自身免疫性肝病中CD4、CD25、Foxp3及ERα、TGF-β1的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     近年来不同类型肝炎的鉴别诊断是临床迫切需要解决的难题,尤其是各型AILD的诊断更是难中之难,虽然国际自身免疫性肝炎小组(IAIHG)制定了一套诊断标准,并经过多次修订使得诊断率有所提高,诊断也更加可靠,但还会遇到诊断与临床表现不符或是治疗效果不满意的情况。基于此许多临床医生向病理医生寻求帮助,希望通过分析肝穿标本的病理特征能够给于他们更明确的诊断及治疗方向。我们分析,虽然各种肝炎有许多相似的组织学表现,但各自有各自相对的组织学特征,为此我们通过分析几种常见的肝炎(自身免疫性肝炎(AIH)、原发性胆汁性肝硬化(PBC)及慢性乙型肝炎(CHB)) HE染色标本的组织学特征,以此来为临床诊断提供帮助,为临床治疗提供依据。此外CD4、CD25、叉头样转录因子Foxp3(foxhead box protein 3)、雌激素受体α(ERa)及转化生长因子β1 (TGF-β1)与自身免疫性疾病的关系倍受关注,尤其是CD4+、CD25+的Treg及Foxp3在自身免疫性疾病发病机制中的作用更是研究焦点中的热中之热。为此我们比较它们在各组肝活检中的表达情况来探讨其作用及意义。
     方法
     应用HE染色进行29例I型AIH、18例PBC、15例CHB肝穿标本的组织学特征分析,应用免疫组化方法检测各组CD4、CD25、Foxp3、ERa及TGF-β1的表达情况,设8例正常肝组织(非肝病患者尸检来源的肝组织)为对照。
     结果
     1. AIH、PBC、CHB三组中羽毛状变性发生率分别为3.45%、33.33%、6.67%,PBC组明显高于AIH组(P<0.05);桥接坏死发生率分别为27.59%、50.00%、13.33%,PBC组明显高于乙肝组(P<0.05);胆栓发生率分别为6.92%、44.44%、6.67%,PBC组明显高于AIH和CHB组(P<0.01、P<0.05);胆管增生发生率分别为34.48%、61.11%、13.33%,PBC组明显高于AIH和CHB组(P<0.05)。
     2.CD4在各组的表达PBC组高于乙肝组(P<0.01)。
     3.CD25在各组的表达差异没有统计学意义(P>0.05)。
     4. Foxp3组间阳性胆管数PBC组高于正常组(P<0.01),阳性细胞数各组间差异没有统计学意义(P>0.05)。
     5.ERα在各组的表达AIH和PBC组高于正常组(P<0.01)。
     6. TGF-B1表达:在PBC组汇管区阳性细胞数高于肝小叶(P<0.05),各组间汇管区阳性细胞数PBC组高于其它三组(P<0.01),在正常组肝小叶内阳性细胞数高于汇管区(P<0.01)。
     结论
     1.不同类型的自身免疫性肝病的组织学特征有所不同,AIH以肝小叶界板的损伤为主要改变,而PBC以胆管上皮损伤为主要特征,比如羽毛状变性,胆栓及胆管增生。
     2. CD4+T细胞可能在PBC发生的免疫机制中起到重要作用。
     3.ERa及TGF-β1可能介导和促进了自身免疫性肝病的发生发展。
AIM
     In recent years the different type hepatitis's differential diagnosis was the difficult problem which clinical urgent needed to solve, particularly each AILD diagnosis was especially difficult, although the International Immunity Hepatitis Group has formulated a set of diagnosis standard, and after many times revised the diagnosis rate was improved, the diagnosis was also more reliable, but we will also meet the situation which the diagnoses and the clinical manifestation was not correspond, or some other phenomenon could not be explained in the course of treatment. Based on this many clinicians seeked help to pathology doctor and hoped that through analyzing the pathology characteristic of the liver' specimen to be able to give them more explicit diagnosis and guide the treatment direction. We analyzed, although each kind of hepatitis has many similar histology performance, but has respectively the relative different histology characteristic, for this reason we summarized and induced the histology characteristic of the HE stained several kind of common hepatitis (AIH、PBC、CHB),and strived for to provide the help for the clinical diagnosis and the clinical care. In addition the relationship of CD4、CD25、the foxhead box protein 3 (Foxp3)、the estrogen acceptor Alpha (ERa) and the transformation growth factorβ1 (TGF-B 1) with the autoimmune disease was received much attention, Especially the function of the CD4+ CD25+ Treg and Foxp3 in the pathogenesis of the autoimmune disease was the studing focus.For that we explored the expression and significance of them in above the autoimmune liver disease.
