若尔盖高原湿地国家级自然保护区景观格局变化及驱动力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
若尔盖高原湿地国家级自然保护区是全球类型独特的高寒泥炭沼泽湿地,为我国泥炭沼泽的集中分布区。地处青藏高原东缘的黄河上游,通过湿地汇集降雨和地表径流、冰川融雪,以及调控洪水等过程,对下游水量均衡起到重要作用。独特的气候环境与地理区位,孕育了世界高山带珍稀动、植物的生存环境,另一方面,若尔盖保护区地处少数民族地区,又是藏民游牧区和著名旅游区,是当地社会稳定、经济发展的重要基础,也是生物多样性保护与湿地资源保护、利用矛盾极为突出的地区。若尔盖保护区湿地景观变化不仅改变了其景观的空间结构,而且影响了湿地景观的原有生态服务功能,尤其对生物多样性的栖息生境产生重要影响。该区域已有的研究表明,保护区水环境逐年减少,湿地质心迁移,适宜多种珍稀动、植物生存繁衍的湿地环境不断丧失,生物多样性受到严重威胁并危及到当地经济的可持续发展,从而成为国内外广泛关注的焦点。但长期以来国内外对这一湿地的研究并不深入。
     论文选取若尔盖高原湿地国家级自然保护区,以景观生态学基本原理为指导,结合3S技术,客观分析若尔盖国家级自然保护区湿地18年(1990~2007)来景观格局的动态变化,探讨湿地景观格局变化的主要或关键驱动力,为控制保护区人类经济活动且合理地持续利用湿地资源,为保护区有效保护管理提供科学依据,指导保护区管理政策制定来应对全球气候环境变化,保护受损高原湿地的珍稀动植物资源,恢复其受损生境,维护黄河流域的生态安全和经济社会可持续发展。
     本研究基于遥感、地理信息系统和全球定位系统等技术手段对若尔盖高原湿地进行景观格局变化研究。选择了该区域1990年、2000年、2007年时相较为接近的三幅影像为基本数据源进行景观解译,结合相关历史资料、调查数据和采样实验,利用景观分析软件Fragstats3.3计算景观格局指数,统计其变化特征。结果表明,18年来,湿地景观组分演变以沼泽化草甸为主要优势类型,面积从45.36%增加至48.05%,成为景观基底。景观尺度下,多样性指数、景观破碎程度增加,斑块数目2000年到2007年净增27,景观边缘密度2007年增加0.626m/ hm2,Shannon多样性指数由2000年的1.2769至2007年增加到1.2797。斑块水平中,草甸与沼泽化草甸斑块破碎程度、空间异质程度最高,湖泊最低。在排水、人为放牧干扰的长期频繁影响下,沼泽化草甸、草甸破碎程度、空间异质程度升高。景观时空不断演化,有水的生境面积减少,而沼泽化草甸、干草甸(草场)面积持续增加,1990~2000年,沼泽化草甸、草甸面积分别增加了1978.60 hm2和2559.09 hm2,2000 ~2007年,湖沼水面积仍在萎缩,草场放牧面积保持增长,沙地短期增加1945.90 hm2,反映了若尔盖湿地景观由原生湿地景观逐渐往陆生草场的变化过程。
     论文研究分析获得了若尔盖湿地景观格局变化的关键驱动因子,其在气候变暖自然条件下,保护区社区人口增涨,生存需求胁迫下对湿地排干、超载或高强度放牧引起或加速了沼泽和沼泽化草甸退化,导致草甸沙化;恢复中的沙化草地遭受再次放牧践踏,沙化趋势加剧,鼠害泛滥;另外,经济开发活动如道路建设、城镇化和采矿活动,以及对资源高强度依赖和经济快速发展的冲击,引发的无序旅游及滥挖乱采药材等干扰,驱动着湿地退化。14年来若尔盖在保护区管理局多年的积极管理下,景观尺度总体上破碎程度呈下降趋势,景观聚集度递增,河流小幅增加,湿地环境有所改善,保护区保护管理起到了积极作用,但沼泽湿地向草地牧场退化演替仍是这一时期的主要趋势。加强控制该区人类经济活动,是保护区管理局实现湿地生物多样性保护与湿地资源可持续利用的管理基础,对若尔盖退化湿地进行治理和恢复,须提高对若尔盖高原湿地保护的认识,从景观大尺度上思考若尔盖国家级自然保护区的保护管理,提出应对全球气候变化的湿地保护策略。
The national nature reserve of Ruoergai plateau wetland is a unique type of alpine-cold of peat swamp in global, also is a concentrated distribution area of peat swamp in China. Situated in the eastern edge of Qinghai-Tibet Plateau and in the upper reaches of yellow river, these natural wetlands play a critical role in regulation of water levels for the lower reaches of these rivers through several processes including converging the runoff of rainfall, melted snow and ice, managing flood. By the environment area of distinctive climate and unique geographic location, it has bred an alpine region with living the valuable-rare animals and plant in the word. On the other hand, the wetland of Ruoergai, where is the minorities live region, also as a nomadic area and well-know tourist area, is the important area basis for local social stability, economic development, also is most prominent areas of conflict which biodiversity conservation and protection of wetland resources fight with wetland resources using. Wetland nature reserve of Ruoergai landscape changes are not only changed its landscape spatial structure, but also impact the original ecosystem services of this wetland. In particular, biodiversity habitats have an important impact. The researches in Ruoergai wetland