running interference: prospects and obstacles tousing small interfering RNAs as small molecule drugs [J]. Annu Rev Biomed Eng.2006,8:377-402.
    [72] Aigner A. Applications of RNA interference: current state and prospects forsiRNA-based strategies in vivo [J]. Appl Microbiol Biotechnol.2007,76(1):9-21.
    [73] Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basicbiology, research tool, and therapeutic [J]. Annu Rev Med.2005,56:401-23.
    [74] Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, WahrenB, Liang Z, rum H, Koch T, Wahlestedt C. Locked nucleic acid (LNA)mediated improvements in siRNA stability and functionality [J]. Nucleic AcidsRes.2005,33(1):439-47.
    [75] Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in humandisease therapeutic applications [J]. Trends Biotechnol.2010,28(11):570-9.
    [76] Veedu RN, Wengel J. Locked nucleic acids: promising nucleic acid analogs fortherapeutic applications [J]. Chem Biodivers.2010,7(3):536-42.
    [77] Qiu W, Campbell RL, Gangloff A, Dupuis P, Boivin RP, Tremblay MR, PoirierD, Lin SX.. A concerted, rational design of type117beta-hydroxysteroiddehydrogenase inhibitors: estradiol-adenosine hybrids with high affinity [J].FASEB J.2002,16(13):1829-31.
    [78] Bérubé M, Poirier D. Improved synthesis of EM-1745, preparation of itsC17-ketone analogue and comparison of their inhibitory potency on17beta-hydroxysteroid dehydrogenase type1[J]. J Enzyme Inhib Med Chem.2009,24(3):832-43.
    [79] Bérubé M, Poirier D. Synthesis of simplified hybrid inhibitors of type117beta-hydroxysteroid dehydrogenase via cross-metathesis and sonogashiracoupling Reactions [J]. Org Lett.2004,6(18):3127-30.
    [80] Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drugdelivery in cancer [J]. Clin Cancer Res.2008,14(5):1310-6.
    [81] Hyodo K, Yamamoto E, Suzuki T, Kikuchi H, Asano M, Ishihara H.Development of Liposomal Anticancer Drugs [J]. Biol Pharm Bull.2013,36(5):703-7.
    [82] Hashida M, Kawakami S, Yamashita F. Lipid carrier systems for targeted drugand gene delivery [J]. Chem Pharm Bull.2005,53(8):871-80.
    [83] Qiao WL, Wang BC, Wang YZ, Yang LC, Zhang YQ, and Shao PG. CancerTherapy Based on Nanomaterials and Nanocarrier Systems [J]. Journal ofNanomaterials.2010(2010),1-9.
    [84] Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation,characterization, and therapeutic efficacy [J]. Int J Nanomedicine.2012,7:49-60.
    [85] Iwamoto T. Clinical application of drug delivery systems in cancer chemotherapy:review of the efficacy and side effects of approved drugs [J]. Biol Pharm Bull.2013,36(5):715-8.
    [86] Bangham AD, Horne RW. Negative Staining of Phospholipids and TheirStructural Modification by Surface-Active Agents As Observed in the ElectronMicroscope [J]. J Mol Biol.1964,8:660-8.
    [87]邓英杰.脂质体技术[M].北京:人民卫生出版社.2007
    [88] Torchilin V P, Weissig V. Liposomes: A practical apprpach [M].2nd北京:化学工业出版社,生物医药出版分社.2007
    [89] Walde P, Ichikawa S. Enzymes inside lipid vesicles: preparation, reactivity andapplications [J]. Biomol Eng.2001,18(4):143-77.
    [90] Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associatedwith altered intracellular distribution of anticancer agents [J]. Pharmacol Ther.2000,85(3):217-29.
    [91] Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, Borm P,Estrada G, Ntziachristos V, Razansky D. Multifunctional Nanocarriers fordiagnostics, drug delivery and targeted treatment across blood-brain barrier:perspectives on tracking and neuroimaging [J]. Part Fibre Toxicol.2010,7:1-25.
