固体氧化物电解池新型阳极材料设计、制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据平板式高温固体氧化物电解池对阳极材料性能的要求,分别对La_(0.8)Sr_(0.2)MnO_3(LSM)和La_(0.8)Sr_(0.2)FeO_3(LSF)两种体系的四种阳极材料进行研究,采用了X射线衍射谱(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)、X射线光电子能谱(XPS)等分析测试手段,从材料的成分和微观形貌入手,分析了在温度、氧分压和极化电流作用下,阳极的电化学性能变化。
     首先选取xLSM-(100-x)YSZ(0     对于多孔LSM-YSZ复合阳极,随着氧分压的增加,极化电阻大幅度减小,但随着孔隙率的增加,阻抗谱中低频弧的半径明显减小。通过微分阻抗谱分析,发现只有中频弧和低频弧与氧分压有关。随着孔隙率的增加,扩散过程的弛豫时间在缩短。而对于多孔LSF电极,随着孔隙率的增加,阳极极化电流对阻抗谱低频部分影响越来越明显,极化电阻随着极化时间延长而增加。
     采取离子注入法将LSM纳米颗粒引入LSF电极骨架,可以使具有催化活性的纳米颗粒均匀地分布在LSF电极表面,起到修饰效果。其极化电阻在800oC时为0.27·cm~2,比单相的LSF和LSM低。进一步采用非水基LSM前驱体溶液包覆LSF电极,制备出芯壳结构电极。研究发现,0.010mol·L~(-1)前驱体溶液所制备的芯壳结构电极,在800oC时其极化电阻约为0.30·cm~2;并且在1A·cm-2阳极电流下极化处理20h后,极化电阻增加幅度比LSM-YSZ复合电极小近7倍,表明具有一定的抗阳极极化的潜力。
     针对经过LSF纳米颗粒修饰的LSF电极,建立了该电极结构的三相界面模型。基于电荷传输和质量传递机制,该模型中将三相界面的长度作为分析阳极浓差过电势的一个因素。模拟结果表明,纳米颗粒修饰后的电极的三相界面长度比传统方法制备的LSM-YSZ复合电极大5~8个数量级;而浓差过电势随着三相界面长度、氧分压、孔隙率、孔径四个因素的增加而减小,随着阳极厚度的增加而增加。
In order to meet the requirements of planar solid oxide electrolysis cells (SOEC),four kinds of anode materials with different compositions based on La_(0.8)Sr_(0.2)MnO_3(LSM) and La_(0.8)Sr_(0.2)FeO_3(LSF) were prepared. Their compositions, microstructuresand properties have been investigated by X-ray Diffraction (XRD), Scanning ElectronMicroscopy (SEM), Transmission Electron Microscopy (TEM) methods, as well asElectrochemical Impedance Spectroscopy (EIS) and X-ray Photoelectron Spectroscopy(XPS). Also, the effects of temperature, oxygen partial pressure (pO_2) and polarizationcurrent on the electrochemical properties of the anodes were systematically discussed.
     A system of xLSM-(100-x)YSZ (040). Thepredicated fittings were comparable with the experimental measurements.
     The polarization resistance (R_p) of the LSM/YSZ porous composite anodesdecreased with the increase of pO_2and the radius of low frequency arcs in EISdecreased greatly with the increase of the porosity. In addition, the differential analysisof impedance spectra (DIS) indicated only the intermediate and low frequencies arcs arestrongly affected by pO_2. Meanwhile, with the increase of the porosity, thepositions of the peaks in DIS shifted to higher frequency, indicating that therelaxation-time of diffusion was shortened. For the porous LSF electrodes, theinfluence of anodic polarization current on the low frequency arcs became moreand more obvious with the increase of the porosity. Furthermore, the R_pvaluesof the LSF porous electrodes always increase with the increase of anodic polarization time.
     La_(0.8)Sr_(0.2)FeO_3electrodes modified with La_(0.8)Sr_(0.2)MnO_3nanoparticles (LSF/LSM)were prepared by infiltration method. The catalytically active LSM phase could beuniformly distributed. The R_pvalue of the LSF/LSM electrode was0.27·cm~2at themeasuring temperature of800oC. This value was much lower than those of pure LSFand LSM electrodes. Additionally, LSF@LSM (core@shell) electrodes were preparedvia the infiltration of LSM non-aqueous-solution. The results showed that the bestperformance of the electrodes with core-shell structure was obtained at theconcentration of0.010mol L~(-1)for precursor solution. The R_pvalue of the electrodereached0.3·cm~2at800oC. Moreover, the R_pvariation of the LSF@LSM anode wasseven times less than that of the conventional LSM-YSZ anode after anodic polarizationcurrent of1A cm-2for20h. This clearly demonstrated the LSF@LSM materials will bea promising anode with anti-polarization characteristic.