     METHODS
     Histological analysis of liver biopsy specimens from 29 patients with AIH,18 patients with PBC,15 patients with CHB, and immunohistochemistry technique was used to detect the expression of CD4、CD25、FoxP3、ERaand TGF-β1 in above 3 groups and 8 normal. RESULTS
     1. The incidence of the feathery degeneration are 3.45%、33.33%、6.67%, PBC
     was higher than AIH (P<0.05), the incidence of the bridging necrosis are27.59%、 50.00%、13.33%, PBC was higher than CHB (P<0.05), the incidence of bile thrombus are 6.92%、44.44%、6.67%, PBC was higher than AIH and CHB(P<0.01、P<0.05); and the incidence of proliferation of small bile duct were different significantly in AIH, PBC and CHB (34.48%、61.11%、13.33%) PBC was higher than AIH and CHB (P<0.05)
     2. The expression of CD4 for PBC was higher than CHB(P<0.01),
     3. The difference of the expression of CD25 was not statistically significant in above groups (P>0.05),
     4. The expression of Foxp3 in bile duct epithelial was significantly different in above groups, PBC are higher than normal (P<0.01) but in cell the difference was not statistically significant (P>0.05).
     5. The expression of ERa was significantly different in above 4 groups, AIH、PBC are higher than normal (P<0.01).
     6. For PBC, the expression of TGF-β1 was significantly higher in portal area than in hepatic lobule(P<0.05)and also significantly higher than other3group(P<0.01), For normal, the expression of TGF-β1 was significantly higher in hepatic lobule than in portal area (P<0.01)
     CONCLUSION
     1. Different autoimmune liver disease have different histological features, the feature of AIH is interface hepatitis, the feature of PBC is destructive cholangitis.
     2. CD4 regulatory T cells may play a important role in the pathogenesis of PBC.
     3. ERa and TGF-B1 may mediate and promote the occurrence and development of autoimmune liver disease.
引文
[1]张利方,郑山根,李芳,石莉萍.自身免疫性肝炎与人类白细胞抗原Ⅱ类等位基因的相关性,华南国防医学杂志,2010,24(1):24-26.
    [2]Yoshizawa K, Ota M, Katsuyama Y, Ichijo T, Matsumoto A, Tanaka E, Kiyosawa K. Genetic analysis of the HLA region of Japanese patients with type 1 autoimmune hepatitis. J Hepatol,2005,42(4):578-584.
    [3]Niro GA, Poli F, Andriulli A, Bianchi I, Bernuzzi F, Caliari L, Fontana R, Gioffreda D, Valvano MR, Podda M, Invernizzi P. TNF-alpha polymorphisms in primary biliary cirrhosis:a northern and southern Italian experience. Ann N Y Acad Sci,2009,1173:557-563.
    [4]刘海英,邓安梅,张建等. 原发性胆汁性肝硬化患者人类白细胞抗原等位基因多态性分析[J].中华肝脏病杂志,2005,13:410-413.
    [5]Hiraide A, Imazeki F, Yokosuka O, Kanda T, Kojima H, Fukai K, Suzuki Y, Fas polymorphisms influence susceptibility to autoimmune hepatitis Am J Gastroenterol,2005,100(6):1322-1329.
    [6]孙继红,徐芸,汪群英,张晓君,罗杰.自身免疫性肝炎和原发性胆汁性肝硬化患者Fas-670基因多态性检测.郑州大学学报(医学版),2009,44(1):78-81.
    [7]Chen S, Zhao W, Tan W, Luo X, Dan Y, You Z, Kuang X, Wang Y, Deng G. Association of TBX21 promoter polymorphisms with type 1 autoimmune hepatitis in a Chinese population. Hum Immunol,2011,72 (1):69-73.
    [8]Fan LY, Tu XQ, Cheng QB, Zhu Y, Feltens R, Pfeiffer T, Zhong RQ. Cytotoxic T lymphocyte associated antigen-4 gene polymorphisms confer susceptibility to primary biliary cirrhosis and autoimmune hepatitis in Chinese population, 2004,10(20):3056-3059.
    [9]Joshita S, Umemura T, Yoshizawa K, Katsuyama Y, Tanaka E, Nakamura M, Ishibashi H,Ota M;Shinshu PBC Study Group.Association analysis of cytotoxic T-lymphocyte antigen 4 gene polymorphisms with primary biliary cirrhosis in Japanese patients,2010,53(3):537-541.
    [10]Umemura T,Ota M, Yoshizawa K, Katsuyama Y,Ichijo T, Tanaka E, Association of cytotoxic T-lymphocyte antigen 4 gene polymorphisms with type 1 autoimmune hepatitis in Japanese,2008,38(7):689-695.
    [11]TamoriA,Shinzaki M, Kosaka S, Hayashi T, Iwai S, Enomoto M, Sakaguchi H, Kawada N, Hino M, Shiomi S, Nishiguchi S. Thiopurine S-methyltransferase polymorphism in Japanese patients with autoimmune liver diseases.Liver Int, 2007,27(1):95-100.
    [12]Umemura T, Ota M, Yoshizawa K, Katsuyama Y, Ichijo T, Tanaka E, Kawa S, Kiyosawa K.Lack of association between FCRL3 and FcgammaRII polymorphisms in Japanese type 1 autoimmune hepatitis. Clin Immunol,2007,122(3):338-342.
    [13]Fan L, Tu X, Zhu Y, Zhou L, Pfeiffer T, Feltens R, Stoecker W, Zhong R. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese.J Gastroenterol Hepatol,2005,20(2): 249-255.