    [92] Maeda H. The enhanced permeability and retention (EPR) effect in tumorvasculature: the key role of tumor-selective macromolecular drug targeting [J].Adv Enzyme Regul.2001,41:189-207.
    [93] Allen TM. Ligand-targeted therapeutics in anticancer therapy [J]. Nat Rev Cancer.2002,2(10):750-63.
    [94] Wisse E, Braet F, Luo D, De Zanger R, Jans D, Crabbé E, Vermoesen A.Structure and function of sinusoidal lining cells in the liver [J]. Toxicol Pathol.1996,24(1):100-11.
    [95] Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK.Vascular permeability in a human tumor xenograft: molecular size dependenceand cutoff size [J]. Cancer Res.1995,55(17):3752-6.
    [96] Danilo D. Lasic, Liposomes in Gene Delivery[M]. Boca Raton, New York: CRCPress LLC,1997.
    [97] Gao X, Huang L. A novel cationic liposome reagent for efficient transfection ofmammalian cells [J]. Biochem Biophys Res Commun.1991,179(1):280-5.
    [98] Yuan H, Chen J, Du YZ, Hu FQ, Zeng S, Zhao HL. Studies on oral absorption ofstearic acid SLN by a novel fluorometric method [J]. Colloids Surf BBiointerfaces.2007,58(2):157-64.
    [99] Yuan H, Miao J, Du YZ, You J, Hu FQ, Zeng S. Cellular uptake of solid lipidnanoparticles and cytotoxicity of encapsulated paclitaxel in A549cancer cells [J].Int J Pharm.2008,348(1-2):137-45.
    [100] Zhang CY, Chen J, Yin DC, Lin SX. The contribution of17beta-hydroxysteroiddehydrogenase type1to the estradiol-estrone ratio in estrogen-sensitive breastcancer cells [J]. PLoS One.2012,7(1): e29835
    [101] Li B, Lin SX. Fluorescence-energy transfer in human estradiol17beta-dehydrogenase-NADPH complex and studies on the coenzyme binding [J].Eur J Biochem.1996,235(1-2):180-6.
    [102] Zhu DW, Jin JZ, Lin SX. Human17beta-hydroxysteroid dehydrogenase: opticalproperties of its complex with NADP+[J]. J Steroid Biochem Mol Biol.1995,52(1):77-81.
    [103] Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC,Bonfiglio T, Hicks DG, Tang P.. The Expression Patterns of ER, PR, HER2,CK5/6, EGFR, Ki-67and AR by Immunohistochemical Analysis in BreastCancer Cell Lines [J]. Breast Cancer (Auckl).2010,4:35-41
    [104] Richard M. Neve, Koei Chin, Jane Fridlyand, Jennifer Yeh, Frederick L. Baehner,Tea Fevr, Laura Clark, Nora Bayani, Jean-Philippe Coppe, Frances Tong, TerrySpeed, Paul T. Spellman, Sandy DeVries, Anna Lapuk, Nick J. Wang, Wen-LinKuo, Jackie L. Stilwell, Daniel Pinkel, Donna G. Albertson, Frederic M.Waldman, Frank McCormick, Robert B. Dickson, Michael D. Johnson, MarcLippman, Stephen Ethier, Adi Gazdar, Joe W. Gray. A collection of breast cancercell lines for the study of functionally distinct cancer subtypes [J]. Cancer Cell.2006,10(6):515–27.
    [105] Kuiper GG, Carlsson B, Grandien K, Enmark E, H ggblad J, Nilsson S,Gustafsson JA. Comparison of the ligand binding specificity and transcript tissuedistribution of estrogen receptors alpha and beta [J]. Endocrinology.1997,138(3):863-70.