     A triple phase boundary (TPB) model derived from the LSF anode modified with alot of LSM nanoparticles was presented. Based on charge transfer and mass transfermechanisms, the TPB length was considered as an important factor for the calculationof concentration overpotential of the anode in SOEC. The results showed that the TPBlength in the LSF/LSM anodes was5to8orders of magnitude higher than that in theconventional composite electrodes. Moreover, the concentration overpotential decreasedwith the increase of the TPB length, oxygen partial pressure, porosity, pore radius.However, it increased with the increase of the thickness of diffusion layer in the anodeof SOEC.
引文
[1] Edwards P P, Kuznetsov V L, David W I F. Hydrogen energy. Phil Trans R Soc A,2007,365:1043-1056.
    [2] Goltsov V A, Veziroglu T N. From hydrogen economy to hydrogen civilization. Int JHydrogen Energ,2001,26:909-915.
    [3] O'Hayre R P, Cha S-W, Colella W, et al. Fuel cell fundamentals. New York: John Wiley&Sons,2006.
    [4] Steinfeld A. Solar thermochemical production of hydrogen----a review. Sol Energy,2005,78:603-615.
    [5] Barreto L, Makihira A, Riahi K. The hydrogen economy in the21st century: a sustainabledevelopment scenario. Int J Hydrogen Energ,2003,28:267-284.
    [6] Huang K, Goodenough J B. Solid oxide fuel cell technology: principles, performance andoperations. New York: CRC Press,2009.
    [7] Turner J A. Sustainable hydrogen production. Science,2004,305:972-974.
    [8] Rosen M A, Scott D S. Comparative efficiency assessments for a range of hydrogenproduction processes. Int J Hydrogen Energ,1998,23:653-659.
    [9] Rosen M A. Advances in hydrogen production by thermochemical water decomposition: areview. Energy,2010,35:1068-1076.
    [10] Das D, Veziro lu T N. Hydrogen production by biological processes: a survey of literature. IntJ Hydrogen Energ,2001,26:13-28.
    [11] Haryanto A, Fernando S, Murali N, et al. Current status of hydrogen production techniques bysteam reforming of ethanol: a review. Energy&Fuels,2005,19:2098-2106.
    [12] Keith D W, Farrell A E. Rethinking hydrogen cars. Science,2003,301:315-316.
    [13] Elder R, Allen R. Nuclear heat for hydrogen production: Coupling a very high/hightemperature reactor to a hydrogen production plant. Prog Nucl Energ,2009,51:500-525.
    [14] Fujiwara S, Kasai S, Yamauchi H, et al. Hydrogen production by high temperature electrolysiswith nuclear reactor. Prog Nucl Energ,2008,50:422-426.
    [15] Yalcin S. A review of nuclear hydrogen production. Int J Hydrogen Energ,1989,14:551-561.
    [16] Brisse A, Schefold J, Zahid M. High temperature water electrolysis in solid oxide cells. Int JHydrogen Energ,2008,33:5375-5382.
    [17] Stoots C M, O'Brien J E, Condie K G, et al. High-temperature electrolysis for large-scalehydrogen production from nuclear energy--experimental investigations. Int J Hydrogen Energ,2010,35:4861-4870.
    [18] Singhal S C. High-temperature solid oxide fuel cells: Fundamentals, design and applications.Elsevier Science,2003.
    [19] Hoejgaard Jensen S. Solid oxide electrolyser cell. Technical University of Denmark,2006.
    [20] Jensen S H, Mogensen M B. Perspectives of high temperature electrolysis using SOEC.Technical University of Denmark,2004.
    [21] Brisse A, Hauch A, Schiller G, et al. Highly efficient, high temperatue, hydrogen productionby water electrolysis (HI2H2).17thworld hydrogen energy conference, Brisbane, Australia.2008..
    [22] Doenitz W, Schmidberger R. Concepts and design for scaling up high temperature watervapour electrolysis. Int J Hydrogen Energ,1982,7:321-330.
    [23] Doenitz W, Erdle E. High-temperature electrolysis of water vapor-status of development andperspectives for application. Int J Hydrogen Energ,1985,10:291-295.
    [24] Herring J S, O'Brien J E, Stoots C M, et al. Progress in high-temperature electrolysis forhydrogen production using planar SOFC technology. Int J Hydrogen Energ,2007,32:440-450.
    [25] Herring J S, Lessing P A, Hartvigsen J J, et al. Performance measurements of solid-oxideelectrolysis cells for hydrogen production. J Fuel Cell Sci Tech,2005,2:156-163.
    [26] O'Brien J E, Stoots C M, Herring J S, et al. Hydrogen production performance of a10-cellplanar solid-oxide electrolysis stack. J Fuel Cell Sci Tech,2006,3:213-219.
    [27] Stoots C M, O'Brien J E, Herring J S, et al. High temperature solid-oxide electrolyzer2500hour test results at the Idaho national laboratory. American society of chemical engineersannual meeting,2009.
    [28] Sohal M S. Degradation in solid oxide cells during high temperature electrolysis. Idahonational laboratory report INL/EXT-09-15617,2009.
    [29] Sohal M S, O'Brien J E, Stoots C M, et al. Critical causes of degradation in integratedlaboratory scale cells during high-temperature electrolysis. Idaho national laboratory internaltechnical report INL/EXT-09-16004,2009.