    [14]刘妍,闫惠平,冯霞,檀玉芬.自身免疫性肝炎和原发性胆汁性肝硬化患者六种细胞因子分析.中华检验医学杂志,2006,29(11):1025-1026.
    [15]弓艳霞,王邦茂.Ⅰ型自身免疫性肝炎分析102例.世界华人消化杂志,2008,16:322-325.
    [16]Alvarez F, Berg PA, Bianchi FB, Bianchi L, Bur roughs AK, Cancado EL, Chapman RW, Cooksley WG, Czaja AJ, Desmet VJ, Donaldson PT, Eddleston AL, Fainboim L, Heathcote J, Homberg JC, Hoofnagle JH, Kakumu S, Krawitt EL, Ma ckay IR, Ma c Swe en RN, Maddrey WC, Manns MP, McFar lane IG, Meyer zum Buschenfelde KH, Zeniya M. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol,1999,31: 929-938.
    [17]陈嵩,王宇明.自身免疫重叠综合征.世界华人消化杂志,2005,13:1875-1878.
    [18]邱德凯,李新民,马雄.原发性胆汁性肝硬化-自身免疫性肝炎重叠综合征30例诊断和治疗分析.胃肠病学,2004,9:340-343.
    [19]闪海霞,吴爱华,侯金林,朱幼芙.自身免疫性肝病的临床与病理学特点分析.临床肝胆病杂志,2008,24:111-113.
    [20]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-toler-ance maintained by activated T cells exp ressing IL-22 recep tor alpha2chains (CD25) Breakdown of a single mechanism of self2tolerance causes various autoimmune diseases [J]. J Immunol,1995,155:1151-1164.
    [21]Lawson CA,Brown AK,Bejarano V, et al. Early rheumatoid arthritis is asso-ciated with a deficit in the CD4+CD25 high regulatory T cell population in periph-eral blood [J]. Rheumatology (Oxford),2006,45:1210-1217.
    [22]陆翔,赖永榕.类风湿关节炎CD4+CD25+调节性T细胞的表达及其与病情关 系探讨[J].广西医科大学学报,2009,26(2):229-231.
    [23]韩捷,陈海燕,何东仪,等.类风湿关节炎患者外周血和滑液中CD4+CD25+调节性T细胞的水平变化[J].现代免疫学,2008,28(6):506-509.
    [24]Liu MF, Wang CR, Fung LL, et al. Decreased CD4+CD25+T cells in peripheral blood of patients with SLE [J]. Scand J Immunol,2004,59:198-202.
    [25]Lee JH, Wang LC, Lin YT, et al. Inverse correlation between CD4+regulatory T-cell population and autoantibody levels in pediatric patients with systemic lupus erythematosus[J]. Immunology,2006,117 (2):280-286.
    [26]宋建新,甸自金,方筹等.不同发作期儿童哮喑CD4+CD25+调节性T细胞表达的研究[J].中国实用医学研究杂志,2004,3(4):336-337.
    [27]Shi HZ, Li S, Xie ZF, et al. Regulatory CD4+ CD25+ T lymphocytes in peripheral blood patients with atopic asthma [J]. Clin Immunol,2004,13(2):172-178.
    [28]李廷慧,侯晓彬,肖漓,何云,崔丽萍CD4+CD25+调节性T细胞与Foxp3表达在白癜风发病中的作用.中国美容医学,2009,18(6):819-822.
    [29]Sun Y, Qiao J, Lu CZ, et al. Increase of circulating CD4+ CD25+ T cells in myasthenia gravis patients with stability and thymectomy[J]. Clin Immunol,2004, 112(3):284-289.
    [30]Suvas S, Kumaraguru U, Pack CD, et al. CD4+CD25+T cells regulate virus-specific primary and memory CD8+ Tcell responses[J]. J Exp Med,2003, 198(6):889-901.
    [31]FranzesO, Kennedy PT, Gehring AJ, et al. Modulation of the CD8+ T-cell response by CD4+CD25+ regulatory T cells in patients with hepatitis B virus infection [J]. J Virol,2005,79:3322-3328.
    [32]周慧,朱丽影,王威,颜炳柱,陈立艳.CD4+CD25+调节性T细胞在自身免疫性肝炎发病中的作用.现代生物医学进展,2010,10:3447-3450.
    [33]汪群英,徐芸.原发性胆汁性肝硬化患者外周血T细胞亚群的变化研究.山东医药,2008,18:23-24
    [34]Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+ CD25+ regulatory T cells in health and autoimmune hepatitis [J].J Immunol,2006,176 (7):4484-4491.
    [35]Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in p rimary biliary cirrhosis[J]. Hepatology,2006,43 (4):729 -737.
    [36]SasakiM, Ikeda H, Sawada S, et al. Naturally2occurring regulatory T cells are increased in inflamed portal tractswith cholangiopathy in primary biliary cirrhosis [J].J Clin Pathol,2007,60(10):1102-1107.
    [37]Taams L S,van Amelsfort J M, Tiemessen M M et al.Modulation of monocyte/ macrophage function by human CD4+ CD25+ regulatory T cells [J].Hum Immunol, 2005,66(3):222-230.