    [106] Pasqualini JR, Chetrite G, Blacker C, Feinstein MC, Delalonde L, Talbi M,Maloche C. Concentrations of estrone, estradiol, and estrone sulfate andevaluation of sulfatase and aromatase activities in pre-and postmenopausal breastcancer patients [J]. J Clin Endocrinol Metab.1996,81(4):1460-4.
    [107] Pasqualini JR, Chetrite G, Nguyen BL, Maloche C, Delalonde L, Talbi M,Feinstein MC, Blacker C, Botella J, Paris J. Estrone sulfate-sulfatase and17beta-hydroxysteroid dehydrogenase activities: a hypothesis for their role in theevolution of human breast cancer from hormone-dependence tohormone-independence [J]. J Steroid Biochem Mol Biol.1995,53(1-6):407-12.
    [108] Wu L, Einstein M, Geissler WM, Chan HK, Elliston KO, Andersson S.Expression cloning and characterization of human17beta-hydroxysteroiddehydrogenase type2, a microsomal enzyme possessing20alpha-hydroxysteroiddehydrogenase activity [J]. J Biol Chem.1993,268(17):12964-9.
    [109] Castoria G, Migliaccio A, Giovannelli P, Auricchio F. Cell proliferation regulatedby estradiol receptor: Therapeutic implications [J]. Steroids.2010,75(8-9):524-7.
    [110] Laganière J, Deblois G, Lefebvre C, Bataille AR, Robert F, Giguère V. From theCover: Location analysis of estrogen receptor alpha target promoters reveals thatFOXA1defines a domain of the estrogen response [J]. Proc Natl Acad Sci U S A.2005,102(33):11651-6.
    [111] Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R, Cancemi M,Caporali S, Caristi S, Scafoglio C, Teti D, Bresciani F, Perillo B, Weisz A.Estrogens and progesterone promote persistent CCND1gene activation duringG1by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor(progesterone receptor) complex assembly to a distal regulatory element andrecruitment of cyclin D1to its own gene promoter [J]. Mol Cell Biol.2004,24(16):7260-74.
    [112] Foster JS, Wimalasena J. Estrogen regulates activity of cyclin-dependent kinasesand retinoblastoma protein phosphorylation in breast cancer cells [J]. MolEndocrinol.1996,10(5):488-98.
    [113] Planas-Silva MD, Weinberg RA. Estrogen-dependent cyclin E-cdk2activationthrough p21redistribution [J]. Mol Cell Biol.1997,17(7):4059-69.
    [114] Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL.Estrogen-induced activation of Cdk4and Cdk2during G1-S phase progression isaccompanied by increased cyclin D1expression and decreased cyclin-dependentkinase inhibitor association with cyclin E-Cdk2[J]. J Biol Chem.1997,272(16):10882-94.
    [115] Sutherland RL, Hall RE, Taylor IW. Cell proliferation kinetics of MCF-7humanmammary carcinoma cells in culture and effects of tamoxifen on exponentiallygrowing and plateau-phase cells [J]. Cancer Res.1983,43(9):3998-4006.
    [116] Taylor IW, Hodson PJ, Green MD, Sutherland RL. Effects of tamoxifen on cellcycle progression of synchronous MCF-7human mammary carcinoma cells [J].Cancer Res.1983,43(9):4007-10.
    [117] Wakeling AE, Newboult E, Peters SW. Effects of antioestrogens on theproliferation of MCF-7human breast cancer cells.J Mol Endocrinol [J].1989,2(3):225-34.
    [118] Musgrove EA, Wakeling AE, Sutherland RL. Points of action of estrogenantagonists and a calmodulin antagonist within the MCF-7human breast cancercell cycle [J]. Cancer Res.1989,49(9):2398-404.
    [119] Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL.Estrogen and antiestrogen regulation of cell cycle progression in breast cancercells [J]. Endocr Relat Cancer.2003,10(2):179-86.