show: water environment area was reducing year by year, and the heart area of wetland transferred, wetland environments Suitable for a variety of rare animals and plants lived and propagated were losing, biodiversity conservation was badly threatened and the local sustainable development of animal husbandry was compromised. These wetland places became the focus of attention at home and abroad, but for a long time researches in Ruoergai wetland are elementary in China's scientific community.
     In this paper, Ruoergai wetland national nature reserve was selected as a research area. The principle of landscape ecology and 3S technologies was used as a basic guide. From 1990 to 2007, the landscape changes of Ruoergai wetland national nature reserve are analyzed, the wetland landscape changes of major or critical driving forces are discussed. The found results will use to control the reserve people economic activity and direct reasonably sustainable wetland resources use, to provide the scientific and effective protection reserve management, and also will help someone to make reserve management policies, to response global climate change, to maintain a sustainable use of plateau wetland resources, restoration ecology, to maintain of ecological safety and sustainable social and economic development of the Yellow River basin. This study will make up for the weak areas of plateau wetland research.
     Based on the 3S-technique, and by using the Fragstats software and combining with related historical data, survey data and sampling experiment, the variation of the landscape patterns of the plateau wetland reserve in the interpretation images(TM) of the years of 1990 and 2000 and 2007 were analyzed quantitatively. The results show that: Over these 18 years, the evolution of wetland landscape components was degraded marsh as the main advantages of type, from 45.36% increase to 48.05%, which forms the landscape matrix; in landscape level, diversity index, landscape fragmentation increased within the latest period of time, so did the patch numbers, from 2000 to 2007 the net gains were 27, and Landscape edge density increased to 0.626m/ hm2 within 2007, from 2000 to 2007 Shannon diversity index was 1.2769 to 1.2797; in class level, grass and degraded-marsh patch fragmentation, spatial heterogeneity degree were the highest, which in the period of time were increasing because of drainage, frequent and long grazing influence, but lake was the lowest; in temporal evolution of landscape spatial, water habitat areas were decrease, grassland(degraded-marsh and grass) area continued to grow, degraded-marsh and grass area respectively increased 1978.60hm2, 2559.09 hm2 from 1990 to 2000, water area was still shrinking and grazing area keep funding from 2000 to 2007, sand area recently increased 1945.90 hm2 in the term. This reflected the gradual evolution changes, from native wetland landscape to grazing pasture land in Ruoergai wetland landscape.
