四川养猪业清洁生产系统LCA及猪粪资源化利用关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对四川养猪生产中突出的清洁生产技术问题,一方面采用生命周期评估(LCA)方法学和情景分析法相结合的方式对四川三种典型的养猪生产情景进行了系统的环境影响评估,提出了这种分析方法应用于当前养猪生产环境影响评估时的具体算法,并揭示出各种养猪生产系统中的环境友好和不利方面以及其资源利用效率;另一方面,在猪粪无害化处理和资源化利用技术研究中,1、对好氧堆肥的实用工艺效果,堆肥化过程中主要控制参数对微生物群落的系统演替产生影响的规律进行了研究;2、对利用猪粪生产蝇蛆蛋白的物质、能量转化规律进行了探索。
     在猪肉生产的LCA分析中,得出了如下主要结论:
     1、引入了生命周期概念之后,把原本局限于猪舍或猪场的生产过程向上扩展到原料(饲料)的生产甚至农资的原料开采和生产、运输,向下延伸到猪场产生的各种废物的处理利用之后,可以更加深刻地认识养猪生产系统的环境问题和生态效率高低的根本原因。
     2、本文提出“农田资源耗竭当量”的概念并建立了相应的数学模型,有利于在现有统计资料的基础上将饲料原料生产中不同生产模式下农资消耗量进行转化,对以后开发相关的数据库有一定的帮助。
     3、研究结果表明四川省养猪生产中环境问题优先序列为土地占用→富营养化潜势→酸化效应→水资源消耗→气候变暖→不可更新能源耗竭。
     4、三种养殖模式的分析比较反映出不同的生产系统具有不同的环境影响方式:情景A(散养模式)下具有最大的气候变暖潜势,情景B(适度规模养猪)具有土地占用最多,不可再生能源消耗最大,酸化效应和富营养化最严重等,而情景C(集约化养猪)水资源消耗最大。
     5、对不同生产阶段的环境影响贡献的分析表明,环境问题表现的关键环节有很大差别。在水资源消耗、土地占用和不可更新能源耗竭方面,饲料原料生产过程的环境影响贡献最大,而气候变暖、酸化和富营养化等方面则以废物处理和利用阶段的环境影响贡献最大。但资源的消耗不仅在饲料生产过程中,动物生产过程的饲料转化率低是间接导致原料生产资源消耗增大的重要原因。
     6、提出了改善猪肉生产环境问题的具体措施:①是采取规模化、集约化的农牧结合生产系统,加大有机肥还田的比例,合理配方施肥和测土施肥,提高饲料作物生产技术水平,增加土地单产,降低每功能单元的氮肥投入和养分流失,减少饲料原料运输的能源消耗;②通过品种改良、科学合理配制饲料、改善饲养管理方式和养猪环境,提高饲料利用效率,减少废物排放和营养物质损失;③改进废物处理技术,并对处理产生的有机肥和甲烷加以充分利用。
     在猪粪无害化处理和资源化利用技术研究中,采用自行设计的烟道加热静态垛好氧堆肥工艺(FHSC),探索规模化猪场粪便高温堆肥化处理的快速腐熟技术,得出了以下结论:
     1、FHSC系统在8h内迅速进入高温阶段,比对照组提前40h以上。从节约能源的角度出发,以加热3h为宜。
     2、添加菌剂有利于硝化作用的进行,相应试验组温度达到相对稳定的时间只有20d,比对照组提前了18d左右,根据C/N和种子发芽指数的变化,表明添加菌剂对生物发酵也起到了显著的促进作用。
     3、在本研究中由于烟道上方设计了贮水空间,使堆肥产生的渗滤液不致流失,一方面消除了环境污染,另一方面由于水分蒸发,再次进入堆料中,保证了通风中物料含水率自然保持在适宜的水平。
     4、FHSC具有独特的杀灭病原微生物和最终干燥有机肥料的作用,在堆肥过程中能源投入上虽有所增加,但由于减少了专门进行发酵后产品干燥过程,降低了这部分能源消耗,对产品成本的影响较小。而且由于堆肥和干燥实现了一体化,减少了干燥设备设施的投入,同时提高了劳动生产率。
     利用PCR—SSCP技术研究了堆肥化过程中主要控制参数对微生物群落的系统演替产生影响的规律。得出了以下结论:
     1、在试验中,通风、温度和C/N等参数的变化对细菌和真菌类群数产生了很大的影响。强制通风堆体的细菌类群平均数(2.436个)远比被动通风堆体高(1.54个),真菌类群数表现了相同的规律(3.128个对2.641个),可能是通风方式不同引起氧气供应差异和通风散热差异(强制通风堆1~20d的平均温度只有51.6℃,而被动通风堆为56.3℃)的结果;温度的变化对细菌和真菌类群数产生了明显的直接影响,细菌在68℃以上,真菌在50℃以上都出现了类群数的剧烈下降。根据类群数量的变化,细菌群落最繁荣的阶段为温度48~65℃或堆肥的4~20d阶段,真菌为42.5~50℃和堆肥的15~24d阶段。对于细菌的类群数变化,温度下限的确定还应当考虑C/N的变化,试验中48℃时细菌的类群数剧烈下降与C/N已降到较低水平(17:1)也有很大关系,否则温度可以更低一些。
     2、在堆肥0~30d中,细菌和真菌类群数最终都大幅度降低,30d后小幅震荡,持续走低,温度、C/N、OC含量过低是主要因素,如果加强人工参数调控并在20d左右时加入细菌发酵制剂、在24d左右时加入真菌发酵剂,对堆肥的快速腐熟将会有促进作用。温度、C/N和微生物类群数的下降,使得堆体二次发酵进程十分缓慢,因此,如何提高堆肥后期(30d后)的发酵效率是加速堆肥腐熟的关键。
     3、堆肥全过程中,真菌类群数的变异要大于细菌,这可能说明真菌对堆体内微生态环境更为敏感。从整个微生物群落的角度看,第27d以前群落是兴旺的,以后则趋向衰弱。通过调控参数可以让细菌和真菌同时处于最活跃的状态,从而极大地丰富微生物群落的多样性,加速堆肥腐熟的进程。
     4、由于堆肥30d以前堆体温度主要在44~71℃,在SSCP图谱上的条带估计是好氧高温细菌占主导,如果要通过添加微生物制剂提高这一阶段的发酵效率,必须筛选耐高温菌株。
     5、在堆体排气口处的二氧化碳释放浓度27d或28d骤然下降,成为堆肥系统第一次发酵结束的最明显的标志。
     6、在本次SSCP分析中,选取的真菌引物长度小于细菌引物,因此扩增出了更多的操作分类单元(OTUs),证明了PCR—SSCP中扩增片断越长,得到的条带数越少的规律。
     对利用猪粪生产蝇蛆蛋白的物质、能量转化规律的初步研究得出如下主要
     结论:
     1、蝇蛆在粪便中的活动可以快速降低粪便恶臭,同时在短期内(6d)使粪便总重量减少53.04%,其中干物质减少31.14%。2、蝇蛆沉积的干物质占总量的2.85%,生物分解消耗的干物质占总量的28.3%。猪粪中养分降低最多的是粗脂肪(EE),达77.81%,其次是凯氏氮(KN),达62.81%,粗纤维(CF)和无氮浸出物(NFE)只减少9.28%和22.03%,说明蝇蛆在粪便中利用的养分主要是粗脂肪EE和凯氏氮(KN),CF和NFE利用和消耗较少。3、蝇蛆对粪便中的EE和KN的高效转化和利用,可能正是粪便恶臭快速减轻的一个重要原因。4、在利用畜禽粪便生产昆虫蛋白后,猪粪中总能降低了41.58%,但蝇蛆沉积的能量仅占总量的3.578%,残留的猪粪中还有58.42%的能量,说明腐食食物链的其他环节对系统物质还原仍然十分重要。5、蝇蛆的活动对粪便的理化性质影响很大,这种影响对后续的微生物好氧分解极为有利,这可能是生态系统中物质高效还原的基本机制之一。生产上可直接利用这种粪便进行堆肥化处理,生产优质有机肥料,但没有进行堆肥化处理以前,绝大多数有机物质仍处于不稳定状态,用作肥料是不理想的。
There are three aspects of clean technologies in cleaner production including in this paper. (1) The scenario analysis and LCA methodology were combined to conduct a systematic environmental evaluation on three typical pork production scenarios in Sichuan province. The arithmetic about LCA applied to estimate datum of environmental impact categories in current pork production was put forward and all kinds of profiles of environmental friendly aspects and disadvantage and resource efficiency were also discovered. (2) A practical technique called flue heating static windrow of composting (FHSC) was designed, then its working condition and the effect of composting were examined. Another experiment about diversity of microorganism and succession of microorganism community in the composting process was determined by PCR-SSCP and the relationship between the composting indictors and microorganism community was analyzed. (3) The transfer flow of nutrients and energy in the system of rearing housefly larvae with pig manure was explored.