    [30] Hauch A, Jensen S H, Menon M, et al. Stability of solid oxide electrolyser cells. Risinternational energy conference,2005..
    [31] Hauch A. Solid oxide electrolysis cells: Performance and durability. Technical University ofDenmark,2007.
    [32] Mathiesen B V. Fuel cells and electrolysers in future energy systems. Aalborg University,2008.
    [33] Osada N, Uchida H, Watanabe M. Polarization behavior of SDC cathode with highly dispersedNi catalysts for solid oxide electrolysis cells. J Electrochem Soc,2006,153: A816-A820.
    [34] Gopalan S, Mosleh M, Hartvigsen J J, et al. Analysis of self-sustaining recuperative solidoxide electrolysis systems. J Power Sources,2008,185:1328-1333.
    [35] Yu B, Zhang W, Xu J, et al. Status and research of highly efficient hydrogen productionthrough high temperature steam electrolysis at INET. Int J Hydrogen Energ,2010,35:2829-2835.
    [36] Liu M Y, Yu B, Xu J M, et al. Thermodynamic analysis of the efficiency of high-temperaturesteam electrolysis system for hydrogen production. J Power Sources,2008,177:493-499.
    [37] Liang M D, Yu B, Wen M, et al. Preparation of LSM--YSZ composite powder for anode ofsolid oxide electrolysis cell and its activation mechanism. J Power Sources,2009,190:341-345.
    [38] Kong J R, Zhang Y, Deng C S, et al. Synthesis and electrochemical properties of LSM andLSF perovskites as anode materials for high temperature steam electrolysis. J Power Sources,2009,186:485-489.
    [39] Tucker M, Sholklapper T, Lau G, et al. Progress in metal-supported SOFCs. ECS Transactions,2009,25:673-680.
    [40] Tucker M C, Lau G Y, Jacobson C P, et al. Stability and robustness of metal-supported SOFCs.J Power Sources,2008,175:447-451.
    [41] Fergus J W. Electrolytes for solid oxide fuel cells. J Power Sources,2006,162:30-40.
    [42] Hibino T, Hashimoto A, Inoue T, et al. A low-operating-temperature solid oxide fuel cell inhydrocarbon-air mixtures. Science,2000,288:2031-2033.
    [43] Kharton V V, Figueiredo F M, Navarro L, et al. Ceria-based materials for solid oxide fuel cells.J Mater Sci,2001,36:1105-1117.
    [44] Hagiwara A, Hobara N, Takizawa K, et al. Microstructure control of SOFC cathodes using theself-organizing behavior of LSM/ScSZ composite powder material prepared by spray pyrolysis.Solid State Ionics,2007,178:1123-1134.
    [45] Badwal S P S. Materials for solid oxide fuel cells. Materials Forum,1997.
    [46] Goodenough J B. Ceramic technology: Oxide-ion conductors by design. Nature,2000,404:821-823.
    [47] Steele B C H, Alcock C B. Factors influencing the performance of solid oxide electrolytes inhigh temperature thermodynamic measurements. Trans Met Soc AIME,1965,233:1359-1967.
    [48] Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev,2004,104:4791-4844.
    [49] Hauch A, Ebbesen S D, Jensen S H, et al. Solid oxide electrolysis cells: Microstructure anddegradation of the Ni/yttria-stabilized zirconia electrode. J Electrochem Soc,2008,155:B1184-B1193.
    [50] Wang X, Yu B, Zhang W Q, et al. Microstructural modification of the anode/electrolyteinterface of SOEC for hydrogen production. Int J Hydrogen Energ,2012,37:12833-12838..
    [51] Kleitz M, Petitbon F. Optimized SOFC electrode microstructure. Solid State Ionics,1996,92:65-74.
    [52] Yang Z, Jin C, Yang C, et al. Ba0.9Co0.5Fe0.4Nb0.1O3-δas novel oxygen electrode for solid oxideelectrolysis cells. Int J Hydrogen Energ,2011,36:11572-11577.
    [53] Liu Q, Dong X, Xiao G, et al. A novel electrode material for symmetrical SOFCs. Adv Mater,2010,22:5478-5482.
    [54] Chauveau F, Mougin J, Bassat J-M, et al. A new anode material for solid oxide electrolyser:The neodymium nickelate Nd2NiO4+δ. J Power Sources,2010,195:744-749.
    [55] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells.Nature,2006,443:63-66.
    [56] Steele B C H. Survey of materials selection for ceramic fuel cells II. Cathodes and anodes.Solid State Ionics,1996,86:1223-1234.
    [57] Skinner S J. Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes.Int J Inorg Mater,2001,3:113-121.
    [58] Yamamoto O, Takeda Y, Kanno R, et al. Perovskite-type oxides as oxygen electrodes for hightemperature oxide fuel cells. Solid State Ionics,1987,22:241-246.
    [59] Mogensen M, Lybye D, Bonanos N, et al. Factors controlling the oxide ion conductivity offluorite and perovskite structured oxides. Solid State Ionics,2004,174:279-286.