    [38]Kaestner K, Knochel W, Martinez D. Unified nomenclature for the winged helix /forkhead transcription factors[J]. Genes Dev,2000,14(2):142-146.
    [39]Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+ CD4+ regulatory T cels[J]. Int Immunol, 2004,16 (11):1643-1656.
    [40]Bnmkow ME, Jefery EW, Hjerrild KA, et al. Disruption of a new forkhead winged-helix protein, scurfin, results in the fatal lymphopro- liferative disorder of the scurfy mouse. Nat Genet,2001,27(1):68-73.
    [41]Khattri R, Cox T, Yasayko SA, et al. An essential role for scurfin inCD4+CD25+ T regulatory cells. Nat Immnol,2003,4(4):337-342.
    [42]Cosmi L, Liotta F, lazzeri E, et al. Human CD8+ CD25+ thymocytes Share phenoltypic and functional features with CD4+CD25-regulatory thymucytes. Blood,2003,102(12):4107-4114.
    [43]Walker MR. Kasprowicz DJ. Gersuk VH, et al. Induction of Foxp3 and acquisition of T regulatory activity by stimulated human CD4+CD25T cells. Clin Invest,2003,112(9):1437-1443.
    [44]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the Transcription factor Foxp3. Science,2003,299(5609):1057-1061.
    [45]Fontenot JD, Rudensky AY. A well adapted regulatory contrivance:regulatory T cell development and the forkhead family transcription factor FOXP3[J]. Nat Immunol,2005,6(4):331-333.
    [46]Khattri R, Cox T, Yasayko S, et al. An essential role for Scurfin in CD4+ CD25+ T regulatory cells[J]. Nat Immunol,2003,4:337-339.
    [47]Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the develop-pment and function of human CD25+ CD4+ regulatory T cells [J]. Int Immunol, 2004,16:1643-1656.
    [48]Wahl SM, Vazquez N. Chen WJ, el al. Regulatory T cells and transcription factors:Gatekeepers in allergic inflammation[J]. Curr Opin. Immunol,2004,16: 768-774.
    [49]Van der Vliet HJ, Nieuwenhuis EE. IPEX as a Result of Mutations in FOXP3 [J]. Clin Dev Immunol,2007,89:17.
    [50]Chatila TA, Blaeser F, Ho N, et al.Jm2 encoding a fork head-related protein, is mutated in X-linked autoimmunity—allergic disregulation syndrome [J]. J Clin Invest,2000,106(12):R75-R81.
    [51]Khattri R, CoxT, Yasayko SA, et al. An essential role for Scurfin in CD4+ CD25+ Tregulatory cells[J]. Nat immunol,2003,4(4):337-342.
    [52]Behrens F, Himsel A, Rehart S, et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid darthritis [J].Ann Rheum Dis,2007,66 (9):1151-1156.
    [53]Picca Cc, Caton AJ. The role of self—peptides in the development of CD4 CD25 regulatory T cells[J]. Curr, Olin. Immunol,2005,17(4):131-136.
    [54]Bassuny WM, IharaK. Sasaki Y, et al. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes. Immunogenetics,2003,55:149-156.
    [55]Zavattari P, Deidda E, Pitzahs M, et al. No association between variation of the FOXP3 gene and common type I diabetes in the Sardinia population. Diabetes, 2004,53:1911-1914.
    [56]Ingrid W. Immunology. Policing the immune system. Science,2004,306: 596-599.
    [57]JAECKL E, VON BOEHMER H, MANNS M P. Antigen-specific FoxP3-transduced T—cells can control established type 1 diabetes[J]. Diabetes,2005, 54(2):306-310.
    [58]HUAN J, CULBERSON N, SPENCER L, et al. Decreased Foxp3 levels in multiple sclerosis patients[J]. J Neurosci Res,2005,8(1):45-52.
    [59]BALANDINA A, LECART S. DARTEVELLE P, et al. Functional defect of regulatory CD4+ CD25+ T cells in the thymus of patients with autoimmune myasthen-ia gravis[J]. Blood,2005,105(2):735-741.
    [60]唐蓉,唐德檠,伍昌林.SLE患者CD4+CD25+调节性T细胞及Foxp3基因表 达研究.广东医学院学报,2006,24(4):346-348.
    [61]李廷慧,侯晓彬,肖漓,何云,崔丽萍CD4+CD25+调节性T细胞与Foxp3表达在白癜风发病中的作用.中国美容医学,2009,18(6):819-822.
    [62]杨欢,肖波,邓茂林,赵海婷,舒孔亮,黄慧.重症肌无力患者FOXP3表达变化与体液免疫异常的相关性.中国神经免疫学和神经病学杂志,2009,16(4):235-240.
    [63]Ilona Kryczek, Rebecca Liu, Guobin Wang, et al. FOXP3 Defines Regulatory T Cells in Human Tumor and Autoimmune Disease Cancer Research,2009,69(9):3995-4000.
    [64]Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis [J]. J Imm unol,2006,176 (7):4484-4491.
    [65]You HJ, Kim JY, Jeong HG17 beta-Estradiol increases inducible nitric oxide synthase expression in macrophages Biochem Biophys Res Commun,2003,303: 1129-1134.