     In the first project, the main research conclusion was summarized as follows:
     (1) When the concept of life cycle was introduced, the pork production process was stretched to the processes of the feed production, agricultural materials extracting as well as the recycling process of the pig waste. This kind of environmental analysis could help us profoundly understand the environment issues underlying the system which is limited in pig breeding farm. (2) The concept of "Arable Land Resources Consumption Equivalent Unit (ALRU)" was brought forward and the mathematics model was founded. It could be favorable to compute the agricultural materials consumption under different production background which was based on existing statistics datum and it was also helpful to develop related database in the future. (3) The result showed that the priority order of environmental impact potential of pork production in Sichuan was Land Use, Eutrophication Potential, Acidification Potential, Water Use, Climate Warming and Unrenewable Resources Depletion. (4) The climate warming potential was maximum in scenario A (focusing on farmer family),but Land use and unrenewable resources depletion, eutrophication potential and acidification potential were maximum in scenario B (focusing on 100-head size farm), otherwise water use was maximum in scenario C (intensive farm). (5) The analysis of environment impact contribution at different stage revealed that the water use, land occupation and unrenewable energy consumption was maximum at feed production stage, but climate warming potential, acidification and eutrophication potential were maximum at waste disposal stage. However, resources depletion was not only at the stage of feed production, but also due to the lower efficiency of feed transfer in pig breeding. (6) The measures of improving environment were given as follows:
     First of all, the production system should be integrated, manure be returned to field as much as possible, feed production technique improved, and feed transportation energy should be saved. The second, the pig breeding, the feed processing, animal environment and waste management need to be improved to minimize the nutrients emission. The third, the organic fertilizer and methane produced from manure treatment and storage facilities should be utilized.
     The conclusion of study on pig waste treatment system of FHSC was as follows:
     (1) the temperature inside the FHSC piles, which reached at high temperature phase within 3 hours, increased quicker than that of the conventional composting pile for 40 hours. (2)The process of nitrification was accelerated through adding microorganism agent, so the time of reaching at a stable stage was advanced for 18 days in treat group piles compared to the control group. (3) The runoff was stored in the space at the bottom of piles and then recycled in the system so that the pollution of sewage was avoided and water was also saved. (4) The compost could be dried at the end stage and the pathogens were also killed through the flue heating system. It made the post treatment process be simplified and cost decreased.
     In the study on the interaction between the main physical or chemical indicators of composting and the succession of microorganism community determined with molecular biological technology of PCR-SSCP, the conclusion was drawn as follows:
     (1) The change of parameters, such as aeration, temperature and carbon to nitrogen ratio et al., influenced the bacteria and fungi species significantly. The average numbers of bacteria and fungi in the pile of aeration were higher than those in passive aeration pile (2.436 versus 1.54 to bacteria species and 3.128 versus 2.641 to fungi species). The main reason should be caused by the difference of oxygen supply and heat loss leading to different temperature (average temperature in aeration pile and passive aeration pile was 51.6 celsius degree and 56.3 celsius degree respectively during 1-20d).The change of temperature directly influenced the specie number of bacteria and fungi. The specie number of bacteria decreased acutely when temperature was above 68 celsius degree, but the similar situation occurred in fungi community at temperature above 50 celsius degree. The most flourishing phase was during 4-20d or 48-65 celsius degree for bacteria community but 15-24d or 42.5—50 celsius degree for fungi community.
     (2) The number of bacteria and fungi species decreased quickly to a very low level after 24d. The main impact factors were lower temperature, carbon to nitrogen ratio and organic content. It should benefit the composting ferment process if some microorganism agent was added into the pile and the parameters were regulated on the 24th day.
     (3) The variance of fungi species was significantly bigger than that of bacteria species. This result proved that fungi species should be more sensitive to composting conditions than bacteria species. The composting microorganism community was thrifty before 27d. An idea situation of bacteria and fungi species being both active could be realized by regulating temperature, C/N, and OC et al.
     (4) The concentration of CO_2 at vent of pile decreased suddenly on the day 27 or 28, it should be a good indicator to show the first phase of composting is over.
     (5) The more fungi species OTUs were amplified by PCR-SSCP than bacteria species in this research due to the length of fungi primer being shorter than bacteria primer. It proved that the longer the fragment amplified by PCR is, the lesser the species OTUs will be gotten.
     The conclusion on pig manure treat with housefly larvae was summarized as following:
     The results showed that the odor intensity of manure was decreased quickly, and content of gross energy was reduced by 41.58%. The total quantity of manure was reduced by 53.04%, which included 31.14%DM (Dry material), and the part of housefly body deposition accounted for 2.85%. The nutrient EE (ether extract) of manure, which consumed the most by housefly, was accounted for 77.81% of total EE, secondly, KN (kjeldahl nitrogen) was 62.81%. However, CF (crude fiber) or NFE (nitrogen-free extract) were both used less and accounted only for 9.28% and 22.03% respectively. Furthermore, the physical and chemical characteristics of manure were significantly changed in the activity of larvae, which benefited the consequent process of biological decomposition so that the residual manure could be directly used as the original material of composting after the larvae were separated.
引文
[1] Schulze, H. Application of food and environment protection regulations for judging radioactivity-contaminated foodstuffs. Archiv fur Leben smittel hygiene. 1973. 24: 11, 258- 259.
    [2] Prace z Zakresu Nauk Rolniczych. Environment and agriculture: organic farming, environmental protection, sustainable development of rural areas, Mistelbach, Austria, 14—17 June 2005.
    [3] Morales, M. A. Herrero, V. M. Martinez, S. A. Rodriguez, M. G. Valdivieso, E. Garcia, G. Elias, M. de los A. Cleaner production and methodological proposal of eco-efficiency measurement in a Mexican petrochemical complex. Water Science and Technology. IWA Publishing, London, UK: 2006.53: 11, 11 — 16.
    [4] Chavalparit, O. Clean technology for the crude palm oil industry in Thailand. Clean technology for the crude palm oil industry in Thailand. Wageningen Universiteit, Wageningen, Netherlands: 2006.
    [5] Mehta, B. P. S. Waste water minimisation using pinch technology. Indian Journal of Fertilisers. India: 2006. 2: 2, 19-22.
    [6] Waste minimization and clean technology: waste management strategies for the future. Academic Press, London, UK: 1992.
    [7] Getz, C. Warner, K. D. Integrated farming systems and pollution prevention initiatives stimulate co-learning extension strategies. Extension Journal Inc, USA: 2006. 44: 5
    [8] Glennon, C. Magette, W. Curran, T. Dodd, V. Waste monitoring and tracking for pig and poultry environmental management systems. Proceedings of the Eighth International Symposium, Des Moines, Iowa, USA, 9— 11 October, 2000. American Society of Agricultural Engineers,St Joseph, USA: 2000. 484-491.