    [60] Huang Y H, Dass R I, Xing Z L, et al. Double perovskites as anode materials for solid-oxidefuel cells. Science,2006,312:254-257.
    [61] Coey J M D, Viret M, Von Molnar S. Mixed-valence manganites. Adv Phys,1999,48:167-293.
    [62] Jiang S P. Development of lanthanum strontium manganite perovskite cathode materials ofsolid oxide fuel cells: a review. J Mater Sci,2008,43:6799-6833.
    [63] Murray E P, Tsepin T, Barnett S A. Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilizeZrO2cathodes: an impedance spectroscopy study. Solid State Ionics,1998,110:235-243.
    [64] Nowotny J, Rekas M. Defect chemistry of (La,Sr)MnO3. J Am Ceram Soc,1998,81:67-80.
    [65] Decorse P, Caboche G, Dufour L C. A comparative study of the surface and bulk properties oflanthanum-strontium-manganese oxides La1-xSrxMnO3±δas a function of Sr-content, oxygenpotential and temperature. Solid State Ionics,1999,117:161-169.
    [66] Chen M, Liu Y L, Hagen A, et al. LSM--YSZ reactions in different atmospheres. Fuel Cells,2009,9:833-840.
    [67] Chen X J, Khor K A, Chan S H. Electrochemical behavior of La(Sr)MnO3electrode undercathodic and anodic polarization. Solid State Ionics,2004,167:379-387.
    [68] Virkar A V. Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. IntJ Hydrogen Energ,2010,35:9527-9543.
    [69] Tietz F, Haanappel V A C, Mai A, et al. Performance of LSCF cathodes in cell tests. J PowerSources,2006,156:20-22.
    [70] Schefold J, Brisse A, Tietz F. Nine thousand hours of operation of a solid oxide cell in steamelectrolysis mode. J Electrochem Soc,2011,159: A137-A144.
    [71] Laguna-Bercero M A. Recent advances in high temperature electrolysis using solid oxide fuelcells: A review. J Power Sources,2012,203:4-16.
    [72] Tao S W, Irvine J T S, Kilner J A. An efficient solid oxide fuel cell based upon single-phaseperovskites. Adv Mater,2005,17:1734-1737.
    [73] Simner S P, Bonnett J F, Canfield N L, et al. Development of lanthanum ferrite SOFCcathodes. J Power Sources,2003,:1-10.
    [74] Lee C, Baek S-W, Bae J. Cathodic behavior of La0.8Sr0.2Co1-xMnxO3-δperovskite oxide onYSZ electrolyte for intermediate temperature-operating solid oxide fuel cells. Solid StateIonics,2008,179:1465-1469.
    [75] Chang H C, Tsai D S, Chung W-H, et al. A ceria layer as diffusion barrier between LAMOXand lanthanum strontium cobalt ferrite along with the impedance analysis. Solid State Ionics,2009,180:412-417.
    [76] Perry Murray E, Sever M J, Barnett S A. Electrochemical performance of(La,Sr)(Co,Fe)O3-(Ce,Gd)O3composite cathodes. Solid State Ionics,2002,148:27-34.
    [77] Tietz F, Mai A, St ver D. From powder properties to fuel cell performance-A holisticapproach for SOFC cathode development. Solid State Ionics,2008,179:1509-1515.
    [78] Yang Z B, Yang C H, Xiong B, et al. BaCo0.7Fe0.2Nb0.1O3-δas cathode material forintermediate temperature solid oxide fuel cells. J Power Sources,2011,196:9164-9168.
    [79] Huang K, Wan J H, Goodenough J B. Increasing power density of LSGM-based solid oxidefuel cells using new anode materials. J Electrochem Soc,2001,148: A788-A794.
    [80] Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuelcells. Nature,2004,431:170-173.
    [81] Yu B, Zhang W, Xu J, et al. Microstructural characterization and electrochemical properties ofBa0.5Sr0.5Go0.8Fe0.2O3-δand its application for anode of SOEC. Int J Hydrogen Energ,2008,33%6(23):6873-6877%&.
    [82] Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. J Solid StateElectrochem,2009,14:1125-1144.
    [83] Ji Y, Kilner J A, Carolan M F. Electrical properties and oxygen diffusion in yttria-stabilisedzirconia (YSZ)-La0.8Sr0.2MnO3±δ(LSM) composites. Solid State Ionics,2005,176:937-943.
    [84] Nishino Y, Kato M, Asano S, et al. Semiconductorlike behavior of electrical resistivity inHeusler-type Fe2VAl compound. Phys Rev Lett,1997,79:1909-1912.
    [85] Bierwagen O, Pomraenke R, Eilers S, et al. Mobility and carrier density in materials withanisotropic conductivity revealed by van der Pauw measurements. Phys Rev B,2004,70:165307-165307.
    [86] Rietveld G, Koijmans C V, Henderson L C A, et al. DC conductivity measurements in the vander Pauw geometry. IEEE T Instrum Meas,2003,52:449-453.