     Papers analysis showed out the key factor of Ruoergai wetland landscape change, under the climate warming conditions, the community population in this reserve were growing, it caused people survival needs stress to drainage and over or high-strength grazing, which accelerated the grass and degraded-marsh degradation, add the recovery of the desertification of the grass being trampled and again grazing, that caused desertification trends exacerbate in short term, rodents spread; in addition, economic development activities such as road construction, urbanization and mining activities, as well as on the resources of the high strength dependence and the impact of rapid economic development, raised out of order messages for tourism and which out of mining medicinal interference, droved the wetland degradation. After 14 years of Ruoergai reserve authority actively managed, the landscape fragmentation of landscape-scale was overall downward and the landscape conglomeration of landscape-scale was increment, a small increase in rivers, wetlands environmental improvement. Preserve wetland management had played a positive role, but wetland marsh degradation to grass pasture succession was the remains of this period of major trends. Strengthening the control of people in the area of economic activity is the reserve authority management base for implement wetland biodiversity conservation and sustainable use of wetland resources. For treatment and recovery Ruoergai wetland, must improve the Ruoergai wetlands protection awareness, thought over the landscape-scale of Ruoergai national nature reserve of the conservation and management, which can prevent wetland degradation to dealing with global climate changes.
引文
[1]Turner H B L, Moss R H, Skole D L ed. Relating Land Use and Global Land-Cover Change:A Proposal for an IGBP~HDP Core Project.A Report from the IGBP/HDP Working Group on Land~Use/Land~Cover Change.Published In Stockholm.IGBP and HDP.
    [2]陈宜瑜,陈泮勤,葛全胜等.全球变化研究进展与展望[J].地学前缘(中国地质大学,北京), 2002, 9(1): 11~17.
    [3]陈勇,竺杏月,张智光.自然保护区可持续发展研究的理论与方法评述[J].南京林业大学学报(自然科学版), 2003, 02: 79~83.
    [4]崔宝山,杨志峰.湿地学[M].北京:北京师范大学出版社, 2006: 3~17.
    [5]A. Dennis Lemly,Richard T. , Kingsford, et al. Irrigated agriculture and wildlife conservation: conflict on a global scale[J]. Environment Management, 2000, 25(5):485~512.
    [6]Geist H J, Lambin E F. What drives tropical deforestation[C]? LUCC Report Series No.4. LUCC International Project Office University of Louvain Department of Geography, Printed and bound by Ciaco Printshop, 2001: 1~23.
    [7]Turner B L II, Clark W C, Kates R W,et al. Report on Reports -- The earth as transformed by human action[J]. Environment, 1992,34(3): 25~30.
    [8]Lambin E F, Ehrlich D. Land-cover changes in sub-saharan Africa (1982~1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale[J]. Remote Sens. Environ, 1997, 61(2): 181~200.
    [9]郑丙辉,田自强,王文杰,等.中国西部地区土地利用/土地覆盖近期动态分析[J].生态学报, 2004, 24(5): 1078~1084.
    [10]杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展, 2004, 21(2): 111~118.
    [11]杨永兴.若尔盖高原生态环境恶化与沼泽退化及其形成机制[J].山地学报,1999, 17(4): 318—323.
    [12]张晓云,吕宪国,沈松平.若尔盖高原湿地生态系统服务价值动态[J].应用生态学报, 2009, 20(5): 1147~1152.
    [13]高俊琴,欧阳华,张锋,等.若尔盖高寒湿地表层土壤有机碳空间分布特征[J].生态环境, 2007,16(6):1723~1727.
    [14]高俊琴,欧阳华,张锋,等.若尔盖高寒湿地土壤氮矿化对温度和湿度的响应[J].湿地科学, 2 0 0 8, 6 (2): 229~234.
    [15]田应兵,熊明彪,宋光煜.若尔盖高原湿地生态恢复过程中土壤有机质的变化研究[J].湿地科学, 2004, 2(2): 88~93.
    [16]田应兵,陈芬,熊明彪,等.若尔盖高原湿地土壤性质对硒有效性的影响[J].水土保持学报, 2004, 18(5): 15~18.
    [17]王长科,吕宪国,周华荣,等.若尔盖高原沼泽土壤氧化甲烷的研究[J].中国环境科学2004,24(6):646~649.
    [18]白红军,欧阳华,崔宝山,等.近40年来若尔盖高寒湿地景观格局变化[J].生态学报, 2008, 28(5): 2245~2252.
    [19]王石英,张宏,杜娟.青藏高原若尔盖地区近期土地覆被变化[J].山地学报, 2008, 26(4): 496~502
    [20]王宪礼,胡远满,布仁仓.辽河三角洲湿地的景观变化分析[J].地理科学, 1996, 16(3): 260~265.