    [9] Adams, M. A. Ghaly, A. E. An integral framework for sustainability assessment in agro-industries: application to the Costa Rican coffee industry. International Journal of Sustainable Development and World Ecology. Sapiens Publishing, Kirkmahoe, UK: 2006. 13: 2, 83—102.
    
    [10] 骆广生,朱慎林. 规整填料精馏塔的设计计算[J]. 化学工程,1995,23(4):28-32
    
    [11] Wang ChengHsung Roam GwoDong Dengue vector control in the urban environment of Taiwan. Kaohsiung Journal of Medical Sciences. 1994.10: Supplement, S28—S32.
    [12] Carlson, D. B. Source reduction in Florida's salt marshes: management to reduce pesticide use and enhance the resource. American Mosquito Control Association, Inc.,Mount Laurel, USA: 2006. 22: 3, 534-537.
    [13] Cook, K. A. Environmental reform of agricultural policy in 1990 and beyond: consider the source. American Journal of Alternative Agriculture. 1989. 4: 3/4,160—166
    [14] Goldstein, N. Composting and organics recycling vs. bioreactors: another perspective. BioCycle. JG Press Inc.,Emmaus, USA: 2003. 44: 5, 35-41.
    [15] Dua, V. K. Sharma, S. K. Srivastava, A. Sharma, V. P. Bioenvironmental control of industrial malaria at Bharat Heavy Electrieals Ltd., Hardwar, India-results of a nine-year study (1987-95). Journal of the American Mosquito Control Association. 1997. 13: 3, 278~285.
    [16] Marsh, K. S. Effective management of food packaging: from production to diposal. Food Technology (Chicago). 1991. 45: 5, 225~234.
    [17] C. Basset-Mens, H. M. G. van der Werf, P. Durand, Ph. Leterme. Implications of Uncertainty and Variability in the Life Cycle Assessment of Pig Farming Systems. INRA, UMR Sol Agronomic Spatialisation de Rennes-Quimper, 65, rue de Saint Brieue CS 84215, 35 042Rennes Cedex, France.
    [18] Cook, K. A. Environmental reform of agricultural policy in 1990 and beyond: consider the source. American Journal of Alternative Agriculture. 1989. 4: 3/4, 160~166.
    [19] 中华人民共和国主席令第七十二号,2002
    [20] 车秀文,林楠.清洁生产:给中国一个绿色的未来[J].重庆税务,2003,9
    [21] 沈又良,钟辉明.开展清洁生产提高热电可持续发展能力[J].节能与环保,2005,11,26~29
    [22] 欧阳培.推行清洁生产:从污染的末端控制转向生产全过程控制[J].长沙大学学报,2003,17:14~16
    [23] Dornburg, V. Lewandowski, I. Patel, M. Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy: an analysis and system extension of life-cycle assessment studies. Journal of Industrial Ecology. MIT Press, Cambridge, USA: 2003. 7: 3/4, 93~116.
    [24 MeManus, M. C. Hammond, G. P. Burrows, C. R. Life-cycle assessment of mineral and rapeseed oil in mobile hydraulic systems. Journal of Industrial Ecology. MIT Press, Cambridge, USA: 2003. 7: 3/4, 163~177.
    [25] Ghassemi, A. Handbook of pollution control and waste minimization. Marcel Dekker, Inc., New York, USA: 2002.
    [26] Morris, E. O. Pollution prevention and resource management: phosphate fertilizer production in the United States. Proceedings of an International Workshop on Current Environmental Issues of Fertilizer Production, Prague, Czech Republic, June 7~9, 1999. IFDC-An International Center for Soil Fertility and Agricultural Development, Muscle Shoals, USA: 2002. 103~107.
    [27] 苗泽伟.绿色设计和生命周期分析方法在农业生态系统管理中的应用[J].石家庄经济学院学报,2004,27(6):32~635
    [28] 陈启石,冯霄反应过程中的污染削减方法[J].化工学报,2004,2,317~320
    [29] 王静,邓勇.绿色产品生命周期设计的一种思路[J].三峡大学学报:自然科学版,2001,23(4):357~360
    [30] 孙启宏,万年青.国外生命周期评价(LCA)研究综述[J].世界标准化与质量管理,2001,12:24~26
    [31] 杨建新,王如松.生命周期评价的回顾与展望[J].环境科学进,1998,6(2)21~28
    [32] 洪钢.生命周期评估法(LCA)—环境评价的有效工具[J].中国环保产业,1998,3:21~23
    [33] 邱丽萍.“ISO—14000”标准对我国产品包装的影响与要求[J].包装工程,2001,4:71~74
    [34] 席德立,彭小燕.LCA环境影响分析新探[J].环境科学,1997,6:76~80
    [35] 胡敏,卫振林.LCA——一种新型的环境影响评价方法[J].环境导报,1997,4:23~25
    [36] Milai Canals, L.; Cliff, R.; Basson, L.; Hansen, Y.; Brandao, M. Expert workshop on land use impacts in life cycle assessment (LCA), 12~13 June 2006 Guildford, Surrey (UK). International Journal of Life Cycle Assessment. Ecomed Publishers, Landsberg, Germany: 2006. 11: 5, 363~368.
    [37] 霍李江.纸模包纸模包装生命周期评价模式构建[J].技术与应用,2003,104:36~39
    [38] 韩景平,王渝珠.21世纪包装决策者的依据--包装材料LCA[J],包装,1996,2:
    [39] 苗泽华,苗泽伟.工业企业生态工程理论及其评价指标体系构架初探[J].科学学与科学技术管理,2001,9:59~61
    [40] 国家环境保护“十一五”科技发展规划.国家环境保护总局,2006,6
    [41] 环发[2001]210号,国家环保总局,2001
    [42] 李俊峰,时璟丽.我国可再生能源技术的现状与发展[J].《中国电力》
    [43] 楼成林,喇国静.畜禽养殖场污水中BOD5与CODcr相关性探讨[J].北方环境,2003,3:40~42
    [44] 辉煌的四川畜牧业[J].四川畜牧兽医,2005,5:6~7
    [45] 段诚中.龙头企业与农户利益联结机制的探讨——暨四川生猪产业化发展现状[J].动物科学与动物医学,2005,7:36~37
    [46] 钱亮.坚持以科学发展观为指导 加快建设现代化畜牧业经济强省——全省畜牧经济工作会议在成都召开[J].四川畜牧兽医,2005,7:6~6
    [47] 段诚中.2005年四川养猪形势回顾与分析猪业科学[J],四川畜牧兽医,2006,1:18~19
    [48] 陈斌,罗伯平.规模化养殖标准化生产产业化经营[J].四川畜牧兽医,2004,12:20~20
    [49] 中国统计年鉴—2005(光盘)
    [50] 翁建中,杨积德.渔业污染物排放总量核定办法的探讨[J].环境监测管理与技术,2002,1:41~42
    [51] 李建华.畜禽养殖业的清洁生产与污染防治对策研究[D].浙江大学,2004
    [53] 李昌平.巩固成绩,应对挑战,努力开创2006年四川畜牧业工作新局面[J].四川畜牧兽医,2006,1:7~8,16
    [54] 农业部杜青林部长对四川畜牧业今后发展的几点意见[J].四川畜牧兽医,2005,8:8~8
    [55] 富刚.2005年一季度四川畜牧业生产形势分析[J].四川畜牧兽医,2005,5:12~13
    [56] 四川统计年鉴—2005,http://www.sc.stats.gov.cn/stats_sc/nj/nj.asp
    [57] 刘茂军,苏国东.动物产品生物源性污染及其快速检测技术研究进展[J].江苏农业科学,2006,6:411~414
    [58] 中华人民共和国清洁生产促进法——2002年6月29日第九届全国人民代表大会常务委员会第二十八次会议通过[J].沿海环境,2003,2:38~41
    [59] 杨文澜,马皆文.推行清洁生产审核,促进企业可持续发展[J].矿产保护与利用,2006,2:45~47
    [60] 吴季松,为可持续发展提供水资源保障[J].国土经济,2000,2:5~7
    [61] 王缙.水务局,一种体制创新——访水利部水资源司司长吴季松[J].上海城市管理职业技术学院学报,2002,5:15~16
    [62] 闵庆文,成升魁.全球化背景下的中国水资源安全与对策[J].资源科学,2002,4:49~55
    [63] 吴季松.水资源及其管理的研究与应用[M].北京:中国水利水电出版社,2000.