    [120] Boccuzzi G, Brignardello E, di Monaco M, Forte C, Leonardi L, Pizzini A.Influence of dehydroepiandrosterone and5-en-androstene-3beta,17beta-diol onthe growth of MCF-7human breast cancer cells induced by17beta-estradiol [J].Anticancer Res.1992,12(3):799-803.
    [121] Le Bail JC, Marre-Fournier F, Nicolas JC, Habrioux G. C19steroids estrogenicactivity in human breast cancer cell lines: importance of dehydroepiandrosteronesulfate at physiological plasma concentration [J]. Steroids.1998,63(12):678-83.
    [122] Pettersson H, Lundqvist J, Norlin M. Effects of CYP7B1-mediated catalysis onestrogen receptor activation [J]. Biochim Biophys Acta.2010,1801(9):1090-7.
    [123] Boccuzzi G, Brignardello E, Di Monaco M, Gatto V, Leonardi L, Pizzini A,Gallo M.5-En-androstene-3beta,17beta-diol inhibits the growth of MCF-7breast cancer cells when oestrogen receptors are blocked by oestradiol [J]. Br JCancer.1994,70(6):1035-9.
    [124] Johnston MJ, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR.Characterization of the drug retention and pharmacokinetic properties ofliposomal nanoparticles containing dihydrosphingomyelin [J]. Biochim BiophysActa.2007,1768:1121-1127.
    [125] Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulatedanti-cancer drugs [J]. Anticancer Drugs.2005,16:691-707.
    [126] Stano P, Bufali S, Pisano C, Bucci F, Barbarino M, Santaniello M, Carminati P,Luisi PL. Novel camptothecin analogue (gimatecan)-containing liposomesprepared by the ethanol injection method [J]. J Liposome Res.2004,14:87-109.
    [127] Omri A, Suntres ZE, Shek PN. Enhanced activity of liposomal polymyxin Bagainst Pseudomonas aeruginosa in a rat model of lung infection [J]. BiochemPharmacol.2002,64:1407-1413.
    [128] Schiffelers RM, Storm G, Bakker-Woudenberg IA. Host factors influencing thepreferential localization of sterically stabilized liposomes in Klebsiellapneumoniae-infected rat lung tissue [J]. Pharm Res.2001,18:780-787.
    [129] Baekmark TR, Pedersen S, J rgensen K, Mouritsen OG. The effects of ethyleneoxide containing lipopolymers and tri-block copolymers on lipid bilayers ofdipalmitoylphosphatidylcholine [J]. Biophys J.1997,73(3):1479-91.
    [130] Castile JD, Taylor KM, Buckton G. A high sensitivity differential scanningcalorimetry study of the interaction between poloxamers and dimyristoy-lphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes [J]. Int JPharm.1999,182(1):101-10.
    [131] Johnsson M, Silvander M, Karlsson G, Edwards K. Effect of PEO PPO PEOTriblock Copolymers on Structure and Stability of PhosphatidylcholineLiposomes. Langmuir.1999,15(19):6314-6325.
    [132] Alexandridis P, Andersson K. Effect of Solvent Quality on Reverse MicelleFormation and Water Solubilization by Poly(ethylene oxide)/Poly(propyleneoxide) and Poly(ethylene oxide)/Poly(butylene oxide) Block Copolymers inXylene [J]. J Colloid Interface Sci.1997,194(1):166-73.
    [133] Bergstrand N, Edwards K. Effects of poly(ethylene oxide)-poly(propyleneoxide)-poly(ethylene oxide) triblock copolymers on structure and stability ofliposomal dioleoylphosphatidylethanolamine [J]. J Colloid Interface Sci.2004,276(2):400-7.
    [134] Wang R, Xiao R, Zeng Z, Xu L, Wang J. Application of poly(ethyleneglycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers andtheir derivatives as nanomaterials in drug delivery [J]. Int J Nanomedicine.2012,7:4185-98.
    [135] Ferreira Ddos S, Lopes SC, Franco MS, Oliveira MC.pH-sensitive liposomes fordrug delivery in cancer treatment [J]. Ther Deliv.2013,4(9):1099-123.