    [66]Erlandsson MC, Jonsson CA Islanderu, et al. Oestrogen receptor specificity in oestrodiot-mediated effects on B lymphopoiesis and immunoglobulin production in male mice, Immunology,2003,108:346-351.
    [67]Polanczyk MJ, Carson BD, Subramanian S, et al. Cutting edge:estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immunol,2004, 173:2227-2230.
    [68]Karagiannidis C, Akdis M, Holopainen P, et al. Glucocorticoids up -regulate FOXP3 expression and regulatory T cells in asthma. J Allergy Clin Immunol,2004, 114:1425-1433.
    [69]Tai P, Wang J, Jin H, et al. Induction of regulatory T cells by physiological level estrogen [J]. Cell Physiol,2008,214 (2):456-464.
    [70]王巧玲,罗蒲英,熊员焕月经周期雌激素变化对外周血CD4+CD25+调节性T细胞水平的影响.实用临床医学,2010,11(7):4-6.
    [71]Zhang Y, Chen WZ, Shi JM. Effect of estrogen receptor alpha gene polymer-phism on the variations of T lymphocyte subsets and its related cell factors in female patients with primary cholestasis cirrhosis. Zhonghua Gan Zang Bing Za Zhi,2010, 18:740-744.
    [72]Alvaro D, Invernizzi P, Onori P, Franchitto A, De Santis A, Crosignani A, Sferra R, Ginanni-Corradini S, Mancino MG, Maggioni M, Attili AF, Podda M, Gaudio E. Estrogen receptors in cholangiocytes and the progression of primary biliary cirrhosis. J Hepatol,2004,41:905-912.
    [73]Kitani A, Chua K, Nakamura K, Strober W. Activated self -MHC-reactive T cells have the cytokine phenotype of Th3 /T regulatory cell 1 T cells. JImmunol,2000,165: 691-702.
    [74]Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin—10 and transforming growth factor—β:the role of T regulatory cells[J] Immunology,2006,117 (4):442-443.
    [75]You S, Thieblemont N, Alyanakian MA, et al. Transforming growth factor -beta and T—cell—mediated immunoregulation in the control of autoimmune diabetes [J] Immunol Rev,2006,212:185-200
    [76]Nakamura K, Kitani A, Strober W. Cell contact—dependent immuno-suppre-ssion by CD4 CD25 regulatory T cells is mediated by cell surface-bound transform-ing growth factorβ. J Exp Med,2001,194:629-644.
    [77]Peng Y, Laouar Y, Li MO, et al. TGF-βregulated in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protec—tion against diabetes. Proc Natl Acad Sci USA,2004,101:4572-4577.
    [78]FantiniMC, Becker C, Montelence G, et al. Cutting edge:TGF-βiduces a regulatory phenotype in CD4+ CD25—T cells through Foxp3 induction and down-regulation of Smed7. J Immunol,2004,172:5149-5153.
    [79]Mamura M, lee W, SullivanTJ,et al.CD28 disruption exacerbates Inflamma-tion in Tgf-β1-/- mice:in vivo suppression by CD4+CD25+ regulatory T ceels inde-pendent of autocrineTGF-β.Blood,2004,103:4594-4601.
    [80]Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type Ⅱ arthritis in mice. Proc Natl Acad Sci USA,1992,89:7375-7379.
    [81]Peng Y, Laouar Y, Li MO, Green EA, Flavell RA. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA,2004,101:4572-4577.
    [82]Shi FD, Bai XF, Xiao BG, van der Meide PH, Link H. Nasal administration of multiple antigens suppresses experimental autoimmune myasthenia gravis, encepha- lomyelitis and neuritis. J Neurol Sci,1998,155:1-12.
    [83]Duvernelle C, Freund V, Frossard N. Transforming growth factor-beta and its role in asthma. Pulm Pharmacol Ther,2003,16:181-196.
    [84]Kikuchi K, Tanaka A, Matsushita M, Kitazawa E, Hosoya N, Kawashima Y, Selmi C, Gershwin ME, Miyakawa H. Genetic polymorphisms of trans- forming growth factor beta-1 promoter and primary biliary cirrhosis in Japanese patients. Ann N Y Acad Sci,2007,1110:15-22.
    [85]王国辉,蒋桂星,崔云甫,胡占良TGF-β1在大鼠胆管损伤修复过程中的表达.世界华人消化杂,2010,18:502-505.
    [86]Voumvouraki A, Koulentaki M, Tzardi M, Sfakianaki O, Manousou P, Notas G, Kouroumalis E. Increased TGF-β3 in primary biliary cirrhosis:an abnormality related to pathogenesis? World J Gastroenterol,2010,16:5057-5064.
    [87]Sakaguchi K, Kitano M, Nishimura M, Senoh T, Ohta T, Terao M, Shinji N, Koide N, Tsuji T. Serum level of transforming growth factor-betal (TGF-betal) and the expression of TGF-beta receptor type II in peripheral blood mononuclear cells in patients with autoimmune hepatitis. Hepatogastroenterology,2004,51:1780-1783.