    [64] 李建华,李全胜,徐建明.畜禽养殖业清洁生产的必要性及实施对策研究-以浙江省为例[J].环境污染与防治,2004,26(1):39~41
    [65] 王林云.节约资源和资源再利用是发展我国养猪业的长期战略[J].中国猪业,2005,3:7~9
    [66] 王林云.节水、节能型猪舍设计技术方案探讨[J].动物科学与动物医学,2005,1:24~25
    [67] 苏杨.重视农村现代化进程中的环境问题[J].江苏企业管理,2004,4:8~9
    [68] 9月中旬,川猪直面贸易壁垒——俄罗斯对中国猪肉采取封关措施[J].西部皮革,2004,12:12~12
    [69] 孙守琴,王定勇,陈玉成.畜牧业清洁生产工程技术体系[J].内象古农业科技2004(3):24~26
    [70] 刘微,龚先政,聂祚仁.生命周期编目数据的分布拟合处理方法[J].中国建材科技,2006,3:63~65
    [71] 顾树勋.LCA及其在社会环境管理中的应用[J].江苏冶金,2006,1:41~43
    [72] 张智慧,邓超宏.建设项目施工阶段环境影响评价研究[J].土木工程学报,2003,9:12~18
    [73] ISO14000环境管理体系简介[J].印刷质量与标准化,2005,7:3~6
    [74] 陈晓慧,孙志峰,赵骅.产品生命周期评价系统数据仓库的研究[J].计算机科学,2005,4:187~189
    [75] 杨家红,肖松文,杨忠诚等.产品生命周期评价系统研究[J].计算机工程与科学,2004,5:66~69
    [76] 饶文涛.LCA技术[J].世界钢铁,2004,1:69~70
    [77] 代颖.基于ERP系统的产品生命周期评价[J].西南交通大学学报,2003,6:695~698
    [78] 李爱红,林宣雄,弓仰军.环境因素识别中的数据质量初探[J].水资源保护,2004,4:19~21,27
    [79] 李贵奇,周和敏等.环境协调性评价及研究进展[J].武汉理工大学学报,2002,2:79~82
    [80] 李贵奇,聂祚仁等.环境协调性评价(LCA)方法研究进展[J].材料导报,2002,1:7~10
    [81] 龚先政,聂祚仁,王志宏.典型材料环境协调性评价数据库框架的研究[J].武汉理工大学学报,2004,3:12~14
    [82] 刘洋,陈郁,张树深.生命周期评价数据管理系统的设计[J].环境与可持续发展,2006,1:17~19
    [83] 王玉振.生命周期评价(LCA)工具[J].中国ISO14000认证,2003,3:40~40
    [84] Baroni, L.; Cenci, L.; Tettamanti, M.; Berati, M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. European Journal of Clinical Nutrition. Nature Publishing Group, Basingstoke, UK: 2007. 61: 2, 279~286.
    [85] 戴宏民,戴佩华.LCA数据清单分析研究[J]_中国包装,2003,4:53~55
    [86] Jolliet, O.; Saade, M.; Crettaz, P. Life cycle analysis. Understanding and carrying out an ecobalance Analyse du cycle de vie: comprendre et realiser un ecobilan. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland: 2005. 242pp
    [87] E Salazar, R Samson, K Munnoch, P Stuart. Identifying environmental improvement opportunities for newsprint production using life cycle assessment (LCA). Pulp & Paper Canada. Westmount: Nov 2006. Vol. 107, Iss. 11; p. 32
    [88] Thanh Dang, Steven Frysinger. A study of LCA databases, A Workshop on Environmental Risk and Emergency Harrisonburg[M]. Virginia USA. 2004
    [89] 鲍建忠.ISO14040—97环境管理寿命周期评估原则与框架[J].世界标准信息,1998,1:1~7
    [90] 张树春.LCA与环境决策[J].云南环境科学,1999,4:23~24
    [91] 黄先玉,刘沛然.生命周期评价[J].广州环境科学,1999,3:1~3
    [92] 王树功.生命周期评价研究[J].环境与开发,1999,1:38~40
    [93] 王如松,杨建新.产业生态学和生态产业转型[J].世界科技研究与发展,2000,5:24~32
    [94] Ogink, N. W. M.; Willers, H. C.; Aarnink, A. J. A.; Satter, I. H. G. Development of a new pig production system with integrated solutions for emission control, manure treatment and animal welfare demands. Swine housing. Proceedings of the First International Conference, Des Moines, Iowa, USA, 9~11, October, 2000. American Society of Agricultural Engineers, St Joseph, USA: 2000. 253~259.
    [95] Cederberg, C. Flysjo, A. Environmental assessment of future pig farming systems-quantifications of three scenarios from the FOOD 21 synthesis work. [Bulletin] SIK Rapport. Swedish Institute for Food and Biotechnology (SIK), Goteborg, Sweden: 2004. 723, ⅰ-ⅹⅰ+54
    [96] Boer, I. J. M. de Environmental impact assessment of conventional and organic milk production. (Special issue: Organic livestock production) Livestock Production Science. Elsevier Science B. V., Amsterdam, Netherlands: 2003. 80: 1/2, 69~77. 29
    [97] Cederberg, C. Stadig, M. System expansion and allocation in life cycle assessment of milk and beef production. International Journal of Life Cycle Assessment. Ecomed Publishers, Landsberg, Germany: 2003. 8: 6, 350-356
    [98] Sandars, D. L.; Audsley, E.; Canete, C.; Cumby, T. R.; Scotford, I. M.; Williams, A. G. Environmental benefits of livestock manure management practices and technology by life cycle assessment. Biosystems Engineering. Academic Press, London, UK: 2003. 84: 3, 267~281
    [99] E Salazar, R Samson, K Munnoch, P Stuart. Identifying environmental improvement opportunities for newsprint production using life cycle assessment (LCA). Pulp & Paper Canada. Westmount: Nov 2006. Vol. 107, Iss. 11; 32~38
    [100] Hoglund, D, Samuelson, G, Mark, A. Food habits in Swedish adolescents in relation to socioeconomic conditionsEuropean Journal of Clinical Nutrition. London: Nov 1998. Vol. 52, Iss. 11; 784-789
    
    [101] Cederberg, C.; Flysjo, A. Life cycle inventory of 23 dairy farms in South-Western Sweden. SIK Rapport. Swedish Institute for Food and Biotechnology (SIK), Goteborg, Sweden: 2004. 728, 59 PP
    [102] Cederberg, C. Life cycle assessment of animal products. Environmentally-friendly food processing. Woodhead Publishing Ltd, Cambridge, UK: 2003. 54—69
    [103] Cederberg, C.; Wivstad, M.; Bergkvist, P.; Mattsson, B.; Ivarsson, K. Environmental assessment of plant protection strategies using scenarios for pig feed production. Ambio. Royal Swedish Academy of Sciences, Stockholm, Sweden: 2005.34:4/5,408—413.46
    [104] Stern, S.; Sonesson, U.; Gunnarsson, S.; Oborn, I.; Kumm, K. I.; Nybrant, T. Sustainable development of food production: a case study on scenarios for pig production.Ambio. Royal Swedish Academy of Sciences, Stockholm, Sweden: 2005. 34:4/5,402-407. 31.
