燃料电池混合动力机车建模及优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能具有来源丰富、燃烧值高、环保等一系列优点,被认为是人类未来的终极能源。作为氢能开发和应用的代表,近几年燃料电池在各国政府的大力支持下已经取得了突破性的进展,部分以燃料电池为核心的产品已经进入商业化,其主要应用在航天、军事、交通、通信、电力以及家用产品等各领域。近些年,由于燃料电池技术的快速发展,特别是大功率燃料电池的研制成功,燃料电池在轨道交通方面的应用引起了世界各地的关注和研究。
     燃料电池混合动力机车是一个涉及机械、电气、化学、控制等多领域的极为复杂的整车系统,整车部件中存在着大量的时变和非线性环节,因此构建一个较为完善的燃料电池混合动力机车仿真模型以及设计一个适合燃料电池混合动力机车的整车控制策略对今后机车的开发和研究具有重要的意义。
     本文主要研究了燃料电池混合动力机车的行驶工况分析与测量,燃料电池混合动力机车的整车系统建模以及燃料电池混合动力机车的优化控制等相关问题。主要工作及结论总结如下:
     (1)分析了现目前常用的混合动力系统的拓扑结构、车体的动力系统类型以及常用的组合形式,并对这些拓扑结构、动力系统类型进行了较为详细的分析与对比,最后根据实际情况和经济等多方面考虑,选定了本文所建模型的拓扑结构和动力设备组合。
     (2)为了更好地分析所建模型的整车性能,本文结合实际情况,测量了某地区某条地铁线路的真实运行数据,建立了适合燃料电池混合动力机车的仿真行驶工况,利用MATLAB仿真软件编写工况程序,并嵌入到ADVISOR仿真软件中,为后续研究奠定仿真基础。
     (3)针对ADVISOR仿真软件在研究燃料电池混合动力机车方面的不足,对其进行了相应的二次开发,利用ADVISOR仿真平台,在MATLAB/SIMULINK仿真环境中,构建了一个较为完善的燃料电池混合动力机车整车仿真模型,该系统模型主要组成部分有:车体子模型、蓄电池子模型、牵引电机子模型、燃料电池子模型、机车车轮子模型以及其他附属子模型等。基于本文所测量的燃料电池混合动力机车的仿真行驶工况,分析了在功率跟随控制策略下机车的整体性能,得到了各主要部件的全过程平均工作效率。根据参考文献建立相应的对比模型,通过相应的对比分析,验证了所建模型的正确性。(4)根据模糊逻辑控制理论,设计了一种基于T-S模糊逻辑控制的燃料电池混合动力机车控制策略。该T-S模糊逻辑控制策略以机车牵引电机的需求功率pmcr和蓄电池的荷电状态值SOC作为输入变量,以燃料电池的输出功率比值系数K(即,燃料电池的输出功率为K*pmcr)为输出变量。基于燃料电池混合动力机车的整车系统仿真模型和仿真行驶工况,对嵌入ADVISOR仿真软件的T-S模糊逻辑控制策略进行仿真验证,结果表明,在本文所设计的基于T-S模糊逻辑控制的燃料电池混合动力机车控制策略下机车在整个行驶过程中的氢耗量比功率跟随控制策略下机车的氢耗量得到了较大的降低,机车的几个主要部件的平均工作效率得到了一定提升,本文所设计的控制策略能够有效提高燃料电池混合动力机车的整车经济性能和工作性能。
Hydrogen has many advantages, such as rich source, high combustion value, environment friendly and so on. It is considered to be the ultimate energy in future. As a representative of hydrogen energy development and application, the fuel cell has made breakthrough progress with the strong support of governments in recent years. Part of products which fuel cell as the core has entered the commercial. They have been used in the field of aerospace, military, traffic, communication, electric power and household products and so on. In recent years, due to the rapid development of fuel cell technology, especially the successful development of large power fuel cell, the application of fuel cell in rail transit has attracted worldwide attention and research.
     Fuel cell hybrid locomotive is a very complex system, which involve mechanical, electrical, chemical, control and many other areas, it has a large number of time-varying and nonlinear locomotive components. Therefore, constructing a perfect fuel cell hybrid electric locomotive simulation model and design a suitable control strategy for fuel cell hybrid locomotive has the vital significance to the research and development of locomotive in the future.