    [87] Barsoukov E, Macdonald J R. Impedance spectroscopy: theory, experiment, and applications.New Jersey: Wiley-Interscience,2005.
    [88] Irvine J T S, Sinclair D C, West A R. Electroceramics: characterization by impedancespectroscopy. Adv Mater,1990,2:132-138.
    [89] Raistrick I D. Impedance studies of porous electrodes. Electrochim Acta,1990,35:1579-1586.
    [90] Chang B-Y, Park S-M. Electrochemical impedance spectroscopy. Annu Rev Anal Chem,2010,3:207-229.
    [91] Kim J, Ji H-I, Dasari H P, et al. Degradation mechanism of electrolyte and air electrode insolid oxide electrolysis cells operating at high polarization. Int J Hydrogen Energ,2013,38:1225-1235.
    [92] Kamata H, Hosaka A, Mizusaki J, et al. High temperature electrocatalytic properties of theSOFC air electrode La0.8Sr0.2MnO3/YSZ. Solid State Ionics,1998,106:237-245.
    [93] Lynch M E, Yang L, Qin W, et al. Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δdurability andsurface electrocatalytic activity by La0.85Sr0.15MnO3±δinvestigated using a new test electrodeplatform. Energ Environ Sci,2011,4:2249-2258.
    [94] Jensen S H, Hauch A, Knibbe R, et al. Modeling degradation in SOEC impedance spectra. JElectrochem Soc,2013,160: F244-F250.
    [95] Wang W, Huang Y, Jung S, et al. A comparison of LSM, LSF, and LSCo for solid oxideelectrolyzer anodes. J Electrochem Soc,2006,153: A2066-A2070.
    [96] Keane M, Mahapatra M K, Verma A, et al. LSM--YSZ interactions and anode delamination insolid oxide electrolysis cells. Int J Hydrogen Energ,2012,37:16776-16785.
    [97] Kakac S, Pramuanjaroenkij A, Zhou X Y. A review of numerical modeling of solid oxide fuelcells. Int J Hydrogen Energ,2007,32:761-786.
    [98] JaeHwa K O H, DuckJoo Y, Chang H. Simple electrolyzer model development forhigh-temperature electrolysis system analysis using solid oxide electrolysis cell. J Nucl SciTechnol,2010,47:599-607.
    [99] Ni M, Leung M K H, Leung D Y C. A modeling study on concentration overpotentials of areversible solid oxide fuel cell. J Power Sources,2006,163:460-466.
    [100] Ni M, Leung M K H, Leung D Y C. Mathematical modeling of the coupled transport andelectrochemical reactions in solid oxide steam electrolyzer for hydrogen production.Electrochim Acta,2007,52:6707-6718.
    [101] Grondin D, Deseure J, Brisse A, et al. Simulation of a high temperature electrolyzer. J ApplElectrochem,2010,40:933-941.
    [102] Jin X, Xue X. Computational fluid dynamics analysis of solid oxide electrolysis cells withdelaminations. Int J Hydrogen Energ,2010,35:7321-7328.
    [103] Vladikova D E, Stoynov Z B, Barbucci A, et al. Impedance studies of cathode/electrolytebehaviour in SOFC. Electrochim Acta,2008,53:7491-7499.
    [104] Leonide A, Rüger B, Weber A, et al. Impedance study of alternative (La,Sr)FeO3-δand(La,Sr)(Co,Fe)O3-δMIEC cathode compositions. J Electrochem Soc,2010,157: B234-B239.
    [105] Sunarso J, Baumann S, Serra J M, et al. Mixed ionic--electronic conducting (MIEC)ceramic-based membranes for oxygen separation. J Membrane Sci,2008,320:13-41.
    [106] Fukunaga H, Ihara M, Sakaki K, et al. The relationship between overpotential and the threephase boundary length. Solid State Ionics,1996,86:1179-1185.
    [107] Van Heuveln F H, Bouwmeester H J M, van Berkel F F. Electrode properties of Sr-dopedLaMnO3on yttria-stabilized zirconia I. Three-phase boundary area. J Electrochem Soc,1997,144:126-133.
    [108] Lai W, Haile S M. Impedance spectroscopy as a tool for chemical and electrochemical analysisof mixed conductors: A case study of ceria. J Am Ceram Soc,2005,88:2979-2997.
    [109] Backhaus-Ricoult M. Interface chemistry in LSM--YSZ composite SOFC cathodes. SolidState Ionics,2006,177:2195-2200.
    [110] Sahu A K, Ghosh A, Suri A K. Characterization of porous lanthanum strontium manganite(LSM) and development of yttria stabilized zirconia (YSZ) coating. Ceram Int,2009,35:2493-2497.
    [111] Jamnik J, Maier J. Treatment of the impedance of mixed conductors equivalent circuit modeland explicit approximate solutions. J Electrochem Soc,1999,146:4183-4188.
    [112] Guo X, Waser R. Electrical properties of the grain boundaries of oxygen ion conductors:Acceptor-doped zirconia and ceria. Prog Mater Sci,2006,51:151-210.