    [105] Dalgaard, R.; Halberg, N.; Kristensen, I. S.; Larsen, I. An LC inventory based on representativeand coherent farm types. DIAS Report, Animal Husbandry. Danish Institute of Agricultural Sciences, Tjele, Denmark: 2004. 61,98-106.
    [106] Erzinger, S.; Dux, D.; Zimmermann, A.; Fawaz, R. B. LCA of animal products from different housing systems in Switzerland: relevance of feedstuffs, infrastructure and energy use. DIAS Report, Animal Husbandry. Danish Institute of Agricultural Sciences, Tjele, Denmark: 2004. 61, 55-63.
    [107] Dalgaard, R. Halberg, N. Kristensen, I. S. Larsen, I. An LC inventory based on representative and coherent farm types. DIAS Report, Animal Husbandry. Danish Institute of Agricultural Sciences,Tjele, Denmark: 2004. 61,98—106.
    [108] Halberg, N. Life cycle assessment in the agri-food sector. Proceedings from the 4th International Conference, 6-8 October 2003, Bygholm, Denmark. DIAS Report, Animal Husbandry. Danish Institute of Agricultural Sciences, Tjele, Denmark: 2004.61,1—288.
    [109] Casey, J. W.; Holden, N. M. A systematic description and analysis of GHG emissions resulting from Ireland's milk production using LCA methodology. DIAS Report, Animal Husbandry. Danish Institute of Agricultural Sciences, Tjele, Denmark: 2004.61, 219—221.
    [110] Casey, J. W. Holden, N. M. Greenhouse gas emissions from conventional, agri-environmental scheme, and organic Irish suckler-beef units. [Journal article] Journal of Environmental Quality. American Society of Agronomy,Madison, USA: 2006. 35: 1,231—239.
    [111] Zebarth, B. J. Paul, J. W. Kleeck, R. van The effect of nitrogen management in agricultural production on water and air quality: evaluation on a regional scale. Agriculture, Ecosystems & Environment. 1999. 72: 1, 35—52.
    [112] Werf, H. M. G. van der; Petit, J.; Sanders, J. The environmental impacts of the production of concentrated feed: the case of pig feed in Bretagne. Agricultural Systems. Elsevier, Oxford, UK: 2005. 83: 2, 153~177.
    [113] Kaku, K.; Ogino, A.; Ikeguchi, A.; Osada, T.; Shimada, K. Environmental impacts on concentrate feed supply systems for Japanese domestic livestock industry as evaluated by a Life-cycle Assessment method. Asian-Australasian Journal of Animal Sciences. Asian-Australasian Association of Animal Production Societies, Kyunggi-do, Korea Republic: 2005.18: 7, 1022~1025.
    [114] Bartroli, J.; Martin, M. J.; Rigola, M. The nitrogen balance for Catalan agriculture soils and livestock sectors. (Special issue: LCA and primary sector) International Journal of Agricultural Resources, Governance and Ecology. Inderscience Enterprises Ltd, Geneva, Switzerland: 2005. 4: 2, 123~132. 12 ref.
    [115] Payraudeau, S.; Werf, H. M. G. van der; Vertes, F. Evaluation of an operational method for the estimation of emissions of nitrogen compounds for a group of farms. (Special issue: Features of environmental sustainability in agriculture: where do we stand?) International Journal of Agricultural Resources, Governance and Ecology. Inderscience Enterprises Ltd, Geneva, Switzerland: 2006. 5: 2/3, 224~246.
    [116] Basset-Mens, C.; Werf, H. M. G. van der; Durand, P.; Leterme, P. Implications of uncertainty and variability in the life cycle assessment of pig production systems. International Journal of Life Cycle Assessment. Ecomed Publishers, Landsberg, Germany: 2006. 11: 5, 298~304.
    [117] L. Baroni, L. Cenci, M. Tettamanti. Evaluating the environmental impact of various dietary patterns combined with different food production systems. L Baroni, L Cenci, M Tettamanti, M Berati. European Journal of Clinical Nutrition. London: Feb 2007. Vol. 61
    [118] 胡天觉,曾光明.高温堆肥中微生物的生长特征及动力学建模[J].应用与环境生物学报,2004,10(5):651~654
    [119] 董惠良,美国的废物再生利用[J].江苏商业管理干部学院学报,1990,2:81~83
    [120] Sesay A A, K Lasaridi. E Stentiford, and T Budd. Controlled compesting of paper pulp sludge using the aerated static pile method[J]. Compost Sci. and Util., 1997, 5(1): 82~96.
    [121] 李国学,孟凡,乔姜华.添加钝化剂对污泥堆肥处理中重金属形态影响[J].中国农业大学学报,2000,5(1):105~111
    [122] 沈飞,张密.关于赴德国,美国考察垃圾无害化处理的介绍[J].建设机械技术与管理,2000,2:47~48
    [123] 余群,董红敏,张肇鲲.国内外堆肥技术研究进展[J].安徽农业大学学报,2003,30(1):109~112
    [124] 刘大义,张扣.墟镇生活垃圾优化处理技市研究[J].环境工程,2005,23(3):57~59
    [125] Gu Jie Li ShengXiu Qin QingJun Li MingLei Gao Hua Changes of oxidization and reduction enzymes of agricultural waste materials during composting at high temperature and static state [J]. Transactions of the Chinese Society of Agricultural Engineering. Chinese Society of Agricultural Engineering, Beijing, China: 2006. 22: 2, 138~141
    [126] Spencer, R. Alix, C. M. Dust management, mitigation at composting facilities[J] BioCycle. JG Press Inc., Emmaus, USA: 2006. 47: 3, 55~57
    [127] Arrigo, N. M. Jimenez, M. de la P. Palma, R. M. Benito, M. Tortarolo, M. F. Pruning waste and its potential use as amendment to agricultural soil[J]. Ciencia del Suelo. Asociacion Argentina de la Ciencia del Suelo, Buenos Aires, Argentina: 2005. 23: 1, 87~92
    [128] Gu Jie Li ShengXiu Qin QingJun Li MingLei Gao Hua Changes of oxidization and reduction enzymes of agricultural waste materials during composting at high temperature and static state [J]. Transactions of the Chinese Society of Agricultural Engineering. Chinese Society of Agricultural Engineering, Beijing, China: 2006. 22: 2, 138~141
    [129] Sekhar, D. M. R. Katewa, M. K. Industrial production of phosphate rich organic manure [M]. Phosphate rich organic manure: an alternate to phosphatic fertilizers. Himanshu Publications, Udaipur, 2004. 187~194
    [130] Osada, T. Fukumoto, Y. Tamura, T. Shiraihi, M. Ishibashi, M. Greenhouse gas generation from livestock waste composting [M] 4th International Symposium on non-CO2 greenhouse gases (NCGG-4), science, control, policy and implementation, Utrecht, Netherlands, 4-6 July 2005. Milipress Science Publishers, Rotterdam, Netherlands: 2005
    [131] Tang JingChun Kanamori, T. Inoue, Y. Yasuta, T. Yoshida, S. Katayama, A. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method [J] Process Biochemistry. Elsevier Science Ltd, Oxford, UK: 2004. 39: 12, 1999~2006
    [132] El-Rayes, E. Prokop, A. Natour, R. M. Ratcliffe, H. D. Compost microflora and screening of fungi for cellulolytic capability. [J] Arab Gulf Journal of Scientific Research. 1985. 3: 1, 261~276
    [133] Hay, J. C. Caballero, R. C. Livingston, J. R. Horuath, R. W. Windrow composting in Los Angeles County. Part 1. [J] Biocycle. 1985. 26: 7, 24~27
    [134] Lynch, J. M. Wood, D. A. Controlled microbial degradation of lignocellulose: the basis for existing and novel approaches to composting. [Miscellaneous] Composting of agricultural and other wastes. Elsevier Applied Science Publishers Ltd., Barking, UK: 1985
    [135] 魏远送等.环境温度对污泥堆肥的影响[J].环境污染治理技术与设备2001,(6)45~51
    [136] 高雯等著.食品酶学原理与分析方法[M].黑龙江科学技术出版社1991,4 353~355
    [137] 冯明谦,刘德明.滚筒式高温堆肥中微生物种类和数量的研究[J].中国环境科学,1999,19(6)490~492
    [138] The Composting Council of Canada, Solid Waste Composting in Canada, BioCycle, 1993, June: 38~40
    [139] Haug, R. T, The practical handbook of compost engineering, Lewis Publishers, Boca Ratan, Florida, 1993, 717 p
    [140] 万年峰.垃圾处理技术及其评估[J].水土保持科技情报,2003,2:13~15
    [141] 周琪.对城市生活垃圾管理和处置的探讨[J].宁夏工程技术,2003,4:386~390,394
    [142] MacGregor S T, Miller F C, Psarianos K M, et al. Composting process control based on interaction between microbial heat output and temperature. Applied and Environmental Microbiology, 1981, 41(6): 1321~1330.