    [136] Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles totumors [J]. J Cell Biol.2010,188(6):759-68.
    [137] Ogawara K, Yoshizawa Y, Un K, Araki T, Kimura T, Higaki K.Nanoparticle-based passive drug targeting to tumors: considerations andimplications for optimization [J]. Biol Pharm Bull.2013,36(5):698-702.
    [138] Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma:advantage and disadvantage of PEGylation of liposomes for systemic genes andnucleic acids delivery to tumors [J]. Biol Pharm Bull.2013,36(6):892-9.
    [139] Elizondo E, Moreno E, Cabrera I, Córdoba A, Sala S, Veciana J, Ventosa N.Liposomes and other vesicular systems: structural characteristics, methods ofpreparation, and use in nanomedicine [J]. Prog Mol Biol Transl Sci.2011,104:1-52.
    [140] Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N,Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification,preparation, and applications [J]. Nanoscale Res Lett.2013,8(1):102-11.
    [141] Himanshu A, Sitasharan P, Singhai AK. Liposomes as drug carriers [J]. IJPLS.2011,2(7):945-51.
    [142] Atrooz OM. Effects of alkylresorcinolic lipids obtained from acetonic extract ofJordanian wheat grains on liposome properties [J]. Int J Biol Chem.2011,5(5):314-21.
    [143] Shehata T, Ogawara K, Higaki K, Kimura T. Prolongation of residence time ofliposome by surface-modification with mixture of hydrophilic polymers [J]. Int JPharm.2008,359:272-9.
    [144] Gillet A, Lecomte F, Hubert P, Ducat E, Evrard B, Piel G. Skin penetrationbehaviour of liposomes as a function of their composition [J]. Eur J PharmBiopharm.2011,79(1):43-53.
    [145] Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyüksel H. In vitro characterizationof PEGylated phospholipid micelles for improved drug solubilization: effects ofPEG chain length and PC incorporation [J]. J Pharm Sci.2004,93(10):2476-87.
    [146] Jones A, Harris AL. New developments in angiogenesis: a major mechanism fortumor growth and target for therapy [J]. Cancer J Sci Am.1998,4(4):209-17.
    [147] Moghimi SM, Hunter AC.Poloxamers and poloxamines in nanoparticleengineering and experimental medicine [J].Trends Biotechnol.2000,18(10):412-20.
    [148] Park EK, Lee SB, Lee YM.Preparation and characterization of methoxypoly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymericnanospheres for tumor-specific folate-mediated targeting of anticancer drugs[J].Biomaterials.2005,26(9):1053-61.
    [149] Maeda H, Matsumura Y.Tumoritropic and lymphotropic principles ofmacromolecular drugs [J].Crit Rev Ther Drug Carrier Syst.1989,6(3):193-210.
    [150] Mansour AM, Drevs J, Esser N, Hamada FM, Badary OA, Unger C, Fichtner I,Kratz F.A new approach for the treatment of malignant melanoma: enhancedantitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved bymatrix metalloproteinase2[J].Cancer Res.2003,63(14):4062-6.
    [151] Prabha S, Labhasetwar V.Nanoparticle-mediated wild-type p53gene deliveryresults in sustained antiproliferative activity in breast cancer cells [J].Mol Pharm.2004,1(3):211-9.
    [152] Nomura T, Saikawa A, Morita S, Sakaeda Kakutani T, Yamashita F, Honda K,Takakura Y, Hashida M.Pharmacokinetic characteristics and therapeutic effectsof mitomycin C-dextran conjugates after intratumoural injection [J].J ControlRelease.1998,52(3):239-52.
    [153] Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, MarksJD, Benz CC, Park JW. Antibody targeting of long-circulating lipidicnanoparticles does not increase tumor localization but does increaseinternalization in animal models [J]. Cancer Res.2006,66(13):6732-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700