    [1]Shankarkumar U, Amarapurkar DN, Kankonkar S. Human leukocyte antigen allele associations in type21 autoimmune hepatitis patients from western India [J]. J Gastroenterol,2005,20 (2):193-197.
    [2]Feld JJ, Dinh H, Arenovich T, et al. Autoimmune hepatitis:effect of symptoms and cirrhosis on natural history and outcome [J].Hepatology,2005,42(1):53-62.
    [3]张利方,郑山根,李芳,石莉萍.自身免疫性肝炎与人类白细胞抗原Ⅱ类等位基因的相关性华南国防医学杂志,2010,24(1):24-26.
    [4]Yoshizawa K, Ota M, Katsuyama Y, Ichijo T, Matsumoto A, Tanaka E, Kiyosawa K. Genetic analysis of the HLA region of Japanese patients with type 1 autoimmune hepatitis. J Hepatol,2005,42(4):578-584.
    [5]Niro GA, Poli F, Andriulli A, Bianchi I, Bernuzzi F, Caliari L, Fontana R, Gioffreda D, Valvano MR, Podda M, Invernizzi P. TNF-alpha polymorphisms in primary biliary cirrhosis:a northern and southern Italian experience. Ann N Y Acad Sci,2009,1173:557-563.
    [6]刘海英,邓安梅,张建等.原发性胆汁性肝硬化患者人类白细胞抗原等位基因多态性分析[J].中华肝脏病杂志.2005,13:410-413.
    [7]Wilson AG,Genetics of tumor necrosis factor(TNF) in autoimmune liver diseases: red hot or red herring? J Hepatol,1999,30:331-333.
    [8]马雄,邱德凯.Ⅰ型自身免疫性肝炎患者细胞因子基因多态性研究中华肝脏病杂志,2004,12(5):296-298.
    [9]Czaja AJ,Donalds on PT. Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis[J]. Immunol Rev,2000,174:250-259.
    [10]Yoshizawa K,Ota M,Katsuyama Y,Ichijo T,Matsumoto A,Tanaka E, Kiyosawa K.Genetic analysis of the HLA region of Japanese patients with typel autoimmune hepatitis. J Hepatol,2005,42(4):578-584.
    [11]Fan LY,Tu XQ,Zhu Y,Pfeiffer T,Feltens R,Stoecker W,Zhong RQ.Genetic association of cytokines polymorphisms with autoimmune hepatitis and primary biliary cirrhosisin the Chinese. World J Gastroenterol,2005,11 (18):2768-2772.
    [12]Hiraide A, Imazeki F, Yokosuka O, Kanda T, Kojima H, Fukai K, Suzuki Y, Hata A, Saisho H. Fas polymorphisms influence susceptibility to autoimmune hepatitis. Am J Gastroenterol,2005,100(6):1322-1329.
    [13]孙继红,徐芸,汪群英,张晓君,罗杰.自身免疫性肝炎和原发性胆汁性肝硬化患者Fas-670基因多态性检测.郑州大学学报(医学版),2009,44(1):78-81.
    [14]Chen S, Zhao W, Tan W, Luo X, Dan Y, You Z, Kuang X, Wang Y, Deng G. Association of TBX21 promoter polymorphisms with type 1 autoimmune hepatitis in a Chinese population.Hum Immunol,2011,72(1):69-73.
    [15]Fan LY, Tu XQ, Cheng QB, Zhu Y, Feltens R, Pfeiffer T, Zhong RQ. Cytotoxic T lymphocyte associated antigen-4 gene polymorphisms confer susceptibility to primary biliary cirrhosis and autoimmune hepatitis in Chinese population. World J Gastroenterol,2004,10 (20):3056-3059.
    [16]Joshita S, Umemura T, Yoshizawa K, Katsuyama Y, Tanaka E, Nakamura M, Ishibashi H,Ota M;Shinshu PBC Study Group. Association analysis of cytotoxic T-lymphocyte antigen 4 gene polymorphisms with primary biliary cirrhosis in Japanese patients. J Hepatol,2010,53 (3):537-541.
    [17]Umemura T,Ota M, Yoshizawa K, Katsuyama Y,Ichijo T, Tanaka E, Kiyosawa K. Association of cytotoxic T-lymphocyte antigen 4 gene polymorphisms with type 1 autoimmune hepatitis in Japanese. Hepatol Res,2008,38 (7):689-695.
    [18]Tamori A, Shinzaki M, Kosaka S, Hayashi T, Iwai S, Enomoto M, Habu D, Sakaguchi H, Kawada N, Hino M, Shiomi S, Nishiguchi S. Thiopurine S-methyl transferase gene polymorphism in Japanese patients with autoimmune liver diseases. Liver Int,2007,27(1):95-100.
    [19]Umemura T, Ota M, Yoshizawa K, Katsuyama Y, Ichijo T, Tanaka E, Kawa S, Kiyosawa K.Lack of association between FCRL3 and FcgammaRⅡ polymorphisms in Japanese type 1 autoimmune hepatitis. Clin Immunol,2007,122(3):338-342.
    [20]Fan L, Tu X, Zhu Y, Zhou L, Pfeiffer T, Feltens R, Stoecker W, Zhong R.Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol,2005, 20(2):249-255.