    [143] H Nielsen, L Berthelsen. A model for temperature dependency of thermophilic composting process rate[J]. Compost Science& Utilization, 2002, 10(3): 249~258.
    [144] S Sireni, D Botta. Biofiter efficiency in odor abatement at composting plants[J]. Compost Sciencen & Utilization, 2001, 9(2): 149~156.
    [145] 陈建孟,LanceHershman.自养型生物过滤器硝化氧化一氧化氮[J].环境科学,2003,24(2):1~6
    [146] 李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报2003,22(2):252~256
    [147] 丁文川,李宏,郝以琼.污泥好氧堆肥主要微生物类群及其生态规律[J].重庆大学学报(自然科学版),2002,25(6):113~116
    [148] 冯明谦,刘德明.滚筒式高温堆肥中微生物种类数量的研究[J].中国环境科学,1999,19(6)
    [149] 刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报(城市科学版),2002,19(1):57~59
    [150] Hassen, A. Belguith, K. Jedidi, N. Cherif, A. Cherif, M. Boudabous, A. Microbial characterization during compositing of municipal solid waste. Bioresource technology. Dec 2001. 80(3) p. 217~225.
    [151] Sung, M. H. Kim, H. Bae, J. W. Rhee, S. K. Jeon, C. O. Kim, K. Kim, J. J. Hong, S. P. Lee, S. G. Yoon, J. H. Park, Y. H. Back, D. H. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. International Journal of Systematic and Evolutionary Microbiology. Society for General Microbiology, Reading, UK: 2002. 52: 6, 2251~2255.
    [152] 周少奇.有机垃圾厌氧处理的微生物作用原理[J].华南理工大学学报,1999,27(9)
    [153] Pavlostathis, S. G. Misra, G. Prytula, M. Yeh, D. Anaerobic processes. [J] Water Environment Researeh. 1996. 68: 4, 479~497.
    [154] Osada, T. Fukumoto, Y. Tamura, T. et al. Greenhouse gas generation from livestock waste composting. 4th International Symposium on non-CO2 greenhouse gases, science, control, policy and implementation, Utrecht, Netherlands, 4~6 July 2005. Millpress Science Publishers, Rotterdam, Netherlands: 2005. 105~112
    [155] Banik, S.; Nandi, R. Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom. Industrial Crops and Products. Elsevier Science Ltd, Oxford, UK: 2004. 20: 3, 311~319. 13 ref.
    [156] 徐瑛,张茂林,杏艳.纤维素类生物质厌氧发酵产氢的研究[J].化学工业,2005,16(2):6~8
    [157] 韩如旸,闵航,陈美慈.嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析[J].微生物学报,2002,42(2):138~144
    [158] 崔宗均,宫小燕,李国学.变性梯度凝胶电泳在堆肥微生物研究中的应用[J].微生物学通报,2000,31(5):116~119
    [159] Straatsma G.; Samson R. A.; Olijnsma T. W.; Camp H. J. M. O. den; Gerrits J. P. G.; Griensven L. J. L. D. van Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of agaricus bisporus mycelium. Applied-and-environmental-microbiology (USA). (Feb 1994). v. 60(2) p. 454~458.
    [160] 李秀艳,吴星五,高廷耀.接种高温菌剂的生活垃圾好氧堆肥处理[J].同济大学学报,2004,32(3):367~371
    [161] 郁红艳,曾光明,胡天觉.真菌降解木质素研究进展及在好氧堆肥中的研究展望[J].中国生物工程杂志,2003,23(10):57~61
    [162] 黄丹莲,曾光明,胡天觉.白腐菌应用于堆肥处理含本质素废物的研究[J].环境污染治理技术与设备,2005,6(2):29~32
    [163] 丁佐,费本华,刘盛全.木材自腐机理研究进展[J].木材工业,1997,11(5):18~21
    [164] 王连稹,王祯丽,黄华波.白腐菌在秸秆堆肥化中的应用[J].石河子大学学报(自然科学版),2003,7(2):161~164
    [165] 倪永珍,李维炯.EM有效微生物的研究与应用[J].天津畜彼兽医,1995,12(4):1~4
    [166] 史玉英,沈其荣,娄无忌.纤维素分解菌群的分离和筛选[J].南京农业大学学报1996,19(3)59~62
    [167] 牛俊玲,崔宗均,李国学.高温堆肥中复合菌系对木质纤维素和林丹降解效果的研究[J].农业环境科学学报,2005,24(2):375~379
    [168] 周辉宇,陆文静,王洪涛.高效纤维素分解菌生物强化技术在工厂化好氧堆肥中的应用初探[J].农业环境科学学报2005,24(1):182—186
    [169] 席北斗,孟伟,刘鸿亮.三阶段控温堆肥中接种复合微生物菌群的变化规律研究[J].环境科学,2003,24(2)152~155
    [170] 朴仁哲,姜成,金玉姬,等.微生物菌群对鸡粪堆肥腐熟中物质变化的影响[J].湖北农业科学,2006(1):110~113
    [171] 刘婷.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学报(城市科学版),2002,19(2):57~59
    [172] 刘克锋,刘悦秋,雷增普.几种微生物应用于猪粪堆肥中的研究[J].北京农学院学报,2001,16(2):36~41
    [173] 殷培杰,孙军德,石星群.微生物菌剂在鸡粪有机肥料堆制发酵中的应用[J].微生物学杂志,2004,24(6):43~47
    [174] 耽冬梅,宣世伟.高温好氧菌群用于接种垃圾堆肥的实验研究[J].上海环境科学,2003,22(10):699~701
    [175] 席北斗,刘鸿亮,黄国活等.垃圾堆肥的高效复合微生物菌剂的制备[J].环境科学研究,2003,16(2):58~94
    [176] 吴银宝,汪植三,刘胜安.猪粪堆肥微生物及其对堆制腐熟的影响[J].家畜生态,2003,24(1):34~38
    [177] Amann R. I. Fluorescently labelled, rRNA-targeted oligonucleotide probes in the study of microbial ecology. Molecular-Ecology (United Kingdom). (1995). v. 4(5) p. 543~554
    [178] Suau, A. Rochet, V. Sghir, A. Gramet, G. Brewaeys, S. Sutren, M. Rigottier-Gois, L. Dore, J. Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Systematic and applied microbiology. Apr 2001. 24(1) p. 139~145.
    [179] Rudi, K. Flateland, S. L. Hanssen, J. F. Bengtsson, G. Nissen, H. Development and evaluation of a 16S ribosomal DNA array-base approach for describing complex microbial communities in ready-to-eat vegetable salads packed in a modified atmosphere. Applied and environmental microbiology. Mar 2002. 68(3) p. 1146~1156.