     This paper mainly studies the measurement and analysis of the drivinging cycle of fuel cell hybrid locomotive, problems related to system modeling and the optimization control of fuel cell hybrid locomotive. The main work and conclusions are summarized as follows:
     (1) Analysis the topology structure of hybrid system, the type of the power system and common form of combination, then analysis and compare the topological structure and type of the power system. Finally, according to the actual situation and consider economic factors, Select the model topology and power equipment.
     (2) In order to analyze the model of vehicle performance, this paper combined with the actual situation, measure a real operation data of a subway line in a certain area, establish a simulation driving cycle for the fuel cell hybrid locomotive, write a program of driving cycle using MTLAB simulation software, and embedded into the ADVISOR simulation software, to lay the foundation for further study of simulation.
     (3) Aiming at the deficiency of ADVISOR simulation software in the study of fuel cell hybrid locomotive, this paper carries on two times of development in ADVISOR, to build a relatively perfect fuel cell hybrid electric locomotive simulation model in the MATLAB/SIMULINK simulation environment, which mainly includes the car model, fuel cell model, battery model, motor model, locomotive wheel model and other models. Analysis the overall performance under the power following control strategy base on driving cycle of fuel cell hybrid electric locomotive measured in this paper, gain the average working efficiency of the main parts of the locomotive in the whole process. Establish corresponding comparison model according to the references, through the analysis of relevant comparison, verify the correctness of the model.
     (4) According to the fuzzy logic control theory, design a fuel cell hybrid electric locomotive control strategy based on T-S fuzzy logic control. The T-S fuzzy logic control strategy's input variables are locomotive traction motor power demand pmcr and battery state of charge values SOC, its output variable is the ratio of output power of fuel cel K (the output power of the fell cell is K*pmcr). The T-S fuzzy logic control strategy embedded in ADVISOR simulation software is verified base on the simulation system of fuel cell hybrid electric locomotive and driving cycle, The results show that, compared with power following control strategy, the fuel cell hybrid electric locomotive control strategy designed based on the T-S fuzzy logic control can reduce hydrogen consumption in the whole running process, and can improve average efficiency of locomotive components, can effectively improve fuel cell hybrid locomotive vehicle's economic performance and working performance.
引文
[1]毛宗强.氢能—我国未来的清洁能源[J].化工学报.2004(55):296-302.
    [2]张轲,刘述丽,刘明明,等.氢能的研究进展[J].材料导报.2011(9):116-119.
    [3]毛宗强.世界各国加快氢能源市场化步伐—记第18届世界氢能大会(WHEC 2010)[J].中外能源.2010(7):29-34.
    [4]张芳.当前能源形势及解决能源问题的对策[J].科技传播.2013(3):49-50.
    [5]廖怀庆,刘东,黄玉辉,等.考虑新能源发电与储能装置接入的智能电网转供能力分析[J].中国电机工程学报.2012(16):9-16.
    [6]吴红飞,孙凯,邢岩.新能源发电串联分布式高能效变换系统[J].中国电机工程学报.2012(33):1-6.
    [7]徐敏,阮新波,刘福鑫,等.氢光联合供电系统的能量管理[J].电工技术学报.2010(10):166-175.
    [8]赵佳飞,骆仲泱,蔡洁聪,等.太阳能电热联产技术研究综述[J].中国电机工程学报.2009(29):114-121.
    [9]黄素逸,杜一庆,明延臻.新能源技术[M].北京:中国电力出版社,2011.
    [10]申泮文.21世纪的动力氢与氢能[M].天津:南开大学出版社,2000.
    [11]侯明,衣宝廉.燃料电池技术发展现状与展望[J].电化学.2012(1):1-13.
    [12]丁明,严流进,茆美琴,等.分布式发电中燃料电池的建模与控制[J].电网技术.2009(9):8-13.
    [13]刘建国,孙公权.燃料电池概述[J].物理.2004(2):79-84.
    [14]陈维荣,钱清泉,李奇.燃料电池混合动力列车的研究现状与发展趋势[J].西南交通大学学报.2009(1):1-6.