    [21]刘红玉,吕宪国.三江平原湿地景观生态制图分类系统研究[J].地理科学, 1999, 19(5): 432~436.
    [22]肖笃宁,李晓文,王连平.辽东湾滨海湿地资源景观演变与可持续利用[J].资源科学, 2001, 23(2): 31~36.
    [23]王红娟,姜加虎,黄群.东洞庭湖湿地景观变化研究[J],长江流域资源与环境, 2007, 16(6): 732~737.
    [24]Troll C. 1950. Die geographisched landscahaft und ihre erforschung [J].Studium Generale,3:163~181.
    [25] A.R.阿尔曼德.景观科学[M].北京:商务印书馆,1992.
    [26]李秀珍.从第15届美国景观生态学年会看当前景观生态学的热点和前言[J].生态学报,2000,20(6):1113~1115.
    [27]陈昌笃.论地生态学[J].生态学报,1986,6(4): 289~294.
    [28]Forman, R. T. T. and M. Godron. Landscape Ecology[M]. John Wiley & Sons, New York.1986.
    [29]Pickett, S. T. A. and M. L. Cadenasso. Landscape ecology: spatial heterogeneity in ecological systems[J]. Science, 1995,269: 331~334.
    [30]Wu, J. and O. L. Loucks. From balance of nature to hierarchical patch dynamics: paradigm shift in ecology[J]. Q. Rev. Biol., 1995,70 (4):439~466.
    [31]Forman, R. T. T. Landscape Mosaics: The Ecology of Landscapes and Regions[M]. Cambridge University Press, Cambridge.1995.
    [32]Risser, P. G. et al. Landscape ecology: direction sand approaches. Special Pub. No.2[C]. Illinois Natural History Survey, Champaign.1984.
    [33]Parker KC, Bendix J. 1996. Landscape2scale geomorphic influences on vegetation patterns in four environments [J].Phys.Geogr.,17: 113~141.
    [34]Riitters KH, Wickham JD, O. Neill RV, et al. 2002. Fragmentation of continental United States forests [J].Ecosystems,5:815~822.
    [35]Kashian DM, Turner MG, Romme WH. 2005a. Changes in leaf area and stemwood increment with stand development inYellowstone National Park: Relationships between forest stand structure and function [J].Ecosystems,8:48~61.
    [36]Kashian DM, Turner MG, Romme WH, et al. 2005b. Variability and convergence in stand structure with forest development on a fire dominated landscape [J].Ecology,86:643~654.
    [37]Urban D, Goslee S, Pierce K, et al. 2002. Extending community ecology to landscapes [J].Ecoscience,9:200~212.
    [38]Black AE, Morgan P, Hessburg PF. 2003. Social and biophysical correlates of change in forest landscapes of the interior Columbia Basin, USA [J].Ecol. Appl.,13:51~67.
    [39]Costanza R, Voinov A, Boumans R, et al. 2002. Integrated ecological economic modeling of the Patuxent River watershed Maryland [J].Ecol. Monogr.,72:203~232.
    [40]McGarigal K, Marks BJ. 1995. FRAGSTATS: Spatial Analysis Program for Quantifying Landscape Structure [M]. Washington DC: The Pacific Northwest Research Station, 351.
    [41]Krummel JR, Gardner RH, Sugihara G, et al. 1987. Landscape patterns in a disturbed environment [J].Oikos,48:321~324.
    [42]Fortin M. J, Boots B, Csillag F, et al. 2003. On the role of spatial stochastic models in understanding landscape indices [J]. Oikos,102:203~212.
    [43]Remmel TK, Csillag F. 2003. When are two landscape pattern indices significantly different? [J].J. Geography. Syst.,5:331~351.
    [44]Pastor J, Dewey B, Moen R, et al. 1998. Spatial patterns in the moose forest soil ecosystem on Isle Royale, Michigan, USA [J].Ecol. Appl.,8:411~424.
    [45]Wang H, Hall CAS, Cornell JD, et al. 2002. Spatial dependence and the relationship of soil organic carbon and soil moisture in Luquillo experimental forest [J]. Landscape. Ecol.,17:671~684.