    [180] 叶姜瑜,罗固源.微生物可培养性低的生态学释因与对策[J].微生物学报,2005,45(3):479~482
    [181] 付琳林,李海星.利用变性梯度凝胶电泳分析微生物的多样性[J].生物技术通报,2004,2:38~40
    [182] 胡敏,卫振袜,徐一飞.LCA一种新型的环境影响评价方法[J].环境导报,1997,4:23~25
    [183] Casey, J. W.; Holden, N. M. A systematic description and analysis of GHG emissions resulting from Ireland's milk production using LCA methodology. Danish Institute of Agricultural Sciences, Tjele, Denmark: 2004, 61, 219~221.
    [184] 姜峰,李青海,李剑峰.基于LCA法的包装材料环境友好性的评价[J].山东大学学报(工学版),2006,36(6):10~13
    [185] 苗泽伟,苗泽华.农村生态系统工业化及其可持续发展对策研究[J].石家庄经济学院学报,2000,23(4):415~422
    [186] 岳珍,赖茂生.国外“情景分析”方法的进展[J].情报杂志,2006,7:59~61
    [187] 曾忠禄,张冬梅.不确定环境下解读未来的方法:情景分析法[J].情报杂志,2005,5:14~16
    [188] 于红霞,汪波,钱荣.情景分析在企业发展战略中的应用研究[J].科技管理研究,2006,11:91~94
    [189] Miner, J. L. Cederberg, C. A. Nielsen, M. K. Chen, X. L. Baile, C. A. Conjugated linoleic acid (CLA), body fat, and apoptosis. [Journal article] Obesity Research. North American Association for the Study of Obesity (NAASO), Silver Spring, USA: 2001. 9: 2, 129-134.
    [190] Cederberg, C. Flysjo, A. Life cycle inventory of 23 dairy farms in South-Western Sweden. Swedish Institute for Food and Biotechnology (SIK), Goteborg, Sweden: 2004. 728,
    [191] 杨建新,王寿兵,徐成.生命周期清单分析中的分配方法[J].中国环境科学,1999,19(3):23~24
    [192] 《中国统计年鉴-2006》.中国统计局,2006年10月
    [193] 任继周,林慧龙.农田当量的涵义及其所揭示的我国土地资源的食物生产潜力.一个土地资源的食物生产能力评价的新量纲及其在我国的应用[J].草业学报,2006,15(5):1~10
    [194] Peet-Schwering, C. M. C. van der; Plagge, J. G.; Verdoes, N. Ammonium emission in pregnant sows fed ad libitum. Rapport-Praktijkonderzoek Veehouderij. Praktijkonderzoek Veehouderij, Lelystad, Netherlands: 2001. 209, 12.
    [195] Cederberg, C.; Flysjo, A. Environmental assessment of future pig farming systems-quantifications of three scenarios from the FOOD 21 synthesis work. Swedish Institute for Food and Biotechnology (SIK), Goteborg, Sweden: 2004. 723, ⅰ-ⅹⅰ+ 54
    [196] 刘丹.猪舍内氨气挥发动态模型的实验研究—以安平猪场为例[M].北京:中国农业大学,2004
    [197] 朱志平,董红敏等.育肥猪舍氨气浓度测定与排放量的估算[J].农业环境科学学报,2006,4
    [198] 汪善锋,杨彩梅.猪舍中氨的释放及其日粮调控[J].中国畜牧杂志,2005,7
    [199] 袁宝荣,聂祚仁,狄向华.乙烯生产的生命周期评价(Ⅱ)影响评价与结果解释[J].化工进展,2006,25(4):432~435
    [200] 任辉,杨印生.啤酒生产生命周期评价研究[J].农业机械学报,2006,37(2):79~83
    [201] 赵书广.《养猪大全》[D].北京,中国农业出版社,2001
    [202] 李震钟.《家畜生态学》[D].中国农业出版社,1995
    [203] Cederberg, C. Flysjo, A. Environmental assessment of future pig farming systems quantifications of three scenarios from the FOOD 21 synthesis work. [Bulletin] SIK Rapport. Swedish Institute for Food and Biotechnology (SIK), Goteborg, Sweden: 2004. 723, ⅰ-ⅹⅰ+54 pp
    [205] 王明新,包永红,吴文良,等.华北平原冬小麦生命周期环境影响评价[J].农业环境科学学报2006,25(5):1127~1132
    [206] Stern, S.; Sonesson, U.; Gunnarsson, S.; Oborn, I.; Kumm, K. I.; Nybrant, T. Sustainable development of food production: a case study on scenarios for pig production. Ambio. Royal Swedish Academy of Sciences, Stockholm, Sweden: 2005. 34: 4/5, 402~407.
    [207] Mohn, S.; Atakora, J. K. A.; McMillan, D. J.; Ball, R. O. Low protein diets reduce greenhouse gas production by sows. Progress in research on energy and protein metabolism. International Symposium, Rostock-Warnemunde, Germany, 13-18 September, 2003. Wageningen Academic Publishers, Wageningen, Netherlands: 2003. 425~427.
    [208] Misselbrook, T. H.; Chadwick, D. R.; Pain, B. F.; Headon, D. M. Dietary manipulation as a means of decreasing N losses and methane emissions and improving herbage N uptake following application of pig slurry to grassland. Journal of Agricultural Science. 1998. 130: 2, 183~191.
    [209] Lindfors L. G.; Christiansen K.; Hoffman L.; Virtanen Y.; Juntilla V.; Hanssen O. J.; Roenning A.; Ekvall T.; Finnveden G.. Nordic guidelines on life-cycle assessment. Copenhagen (Denmark). NMR. 1995. 224 p.
    [210] Waste minimization and clean technology: waste management strategies for the future. Waste minimization and clean technology: waste management strategies for the future.. Academic Press, London, UK: 1992. 11~237.
    [211] 冯砚青.中国酸雨状况和自然成因综述及防治对策探究[J].云南地理环境研究,2004,16(1):25~28
    [212] Heidi K. Stranddorf, Leif Hoffmann og Anders Schmidt, Update on impact categories, normalisation and weighting in LCA. Danish Environmental Protection Agency[R], Version 1.0 November 2005
    [213] Kaku, K.; Ogino, A.; Ikeguchi, A.; Osada, T.; Shimada, K. Environmental impacts on concentrate feed supply systems for Japanese domestic livestock industry as evaluated by a Life-cycle Assessment method. Asian-Australasian Journal of Animal Sciences. Asian-Australasian Association of Animal Production Societies, Kyunggi-do, Korea Republic: 2005. 18: 7, 1022~1028.
    [214] Cederberg, C.; Wivstad, M.; Bergkvist, P.; Mattsson, B.; Ivarsson, K. Environmental assessment of plant protection strategies using scenarios for pig feed production. Ambio. Royal Swedish Academy of Sciences, Stockholm, Sweden: 2005. 34: 4/5, 408~413.