    [113] Kenney B, Valdmanis M, Baker C, et al. Computation of TPB length, surface area and poresize from numerical reconstruction of composite solid oxide fuel cell electrodes. J PowerSources,2009,189:1051-1059.
    [114] Sanyal J, Goldin G M, Zhu H, et al. A particle-based model for predicting the effectiveconductivities of composite electrodes. J Power Sources,2010,195:6671-6679.
    [115] Tsai T, Barnett S A. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cellperformance. Solid State Ionics,1997,93:207-217.
    [116] Balachandran U, Guan J, Dorris S E, et al. Development of mixed-conducting dense ceramicmembranes for hydrogen separation. Proceedings of the fifth international conference oninorganic membranes, Nagoya, Japan,1998.
    [117] Abbaspour A, Nandakumar K, Luo J, et al. A novel approach to study the structure versusperformance relationship of SOFC electrodes. J Power Sources,2006,161:965-970.
    [118] Yamahara K, Sholklapper T Z, Jacobson C P, et al. Ionic conductivity of stabilized zirconianetworks in composite SOFC electrodes. Solid State Ionics,2005,176:1359-1364.
    [119] Yang C C T, Wei W C J, Roosen A. Electrical conductivity and microstructures ofLa0.65Sr0.3MnO3-8mol%yttria-stabilized zirconia. Mater Chem Phys,2003,81:134-142.
    [120] Jorcin J-B, Orazem M E, Pébère N, et al. CPE analysis by local electrochemical impedancespectroscopy. Electrochimica Acta,2006,51:1473-1479.
    [121] Fehribach J D, O'Hayre R. Triple phase boundaries in solid-oxide cathodes. Siam J Appl Math,2009,70:510-530.
    [122] Jiang S P, Love J G, Zhang J P, et al. The electrochemical performance ofLSM/zirconia--yttria interface as a function of a-site non-stoichiometry and cathodic currenttreatment. Solid State Ionics,1999,121:1-10.
    [123] Dittrich T, Weidmann J, Koch F, et al. Temperature-and oxygen partial pressure-dependentelectrical conductivity in nanoporous rutile and anatase. Appl Phys Lett,1999,75:3980-3982.
    [124] Mogensen M, Skaarup S. Kinetic and geometric aspects of solid oxide fuel cell electrodes.Solid State Ionics,1996,86:1151-1160.
    [125] Newman J, Tiedemann W. Porous-electrode theory with battery applications. Aiche J,2004,21:25-41.
    [126] Meyers J P, Doyle M, Darling R M, et al. The impedance response of a porous electrodecomposed of intercalation particles. J Electrochem Soc,2000,147:2930-2940.
    [127] Mizusaki J, Mori N, Takai H, et al. Oxygen nonstoichiometry and defect equilibrium in theperovskite-type oxides La1-xSrxMnO3+δ. Solid State Ionics,2000,129:163-177.
    [128] Kim J D, Kim G D, Moon J W, et al. Characterization of LSM--YSZ composite electrode byac impedance spectroscopy. Solid State Ionics,2001,143:379-389.
    [129] Jiang S P, Love J G, Ramprakash Y. Electrode behaviour at (La,Sr)MnO3/Y2O3-ZrO2interfaceby electrochemical impedance spectroscopy. J Power Sources,2002,110:201-208.
    [130] Knibbe R, Traulsen M L, Hauch A, et al. Solid oxide electrolysis cells: degradation at highcurrent densities. J Electrochem Soc,2010,157: B1209-B1217.
    [131] Patrakeev M V, Bahteeva J A, Mitberg E B, et al. Electron/hole and ion transport inLa1-xSrxFeO3-δ. J Solid State Chem,2003,172:219-231.
    [132] Kenney B, Karan K. Estimation of chemical and transport processes in porous, stoichiometricLSM cathodes using steady-state polarization and impedance modeling. J Electrochem Soc,2010,157: B1126-B1137.
    [133] Choi J J, Qin W, Liu M, et al. Preparation and characterization of (La0.8Sr0.2)0.95MnO3-δ(LSM) thin films and LSM/LSCF interface for solid oxide fuel cells. J Am Ceram Soc,2011,94:3340-3345.
    [134] Tao Y, Nishino H, Ashidate S, et al. Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-baseddouble layer-type oxygen electrodes for reversible SOFCs. Electrochim Acta,2009,54:3309-3315.
    [135] Yang J, Muroyama H, Matsui T, et al. A comparative study on polarization behavior of(La,Sr)MnO3and (La,Sr)CoO3cathodes for solid oxide fuel cells. Int J Hydrogen Energ,2010,35:10505-10512.
    [136] Yang J, Muroyama H, Matsui T, et al. Simulation of dynamic response of strontium-dopedlanthanum manganite under cathodic polarization. J Electrochem Soc,2010,157: B449-B454.
    [137] Jiang S P. Activation, microstructure, and polarization of solid oxide fuel cell cathodes. J SolidState Electrochem,2007,11:93-102.
    [138] Jensen S H, Hauch A, Hendriksen P V, et al. A method to separate process contributions inimpedance spectra by variation of test conditions. J Electrochem Soc,2007,154:B1325-B1330.