    [46]Fraterrigo J, Turner MG, Pearson SM, et al. 2005. Effects of past land use on spatial heterogeneity of soil nutrients in Southern Appalachian forests [J].Ecol. Monogr.,75:215~230.
    [47]Burrows SN, Gower ST, Clayton MK, et al. 2002. Application of geo-statistics to characterize leaf area index (LAI) from flux tower to landscape scales using a cyclic sampling design[J].Ecosystems,5:667~679.
    [48]Turner MG, Tinker DB, Romme WH, et al. 2004. Landscape patterns of sapling density, leaf area, and aboveground net primary production in post-fire lodge-pole pine forests, Yellowstone National Park (USA) [J].Ecosystems,7:751~775.
    [49]Fan W, Randolph JC, Ehman JL. 1998. Regional estimation of nitrogen mineralization in forest ecosystems using Geographic Information Systems [J].Ecol. Appl.8:734~747.
    [50]Hansen AJ, Rotella JJ, Kraska MPV, et al. 2000. Spatial patterns of primary productivity in the greater Yellowstone ecosystem [J]. Landscape. Ecol.,15:505~522.
    [51]Wiens JA, Crawford CS, Gosz JR. 1985. Boundary dynamics——A conceptual framework for studying landscape ecosystems [J].Oikos,45:421~427.
    [52]Weller DE, Jordan TE, Correll DL. 1998. Heuristic models for material discharge from landscapes with riparian buffers [J]. Ecol. Appl.,8:1156~1169.
    [53]Loreau M, Mouquet N, Holt RD. 2003. Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology [J].Ecol. Lett.,6:673~679.
    [54]Strayer DL, Ewing HA, Bigelow S. 2003b. What kind of spatial and temporal details are required in models of heterogeneous systems? [J].Oikos,102:654~662.
    [55]邬建国,景观生态学——格局、过程、尺度与等级[M],高等教育出版社,2000,12: (2)6.
    [56]肖笃宁,景观生态学理论/方法及应用[M],北京:中国林业出版社,1991,6~15.
    [57]肖笃宁等,沈阳西郊景观格局变化的研知[J],应用生态学报,1990,1(1)75~84.
    [58]傅伯杰,陈利顶,马克明等,景观生态学原理及应用[J],科学出版社,2002,1:5~9,16~33.
    [59]陈文波,肖笃宁,李秀珍,景观空间分析的特征和土要内容[J],生态学报,2002,7(22):1135~1141.
    [60]李哈滨,J. F. Fl.allkIin,景观生态学——生态学领域里的新概念构架[J],生态学进展,1988,5(I);23~33.
    [61]陈文波,肖笃宁,李秀珍,当代景观生态学的进展和展望[J],地理科学,1997,17(4):356~363.
    [62]王佑汉,赵宏达,任茜.成都平原土地利用景观格局变化及驱动因素分析——以成都市龙泉驿区为例[J],水土保持研究, 2007,14(6):204~207.
    [63]李月辉,胡远满,常禹等.大兴安岭呼中林业局森林景观格局变化及其驱动力[J],生态学报,2006,26(10):3347~3355.
    [64]战金艳,邓祥征,赵涛.甘肃省庆阳市景观演替情景分析[J],地理与地理信息科学,2006,22(3):102~105.
    [65]仇恒佳,卞新民.环太湖景观生态格局变化研究——以苏州市吴中区为例[J],长江流域资源与环境,2006,15(1):81~85.
    [66]魏晶,王涌翔,吴钢等.辽西大凌河流域土地利用变化及驱动力分析[J],生态环境2006,15(3):559~563.
    [67]李闯,刘吉平,刘庆凤,于洋等.松嫩平原湿地景观格局动态变化研究[J],湿地科学,2008,6(2):167~171.
    [68]王娟,崔保山,姚华荣.云南澜沧江流域景观格局时空动态研究[J],水土保持学报,2007,21(4):85~97.
    [69]赵魁义等.西藏高原沼泽的初步研究[J].自然资源,198l (2).