    [15]Jones LE, Hayward GW, Kalyanam KM, Rotenberg Y, Scott DS, Steinberg BA. Fuel cell alternative for locomotive propulsion [J]. Int J Hydrogen Energy.1985,10(7, 8):505-16.
    [16]Miller A R, Barnes D L, Velev O, Sheppard L, Chintawar P, Delfrate A, Golben M, Vencil T. Fuel cell locomotive for commercial and military railways [C]. Proceeding of the 2004 Fuel Cell Seminar, an Antonio, USA,2004.
    [17]Oosawa, Mitsuyuki Fujii, Takehito. Development of a New Energy (NE) Train [J]. Japanese Railway Engineering,2006,156(4):62-70.
    [18]Miller A R, Hess K S, Barnes D L. System design of a fuel cell hybrid locomotive [J]. Power Source,2007,173(1):935-942.
    [19]http://www.istis.sh.cn/list/list.aspx?id=7557
    [20]Hsiao D, Huang B, Shih N. Development and dynamic characteristics of hybrid fuel cell-powered mini-train system [J]. International Journal of Hydrogen Energy.2012, 37(1):1058-1066.
    [21]Haseli Y, Naterer G E, Dincer I. Comparative assessment of greenhouse gas mitigation of hydrogen passenger trains [J]. International Journal of Hydrogen Energy,2008, 33(7):1788-1796.
    [22]Corbo P., Corcione F. E., Migliardini F. et al. Energy management in fuel cell power trains [J]. Energy Conversion and Management.2006,47(18-19):3255-3271.
    [23]盛利.“蓝天号”:我首辆氢燃料电动机车问世[N].科技日报,2013-01-31(1).
    [24]Guo L, Yedavalli K, Zinger D. Design and modeling of power system for a fuel cell hybrid switcher locomotive [J]. Energy Conversion and Management.2011,52(2): 1406-1413.
    [25]Schroeder D J, Majumdar P. Feasibility analysis for solid oxide fuel cells as a power source for railroad road locomotives [J]. International Journal of Hydrogen Energy. 2010,35(20):11308-11314.
    [26]Miller A R, Hess K S, Erickson T L, et al. Fuelcell-Hybrid Shunt Locomotive:Largest Fuelcell Land Vehicle[C].2010.
    [27]Same A, Stipe A, Grossman D, et al. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR) [J]. Journal of Power Sources.2010, 195(19):6954-6963.
    [28]Torreglosa J P, Jurado F, Garcia P, et al. Hybrid fuel cell and battery tramway control based on an equivalent consumption minimization strategy [J]. Control Engineering Practice.2011,19(10):1182-1194.
    [29]Yedavalli K, Liping G, Zinger D S. Simple Control System for a Switcher Locomotive Hybrid Fuel Cell Power System [J]. Industry Applications, IEEE Transactions on.2011, 47(6):2384-2390.
    [30]Miller A R, Peters J. Fuelcell hybrid locomotives:applications and benefits[C].2006.
    [31]Miller A R, Peters J, Smith B E, et al. Analysis of fuel cell hybrid locomotives[J]. Journal of Power Sources.2006,157(2):855-861.
    [32]Corbo P, Corcione F E, Migliardini F, et al. Experimental study of a fuel cell power train for road transport application [J]. Journal of Power Sources.2005,145(2): 610-619.
    [33]Jefferson C, Marquez J. Hybrid powertrain for a light rail vehicle[C].2004: 1267-1273.
    [34]王旭峰.燃料电池混合动力机车建模及能量管理策略研究[D].西南交通大学,2012.
    [35]张晰,田毅,张欣.混合动力机车动力系统建模及能量管理策略[J].铁道学报.2012(5):20-25.
    [36]Jiang Z, Chen W, Dai C, et al. Optimal energy management for a fuel cell hybrid Iocomotive[C].2010.
    [37]李奇.质子交换膜燃料电池系统建模及其控制方法研究[D].西南交通大学,2011.
    [38]Li C Y, Liu G P. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles[J]. Journal of Power Sources,2009,192(2):525-533.
    [39]Jaafar A, Akli C R, Sareni B, et al. Sizing and Energy Management of a Hybrid Locomotive Based on Flywheel and Accumulators[J]. Vehicular Technology, IEEE Transactions on.2009,58(8):3947-3958.