    [139] Lanfredi S, Dessemond L, Rodrigues A. Effect of porosity on the electrical properties ofpolycrystalline sodium niobate: I, electrical conductivity. J Am Ceram Soc,2003,86:291-298.
    [140] Barfod R, Hagen A, Ramousse S, et al. Break down of losses in thin electrolyte SOFCs. FuelCells,2006,6:141-145.
    [141] Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications. New York:Wiley,1980.
    [142] Kenney B. An experimental and modelling study of oxygen reduction in porous LSM/YSZsolid oxide fuel cell cathodes. Queen's University,2010.
    [143] Choi H W, Berson A Kenney B, et al. Effective transport coefficients for porousmicrostructures in solid oxide fuel cells. ECS Transactions,2009,25:1341-1350.
    [144] Horita T, Yamaji K, Ishikawa M, et al. Active sites imaging for oxygen reduction at theLa0.9Sr0.1MnO3-x/yttria-stabilized zirconia interface by secondary-ion mass spectrometry. JElectrochem Soc,1998,145:3196-3202.
    [145] Wang W G, Mogensen M. High-performance lanthanum-ferrite-based cathode for SOFC.Solid State Ionics,2005,176:457-462.
    [146] Mai A, Haanappel V A C, Uhlenbruck S, et al. Ferrite-based perovskites as cathode materialsfor anode-supported solid oxide fuel cells: Part I. Variation of composition. Solid State Ionics,2005,176:1341-1350.
    [147] Mai A, Haanappel V A C, Tietz F, et al. Ferrite-based perovskites as cathode materials foranode-supported solid oxide fuel cells: Part II. Influence of the CGO interlayer. Solid StateIonics,2006,177:2103-2107.
    [148] Wang W, Jiang S P. Effect of polarization on the electrode behavior and microstructure of(La,Sr)MnO3electrodes of solid oxide fuel cells. J Solid State Electrochem,2004,8:914-922.
    [149] Nielsen J, Mogensen M. SOFC LSM: YSZ cathode degradation induced by moisture: Animpedance spectroscopy study. Solid State Ionics,2011,189:74-81.
    [150] Backhaus-Ricoult M, Adib K, St Clair T, et al. In-situ study of operating SOFC LSM/YSZcathodes under polarization by photoelectron microscopy. Solid State Ionics,2008,179:891-895.
    [151] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials. ApplSurf Sci,2008,254:2441-2449.
    [152] Chainani A, Mathew M, Sarma D D. Electronic structure of La1-xSrxFeO3. Phys Rev B,1993,48:14818-14825.
    [153] Brichzin V, Fleig J, Habermeier H U, et al. The geometry dependence of the polarizationresistance of Sr-doped LaMnO3microelectrodes on yttria-stabilized zirconia. Solid State Ionics,2002,152:499-507.
    [154] Liu M, Lynch M E, Blinn K, et al. Rational SOFC material design: new advances and tools.Mater Today,2011,14:534-546.
    [155] Kotomin E A, Evarestov R A, Mastrikov Y A, et al. DFT plane wave calculations of theatomic and electronic structure of LaMnO3(001) surface. Phys Chem Chem Phys,2005,7:2346-2350.
    [156] Jiang S P. A review of wet impregnation--An alternative method for the fabrication of highperformance and nano-structured electrodes of solid oxide fuel cells. Mater Sci Eng A,2006,418:199-210.
    [157] Jiang S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration:Advances and challenges. Int J Hydrogen Energ,2012,37:449-470.
    [158] Vohs J M, Gorte R J. High-Performance SOFC Cathodes Prepared by Infiltration. Adv Mater,2009,21:943-956.
    [159] Ruiz-Morales J C, Canales-Vázquez J, Peňa-Martínez J, Marrero-López D, Irvine J T S, NúňezP. Microstructural optimisation of materials for SOFC applications using PMMA microspheres.J Mater Chem,2006,16:540-542.
    [160] Dusastre V, Kilner J A. Optimisation of composite cathodes for intermediate temperatureSOFC applications. Solid State Ionics,1999,126:163-174.
    [161] Marina O A, Pederson L R, Williams M C, et al. Electrode performance in reversible solidoxide fuel cells. Journal of the Electrochemical Society,2007,154: B452-B459.
    [162] Gorte R J, Vohs J M. Nanostructured anodes for solid oxide fuel cells. Curr Opin ColloidInterface Sci,2009,14:236-244.
    [163] Zhu B. Solid oxide fuel cell (SOFC) technical challenges and solutions from nano-aspects. IntJ Energ Res,2009,33:1126-1137.
    [164] Wiglusz R J, Gaki A, Kakali G, et al. Conductivity and electric properties of La1-xSrxMnO3-δnanopowders. J Rare Earth,2009,27:651-654.
    [165] Mizusaki J, Sasamoto T, Cannon W R, et al. Electronic conductivity, seebeck coefficient, anddefect structure of La1-xSrxFeO3(x=0.l,0.25). J Am Ceram Soc,1983,66:247-252.