    [70]郑度等.青藏高原湿地初探[J].中国湿地研究,1995:236~240
    [71]MAING J. K and MARSH S. E. Assessment of environmental impacts of river basin development on the riverine forests of eastern Kenya using multi-temporal satellite data 2001,vol.22, No.14, 2701~2729
    [72]Inous, M. and Nakagoshi, N., The effects of human impacts on spatial structre of the riparian vegetation along the Ashida river, Japan. 2001,53,111~121
    [73]Michiru MIYAMOTO , Kunihiko YOSHINO .Vegetation Mapping of Kushiro Wetland in Northeast Hokkaido, Japan: Application of SPOT Images, Aerial Balloon Photographsand Airborne Color Near Infrared (CNIR) Images for Classification. 34950-7803-7536-X/02/(C) 2002 IEEE
    [74]E. J. Hoskingl, C. S. Baeh1. Monitoring using Sequences of Landsat Imagery in the Mary River wetlands 2001 0-7803-7031-7/01/(C)2001 IEEE.2241~2243
    [75]王宪礼,胡远满,布仁仓.辽河二角洲湿地的景观变化分析.地理科学[J],1996,16(3),260~265
    [76]刘红玉,吕宪国.三江平原湿地景观生态制图分类系统研究.地理科学[J].1999,19(5):432~436
    [77]肖笃宁,李晓文.王连平.辽东湾滨海湿地资源景观演变与可持续利.资源科学[J].2001,20(2):31~16
    [78]汪爱华,张树清,何艳芬.RS和GIS支持下的三江平原沼泽湿地动态变化研究.地理科学[J].2002,22(5):636~640
    [79]汪爱华,张树清,张柏.三江平原沼泽湿地景观空间格局变化.生态学报[J].2003,23(2):237~243
    [80]邬建国.景观生态学——概念与理论[J].生态学杂志, 2000, 19(1): 42~52.
    [81]赵景柱.景观生态空间格局动态度量指标体系[J].生态学报, 1990, 10(2): 182~186.
    [82]张彤.崇明东滩景景观格局与变化研究[C].上海:华东师范大学硕士毕业论文, 2004, 26~33.
    [83]路瑶.珠峰自然保护区景观格局演化及其驱动因子研究[C].成都:成都理工大学硕士毕业论文, 2008, 20~22.
    [84]王安周.郑州市景观格局变化及其生态优化研究[C].洛阳:河南大学硕士毕业论文, 2008, 24~26.
    [85]邵洪伟.深圳市景观格局演变及驱动力研究[C].天津:天津师范大学硕士毕业论文, 2008, 26~28.
    [86]时嘉凯.上海市青浦区景观格局分析与景观生态规划研究[C].上海:东华大学硕士毕业论文, 2007, 26~35.
    [87]李建国.辽河三角洲景观格局变化特征及影响分析[C].吉林:吉林大学硕士毕业论文, 2003, 27~38.
    [88]中国科学院南京土壤.土壤理化性质分析[M].上海:上海科技出版社, 1987.62~93, 132~135.
    [89]刘光崧.土壤理化分析与剖面描述.北京:中国标准出版社, 1996. 31~37.
    [90]王燕,赵志中,乔彦松,等.若尔盖45年来的气候变化特征及其对当地生态环境的影响[J].地质力学学报, 2005,11(4): 328~332.
    [91]Maria B V, Nilda M A, Norman P. Soil degradation related to overgrazing in the semi-arid southern Caldenal area of Argentina.[J]. Soil Science, 2001,166(7): 441~452.
    [92]田昆,陆梅,常凤来,等.云南纳帕海岩溶湿地生态环境变化及驱动机制[J].湖泊科学, 2004, 16 (1):35~42.
    [93]马涛,武高林,何彦龙,等.青藏高原东部高寒草甸群落生物量和补偿能力对施肥与刈割的响应[J].生态学报, 2007, 27(6): 22882~2293.
    [94]高英志,韩兴国,汪诗平.放牧对草原土壤的影响[J].生态学报, 2004, 24(4): 790~794.
    [95]仁青吉,武高林,任国华.放牧强度对青藏高原东部高寒草甸植物群落特征的影响[J]草业学报, 2009, 18(5): 256~261.
    [96]杨永兴.若尔盖高原生态环境恶化与沼泽退化及其形成机制[J].山地学报,1999, 17(4): 318—323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700