    [21]Tanaka A, Nezu S, Uegaki S, Kikuchi K, Shibuya A, Miyakawa H, Takahashi S, Bianchi I, Zermiani P, Podda M, Ohira H, Invernizzi P, Takikawa H. Vitamin D rece- ptor polymorphisms are associated with increased susceptibility to primary biliary cirrhosis in Japanese and Italian populations.J Hepatol,2009,50(6):1202-1209.
    [22]Kikuchi K, Tanaka A, Matsushita M, Kitazawa E, Hosoya N, Kawashima Y, Selmi C, Gershwin ME, Miyakawa H. Genetic polymorphisms of transforming grow-th factor beta-1 promoter and primary biliary cirrhosis in Japanese patients. Ann N Y Acad Sci,2007,1110:15-22
    [23]Juran BD, Atkinson EJ, Larson JJ, Schlicht EM, Lazaridis KN. Common genetic variation and haplotypes of the anion exchanger SLC4A2 in primary biliary cirrhosis. Am J Gastroenterol.2009,104 (6):1406-1411.
    [24]Inamine T, Nakamura M, Kawauchi A, Shirakawa Y, Hashiguchi H, Aiba Y, Taketomi A, Shirabe K, Nakamuta M, Hayashi S, Saoshiro T, Komori A, Yatsuhashi H, Kondo S, Omagari K, Maehara Y, Ishibashi H, Tsukamoto K; the PBC Study Group in NHOSLJ. A polymorphism in the integrin aV subunit gene affects the progression of primary biliary cirrhosis in Japanese patients. J Gastroenterol,2010, Dec 1. [Epub ahead of print]
    [25]Zhang Y, Chen WZ, Shi JM.Effect of estrogen receptor alpha gene polymorph-ism on the variations of T lymphocyte subsets and its related cell factors in femal patients with primary cholestasis cirrhosis. Zhonghua Gan Zang Bing Za Zhi,2010, 18:740-744.
    [26]肖非,黄加权,余海静,习东,严伟明,宁琴.应用人类全基因组寡核营酸芯片筛查自身免疫性肝炎相关基因.中华肝脏病杂志,2006,14(12):946-947.
    [27]Torres-Collado AX, Czaja AJ, Gelp i C. Anti-tRNP (ser) sec/S LA/LP autoanti-bodies. Comparative study using in-house ELISA with a recombinant 48.8 kD a protein, immunoblot, and analysis of immunoprecipitated RNAs [J]. Liver Int, 2005,25(2):410-419.
    [28]谭立明,彭卫华,董叶等MPO、ANCA、SMA及ANA抗体联合检测对自身免疫性肝炎的诊断意义[J].山东医药,2008,48(27):114-115.
    [29]陈晓蓉,沈芳.白细胞介素18和白细胞介素18结合蛋白与自身免疫性肝炎相关性探讨[J].肝脏.,2008,13(1):36-38.
    [30]Mazodier K, Marin V, Novick D, et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome [J]. Blood,2005,106(10): 3483-3489.
    [31]Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+ CD25+ regulatory T cells in health and autoimmune hepatitis [J].J Immunol,2006,176(7): 4484-4491.
    [32]Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in p rimary biliary cirrhosis[J]. Hepatology,2006,43(4):729-737.
    [33]SasakiM, Ikeda H, Sawada S, et al. Naturally2occurring regulatory T cells are increased in inflamed portal tractswith cholangiopathy in primary biliary cirrhosis [J].J Clin Pathol,2007,60(10):1102-1107.
    [34]Taams L S,van Amelsfort J M, Tiemessen M M et al.Modulation of monocyte/ macrophage function by human CD4+CD25+regulatory T cells [J].Hum Immunol, 2005,66(3):222-230.
    [35]Lan RY, Salunga TL, Tsuneyama K, et al. Hepatic IL-17responses in human and murine primary biliary cirrhosis.J Autoimmun,2009,32(1):43-51.
    [36]Lang KS,Georgiev P,Recher M et al. Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling[J].J Clin Invest,2006,116(9):2456-2463.
    [37]Wang A P,Migita K,Ito M et al. Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis [J]. J Autoimmune,2005,25 (1):85-91.
    [38]Takii Y,Nakamura M,Ito M et al. Enhanced expression of type I interferon and toll-like receptor-3 in primary biliary cirrhosis [J].Lab Invest,2005,85(7):908-920.
    [39]Singh G, Palaniappan S, Rotimi O, et al. Autoimmune hepatitis triggered by hepatitisA [J]. Gut,2007,56 (2):304.
    [40]Koay LB, Tsai SL, Sun CS, et al. Chronic autoimmune hepatitis with Ep stein-Barr virus superinfection: a case report and review of literature[J]. Hepatogas-troenterology,2008,55(86-87):1781-1784.
    [41]Ozorio G, McGarity B, Bak H, et al. Autoimmune hepatitis following inflixi-mab therapy for ankylosing spondylitis [J].Med J Aust,2007,187(9):524-526. [42] Ford TJ, Dillon JF. Minocycline hepatitis [J]. Eur J Gastroenterol Hepatol, 2008,20(8):796-799.