    [166] Wang X, Ma Y, Raza R, et al. Novel core-shell SDC/amorphous Na2CO3nanocompositeelectrolyte for low-temperature SOFCs. Electrochem Commun,2008,10:1617-1620.
    [167] Yang C, Jin C, Coffin A, et al. Characterization of infiltrated (La0.75Sr0.25)0.95MnO3as oxygenelectrode for solid oxide electrolysis cells. Int J Hydrogen Energ,2010,35:5187-5193.
    [168] Jiang Z, Xia C, Chen F. Nano-structured composite cathodes for intermediate-temperaturesolid oxide fuel cells via an infiltration/impregnation technique. Electrochim Acta,2010,55:3595-3605.
    [169] Choi Y, Lynch M E, Lin M C, et al. Prediction of O2dissociation kinetics on LaMnO3-basedcathode materials for solid oxide fuel cells. J Phys Chem C,2009,113:7290-7297.
    [170] Schichlein H, Müller A C, Voigts M, et al. Deconvolution of electrochemical impedancespectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J ApplElectrochem,2002,32:875-882.
    [171] Sholklapper T Z, Jacobson C P, Visco S J, et al. Synthesis of dispersed and contiguousnanoparticles in solid oxide fuel cell electrodes. Fuel Cells,2008,8:303-312.
    [172] Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature,2001,414:345-352.
    [173] Chan S H, Khor K A, Xia Z T. A complete polarization model of a solid oxide fuel cell and itssensitivity to the change of cell component thickness. J Power Sources,2001,93:130-140.
    [174] Chen K, Ai N, Jiang S P. Development of (Gd,Ce)O2-Impregnated (La,Sr)MnO3anodes ofhigh temperature solid oxide electrolysis cells. J Electrochem Soc,2010,157: P89-P94.
    [175] Adler S B. Limitations of charge-transfer models for mixed-conducting oxygen electrodes.Solid State Ionics,2000,135:603-612.
    [176] Zhu W, Ding D, Xia C. Enhancement in three-phase boundary of SOFC electrodes by an ionimpregnation method: a modeling comparison. Electrochem Solid-State Lett,2008,11:B83-B86.
    [177] Gokhale A M, Zhang S, Liu M. A stochastic geometry based model for total triple phaseboundary length in composite cathodes for solid oxide fuel cells. J Power Sources,2009,194:303-312.
    [178] Janardhanan V M, Heuveline V, Deutschmann O. Three-phase boundary length in solid-oxidefuel cells: A mathematical model. J Power Sources,2008,178:368-372.
    [179] Grondin D, Deseure J, Ozil P, et al. Solid oxide electrolysis cell3D simulation using artificialneural network for cathodic process description. Chem Eng Res Des,2013,91:134-140.
    [180] Udagawa J, Aguiar P, Brandon N P. Hydrogen production through steam electrolysis:Model-based steady state performance of a cathode-supported intermediate temperature solidoxide electrolysis cell. J Power Sources,2007,166:127-136.
    [181]Mizusaki J, Waragai K, Tsuchiya S, et al. Simple mathematical model for the electricalconductivity of highly porous ceramics. J Am Ceram Soc,1996,79:109-113.
    [182]Chen D, Lin Z, Zhu H, et al. Percolation theory to predict effective properties of solid oxidefuel-cell composite electrodes. J Power Sources,2009,191:240-252.
    [183]Chen D, He H, Zhang D, et al. Percolation theory in solid oxide fuel cell composite electrodeswith a mixed electronic and ionic conductor. Energies,2013,6:1632-1656.
    [184]Bertei A, Nicolella C. Percolation theory in SOFC composite electrodes: Effects of porosityand particle size distribution on effective properties. J Power Sources,2011,196:9429-9436.
    [185]Jeon D H, Nam J H, Kim C-J. Microstructural optimization of anode-supported solid oxide fuelcells by a comprehensive microscale model. J Electrochem Soc,2006,153: A406-A417.
    [186] Costamagna P, Panizza M, Cerisola G, et al. Effect of composition on the performance ofcermet electrodes. Experimental and theoretical approach. Electrochim Acta,2002,47:1079-1089.
    [187] Haile S M. Fuel cell materials and components. Acta Mater,2003,51:5981-6000.
    [188] Yakabe H, Hishinuma M, Uratani M, et al. Evaluation and modeling of performance ofanode-supported solid oxide fuel cell. J Power Sources,2000,86:423-431.
    [189] Kenney B, Karan K. Engineering of microstructure and design of a planar porous compositeSOFC cathode: A numerical analysis. Solid State Ionics,2007,178:297-306.
    [190] Kenney B, Karan K. Impact of nonuniform potential in SOFC composite cathodes on thedetermination of electrochemical kinetic parameters: A numerical analysis. J Electrochem Soc,2006,153: A1172-A1180.
    [191] Nam J H, Jeon D H. A comprehensive micro-scale model for transport and reaction inintermediate temperature solid oxide fuel cells. Electrochim Acta,2006,51:3446-3460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700