    [40]Carpaneto M, Ferrando G, Marchesoni M. A New Conversion System for the Interface of Generating and Storage Devices in Hybrid Fuel Cell Vehicles[J]. Proceedings of IEEE International Symposium.2000,4:1477-1482.
    [41]Mahshid Amirabadi, Shahrokh Farhangi. Fuzzy control of hybrid fuel cell/attery power source in electric vehicle [C]. IEEE Conference on Industrial Electronics and Applications,20061ST. pp.1-3.
    [42]魏学哲,孙泽昌,安浩.基于模糊决策的燃料电池汽车动力总成功率平衡控制策略研究[J].电气自动化,2004,26(2):24-26.
    [43]王珂.燃料电池混合动力系统设计[D].西南交通大学,2012.
    [44]李可.燃料电池混合动力驱动系统能量利用效率优化的研究[D].西南交通大学,2011.
    [45]郭迪.燃料电池混合动力系统建模与仿真研究[D].武汉理工大学,2010.
    [46]魏跃远,詹文章,林逸.燃料电池混合动力汽车动力系统匹配与优化研究[J].汽车工程.2008(10):918-922.
    [47]陈世全,朱家琏,田光宇.先进电动汽车技术[M].北京:化学工业出版社,2007.
    [48]陈世全,仇斌,谢起成.燃料电池电动汽车[M].北京:清华出版社,2005.
    [49]李奇,陈维荣,刘述奎,等.燃料电池混合动力车辆多能源管理策略[J].电工技术学报.2011(S1):303-308.
    [50]王林,郭晋晟,羌嘉曦,等.燃料电池汽车三能源混合储能系统控制及优化[J].武汉理工大学学报.2010(12):126-132.
    [51]徐梁飞,李相俊,华剑锋,等.燃料电池混合动力参数辨识及整车控制策略优化[J].机械工程学报.2009(2):56-61.
    [52]金振华,欧阳明高,卢青春,等.燃料电池混合动力系统优化控制策略[J].清华大学学报(自然科学版).2009(2):273-276.
    [53]负海涛,赵玉兰,王吉忠.燃料电池混合汽车建模及仿真研究[J].系统仿真学报.2009(12):3824-3827.
    [54]陈静,王登峰,刘彬娜.燃料电池-蓄电池-超级电容混合动力汽车控制策略[J].农业机械学报.2008(10):36-39.
    [55]刘呈则,朱新坚,曹广益.质子交换膜燃料电池混合动力系统能量优化的仿真分析[J].化工学报.2007(1):155-160.
    [56]王盛军.混合辅助动力电动汽车驱动控制系统[D].北京工业大学,2004.
    [57]徐源,宋天顺,徐夫元,等.碱性燃料电池产过氧化氢阴极C/PTFE的制备及性能表征[J].过程工程学报.2008(2):372-377.
    [58]倪萌,梁国熙.碱性燃料电池研究进展[J].电池.2004(5):364-365.
    [59]吴春,陈刚,彭勃.中温固体氧化物燃料电池LaNiO2.5-Ba(Zr0.1Ce0.7Y0.2)O3-δ阴极的制备和表征[J].西安交通大学学报.2013(2):1-5.
    [60]王礼进,张会生,翁史烈.内重整固体氧化物燃料电池控制策略研究[J].中国电机工程学报.2008(20):94-98.
    [61]程健,郭烈锦,许世森,等.熔融碳酸盐燃料电池关键部件匹配与性能诊断[J].中国电机工程学报.2012(S1):101-107.
    [62]王鹏杰,周利,王英旭,等.直接内重整熔融碳酸盐燃料电池研究进展[J].电源技术.2011(1):105-108.
    [63]刘爱虢,翁一武,于立军.熔融碳酸盐燃料电池热力特性研究与实验分析[J].上海交通大学学报.2010(7):994-999.
    [64]黄红良,隋静,李伟善,等.200kW磷酸燃料电池的结构及管理系统[J].电池.2006(6):443-445.
    [65]贺建军,孙超.质子交换膜燃料电池的建模与仿真分析[J].中南大学学报(自然科学版).2010(2):566-571.