    [43]Alla V, Abraham J, Siddiqui J, et al. Autoimmune hepatitis triggered by statins [J]. J Clin Gastroenterol,2006,40(8):757-761.
    [44]Barski L, Rabaev E, Sztarkier I, et al. Autoimmune hepatitis and hypergamma2 globulinemic purpura associated with herbal medicine use[J]. IsrMed Assoc J,2008, 10(5):390-391.
    [45]Holdener M, Hintermann E, Bayer M, et al. Breaking tolerance to the natural human liver autoantigencytochrome P450 2D6 by virus infection. J Exp Med,2008, 205(6):1409-1422.
    [46]Christen U, Holdener M, Hintermann E. Cytochrome P450 2D6 as a model antigen. Dig Dis.2010,28(1):80-85.
    [47]邱德凯,马雄,彭延申,李恩灵,熊伍军.自身免疫性肝炎的动物模型研究.肝脏,2000,5(2):70-71.
    [48]Abedi MR,Hammarstrom L,Broome U,et al.Reduction in serum levels of antimitochondrial(M2) antibodies following immunoglobulin therapy in severe combined immunodeficient(SCID) mice reconstituted with lymphocytes frompatients with primary biliary cirrhosis(PBC).Clin Exp Immunol,1996,105:266-273.
    [49]Kido M, Watanabe N, Okazaki T, Akamatsu T, Tanaka J, Saga K, Nishio A, Honjo T, Chiba T. Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology,2008,135 (4):1333-1343.
    [50]Wakabayashi K, Lian ZX, Moritoki Y, Lan RY, Tsuneyama K, Chuang YH, Yang GX, Ridgway W, Ueno Y, Ansari AA, Coppel RL, Mackay IR, Gershwin ME. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis.Hepatology, 2006,44(5):1240-1249.
    [51]Trauner M, Fickert P, Baghdasaryan A, Claudel T, Halilbasic E, Moustafa T, Wagner M, Zollner G. New insights into autoimmune cholangitis through animal models. Dig Dis,2010,28(1):99-104.
    [52]Irie J, Wu Y, Wicker LS, Rainbow D, Nalesnik MA, Hirsch R, Peterson LB, Leung PS, Cheng C, Mackay IR, Gershwin ME, Ridgway WM. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med,2006,203(5):1209-1219.
    [53]Jiang XH, Zhong RQ, Fang XY, An F, Hu Y, Wang XP, Kong XT [Establishment of a mouse model of primary biliary cirrhosis by AMA M2 autoantigen injection]. Zhonghua Gan Zang Bing Za Zhi,2006,14(3):202-204.
    [54]Alvarez F,Berg PA,Bianchi FB.Bianchi L.Burroughs AK,Cancado EL,Chapman RW,Cooksley WG,Czaja AJ,Desmet VJ,Donaldson PT,Eddleston AL,Fainboim L, Heathcote J,Homberg JC,Hoofnagle JH,Kakumu S,Krawitt EL,Mackay IR, MacSween RN,Maddrey WC,Manns MP,Mcfarlane IG,Meyer zum Buschenfelde KH,Zeniya M,et al. International Autoimmune Hepatitis Group Report:review of criteria for diagnosis of autoimmune hepatitis J Hepatol,1999,31:929-938.
    [55]Heathcote EJ, Management of primary biliary cirrhosis.The American Association for the Study of Liver Diseases practice guidelines. Hepatology,2000, 31:1005-1013.
    [56]Joshi S,Cauch-Dudek K,Wanless IR,Lindor KD,Jorgensen R,Batts K,Heathcote EJ,Primary biliary cirrhosis with additional features of autoimmune hepatitis: Response to therapy with ursodeoxychlic acid, Hepatology,2002,35:409-413.
    [57]Lohse AW,zum Buschenfelde KH,Franz B,Kanzler S,Gerken QDienes HP. Characterization of the overlap syndrome of primary biliary cirrhosis(PBC) and autoimmune hepatitis:evidence for it being a hepatitic form of PBC in genetically susceptible individuals. Hepatology,1999,29:1078-1084.
    [58]Boberg KM, Chapman RW, Hirschfield GM, Lohse AW, Manns MP, Schrumpf E.International Autoimmune Hepatitis Group. Overlap syndromes:the International Autoimmune Hepatitis Group (IAIHG) position statement on a controversial issue. J Hepatol,2011,54(2):374-385.
    [69]Csep regi A, Rocken C, Treiber G, et al. Budesonide induces comp leteiemission in autoimmune hepatitis[J]. world J Gastroenterol,2006,12:1362.
    [60]Kaplan MM, Bonder A,Ruthazer R,Bonis PA.Methotrexate in patients with pri-mary biliary cirrhosis who respond incompletely to treatment with ursodeoxycholic acid. Dig Dis Sci.2010,55(11):3207-3217.
    [61]Ozaslan E, Efe C, Akbulut S, Purnak T, Savas B, Erden E, Altiparmak E. Therapy response and outcome of overlap syndromes:autoimmune hepatitis and primary biliary cirrhosis compared to autoimmune hepatitis and autoimmune cholangitis. Hepatogastroenterology.2010,57(99-100):441-446

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700