    [215] 龚先政,聂祚仁,王志宏.典型材料环境协调性评价数据库框架的研究[J].武汉理工大学学报,2004,26(3):12~14
    [216] 赵兴高,王晓燕,陈代勇.鱼用猪粪蛋白源饲料试验[J].水利渔业,1996,2:44~46
    [217] 田鑫焱,沈志祥,陈又佳.猪粪污水沼气发电工程的效益分析[J].能源工程,1996,4:37~38
    [218] 周元军.规模化猪场猪粪尿沼气发酵综合处理利用[J].畜牧与兽医,2003,35(9):19~20
    [219] 徐士清,郑根泉,颜建龙.我国猪粪尿无公害处理技术的研究进展[J].养猪,2005,2:32~35
    [220] 朱开建,陈小麟,赵扬.利用猪粪集约化生产蝇蛆的生态工程研究[J].厦门大学学报(自然科学版),2003,42(2):253~256
    [221] 戴洪刚,唐金陵,杨志军.利用蝇蛆处理畜禽粪便污染的生物技术[J].农业环境与发展,2002,1:34~35
    [222] 文昊深,李永红,彭绪亚,汪立飞,等.好氧堆肥水分蒸发对通风量和堆体温度的影响[J].环境卫生工程,2006,14(5):14~16
    [223] 高茹英.规模化养猪场粪污水的好氧生物处理关键技术研究[D].中国农业大学硕士论文2005
    [224] 徐志平.畜禽废弃物污染与商品有机肥料产业发展[J].耕作与栽培,2003(5):57~58
    [225] 温海祥,陈玉如.生物有机肥优势发酵菌株的筛选[J].佛山科学技术学院学报(自然科学版),2005,23(1):66~38
    [226] 刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报(城市科学版),2002,19(2):57~59
    [227] Spencer, R. Alix, C. M. Dust management, mitigation at composting facilities[J] BioCycle. JG Press Inc., Emmaus, USA: 2006. 47: 3, 55~57
    [228] 郑玉琪,陈同斌,高定等.城市污泥猪粪堆肥及其混合堆肥过程中氧气的动态变化特征[J].中国给水排水,2003,143~149
    [229] 郭亮.猪场废弃物强制通风静态垛堆肥系统的研究[D].中国农业大学,2002
    [230] 杨毓峰等.畜禽废弃物堆肥质量与应用[J].湛江海洋大学学报,2000,20(4):79~82
    [231] 魏远送等.环境温度对污泥堆肥的影响[J].环境污染治理技术与设备2001,(6)45~51
    [232] Gu Jie Li, ShengXiu Qin, QingJun Li, MingLei, Gao Hua. Changes of oxidization and reduction enzymes of agricultural waste materials during composting at high temperature and static state[J].Transactions of the Chinese Society of Agricultural Engineering. Chinese Society of Agricultural Engineering,Beijing, China: 2006. 22: 2, 138~141
    [233] Tang JingChun Kanamori, T. Inoue, Y. Yasuta, T. Yoshida, S. Katayama, A. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method[J] Process Biochemistry. Elsevier Science Ltd,Oxford, UK: 2004. 39: 12
    [234] Bari, Q. H. Koenig, A. Kinetic analysis of forced aeration composting-Ⅱ. Application of multilayer analysis for the prediction of biological degradation[J]. Waste Management & Research. Munksgaard International Publishers Ltd, Copenhagen, Denmark: 2000. 18: 4, 313~319
    [235] Helm, M. Gronauer, A. Schon, H. Rotting processes in triangular heaps. Factors influencing the composting process and its control[J]. Land technik. 1995. 50: 5, 252, 284~285
    [236] 付海燕,曾光明,黄国和等.堆肥过程中产生生物表面活性剂的细胞筛选[J].环境科学学报,2004,24(5):936~938
    [237] 黄红丽,曾光明,黄国和等.堆肥中木质素降解微生物及其对腐殖质形成作用[J].中国生物工程杂志,2004,24(8):39~31
    [238] 戴芳,曾光明,吴小红.生物表面活性剂在农业废物好氧堆肥中的应用[J].环境科学,2005,26(4):181~185
    [239] Lau A K, Lo K V, Liao P H, et al.Aeration experiments for swine waste composting. Biores Technol, 1992, 41:145~452
    [240] Crombie G. Evolution of A Compost Plant. Biocusly,1985,23(6):17~25
    [241] Thomas Redlinger, Jay Graham, Verónica Corella-Barud. Survival of Fecal Coliforms in Dry-Composting Toilets. Applied and Environmental Microbiology, 2001, 67: 4036~4040
    [242] Haug, R. T. Composting plant design and process management. [Conference paper] The science of composting: part 1.. Blackie Academic & Professional,Glasgow, UK: 1996. 60~70
    [243] 刘卫星,顾金刚,姜瑞波.有机固体废弃物堆肥的腐熟度评价指标[J].土壤肥料,2005,3:3~7
    [244] Trierweiler, J. F. Bishop, B. L. Estimated NH3-volatilization losses from surface-applied urea on a wet calcareous Vertisol. Fertilizer Research. 1983. 4: 3, 271~280.
    [245] Eklind, Y. Kirchmann, H. Composting and storage of organic household waste with different litter amendments. Ⅱ: nitrogen turnover and losses. Bioresource Technology. Elsevier Science Ltd,Oxford, UK: 2000. 74: 2, 125~133.
    [246] 李秀艳,吴星五,高廷耀.有机垃圾好氧堆肥过程中微生物生长适应条件的研究[J].重庆环境科学,2004,32(3):367~371
    [247] 林华峰,李世广,张磊.绿僵菌大孢变种的生物学特征及其对蛴螬的毒力研究[J].应用生态学报,2006,17(2):351~353
    [248] 任南琪,赵阳国,王爱杰.PCR-SSCP技术分析碱度影响下硫酸盐还原反应器中微生物群落动 态[J].中国科学C辑生命科学,2006,36(1):51~58
    [249] 廖新俤,吴银宝,汪植三.堆体大小对猪粪堆肥影响和袋装堆肥的研究[J].农业工程学报,2003,19(4):287~290
    [250] 钟华,赖旭龙,魏荣平.一种从大熊猫粪便中提取DNA的改进方法[J].动物学报,2003,49(5):670~674
    [251] 赵阳国,任南琪,王爱杰.SSCP技术在微生物群落监测中的应用[J].中国给水排水,2004,20(11):25~28
    [252] 郑霞,杜文平,刘宜升.免疫金银染色法检测SLE患者血清抗核抗体和抗双链DNA抗体的临床研究[J].徐州医学院学报,2002,22(6):500~502
    [253] 周元军,昆虫蛋白质饲料的开发应用[J].中国饲料,2005,6:37~38
    [254] 王忠艳.动物营养与饲料科学[M].哈尔滨:东北林业大学出版社,2004:50~51.
    [255] 陈艳,吴建伟等.家蝇幼虫营养价值及抗病毒流活性的初步研究[J].贵阳医学院学报,2002,27(2):100~103.
    [256] Bondari K., D. C. Sheppard. Soldier fly, Hermetia illucens L. larvae as feed for channel catfish, Ictalurus puctatus Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner)[J]. Aquaculture and Fisheries Management 1987, 18: 209~220
    [257] 刘宏,朱刚,蝇蛆的饲养及其开发利用[J].新疆畜牧业,1997,(2):35~36
    [258] Booth, D. C. Sheppard. Oviposition of the black soldier fly, Hermetia illucens (Dipera:Stratiomyidae): Eggs, masses, timingand site characteristics. Environ. Entomol. 1984. 13: 421~423.
    [259] 顾亚凤.蝇蛆油对试验动物皮肤的刺激性、过敏性及烫治疗药效研究[J].中国兽药杂,2004,38(10):16~17.
    [260] 朱开建、陈小麟,赵扬等,利用猪粪集约化生产蝇蛆的生态工程研究[J].厦门大学学报(自然科学版) 2003,42(2)
    [261] Bradley, S. W., and D. C. Sheppard. House fly oviposition inhibition by larvae of Hermetia illucens[J], the black soldier fly. J. Chem. Ecol. 1984. 10: 853~859.
    [262] Li Q-R., The computation of biological quantity in ecological food meshwork[J], Chin. J. Biol. Repo. 2005. 11: 54~55.
    [263] 吴诗剑.某污水预处理厂恶臭治理设施的评价[J].中国环境监测,2002(18):50~51
    [264] Shen ZH-Q, Xv D-G, The research trends of commercial organic fertilizer Industrial production[J], Chin J Plant Nutrition and Fertilizer, 1998, 4(2): 117~122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700