    [66]李奇,陈维荣,刘述奎,等.基于H∞鲁棒控制的质子交换膜燃料电池空气供应系统设计[J].中国电机工程学报.2009(5):109-116.
    [67]李奇,陈维荣,刘述奎,等.质子交换膜燃料电池动态建模及其双模控制[J].控制理论与应用.2009(7):809-811.
    [68]曹桂军,卢兰光,李建秋,等.燃料电池混合动力客车整车控制策略[J].机械工程学报.2008(6):114-119.
    [69]徐梁飞,卢兰光,李建秋,等.燃料电池混合动力系统建模及能量管理算法仿真[J].机械工程学报.2009(1):141-147.
    [70]徐亚磊.纯电动汽车驱动系统选型及仿真研究[D].武汉理工大学,2012.
    [71]康龙云.电动汽车最新技术[M].北京:机械工业出版社,2009.
    [72]邹和平,于芃,周玮,等.基于超级电容器储能的双馈风力发电机低电压穿越研究[J].电力系统保护与控制.2012(10):48-52.
    [73]邢宝林,黄光许,谌伦建,等.超级电容器电极材料的研究现状与展望[J].材料导报.2012(19):21-25.
    [74]张慧妍,韦统振,齐智平.超级电容器储能装置研究[J].电网技术.2006(8):92-96.
    [75]廖芳.混合动力客车飞轮电池中高速复合材料飞轮的设计与仿真[D].武汉理工大学,2004.
    [76]周勇有.基于马尔可夫预测的混合动力汽车控制策略[D].吉林大学,2009.
    [77]姜平,石琴,陈无畏.基于马尔科夫的城市道路行驶工况构建方法[J].农业机械学报.2009(11):26-30.
    [78]刘延林,邓阳庆.自卸车循环工况研究[J].汽车工程.2009(10):963-965.
    [79]朱西产,李孟良,马志雄,等.车辆行驶工况开发方法[J].江苏大学学报(自然科学版).2005(2):110-113.
    [80]马志雄,朱西产,李孟良,等.动态聚类法在车辆实际行驶工况开发中的应用[J].武汉理工大学学报.2005(11):73-75.
    [81]锁国涛.武汉市公交车行驶工况及发动机循环工况的研究[D].武汉理工大学,2006.
    [82]曾小华,王庆年,李骏,等.基于UDVISOR2002混合动力汽车控制策略模块开发[J].汽车工程.2004(4):394-396.
    [83]刘乐.串联混合动力汽车建模与能源管理系统控制策略研究[D].吉林大学,2011.
    [84]闻新,周露,李东江等.MATLAB模糊逻辑工具箱的分析与应用[M].北京:科学出版社,2001.
    [85]袁平,王福利.一种T-S模糊系统建模方法[J].系统仿真学报.2006(4):817-820.
    [86]苏海滨,王光政,王继东.基于模糊逻辑双环控制的光伏发电系统最大功率跟踪算法[J].电力系统保护与控制.2010(21):215-218.
    [87]董久祥.T-S模糊系统的若干控制问题研究[D].东北大学,2009.
    [88]Solano Martinez J, John R I, Hissel D, et al. A survey-based type-2 fuzzy logic system for energy management in hybrid electrical vehicles[J]. Information Sciences.2012, 190:192-207.
    [89]Khayyam H, Nahavandi S, Davis S. Adaptive cruise control look-ahead system for energy management of vehicles[J]. Expert Systems with Applications.2012,39(3): 3874-3885.
    [90]Lee D H, Park J B, Joo Y H. Further improvement of periodic control approach for relaxed stabilization condition of discrete-time Takagi-Sugeno fuzzy systems[J]. Fuzzy Sets and Systems.2011,174(1):50-65.
    [91]Lohani A K, Goel N K, Bhatia K K S. Takagi-Sugeno fuzzy inference system for modeling stage-discharge relationship[J]. Journal of Hydrology.2006,331(1-2): 146-160.
    [92]Xiu Z, Ren G. Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems[J]. Fuzzy Sets and Systems.2005,151(1):119-138.
    [93]王忠礼,段慧达,高玉峰.MATLAB应用技术—在电气工程与自动化专业中的应用[M].北京:清华大学出版社,2007.
    [94]张丹红,周加洋,苏义鑫.基于模糊逻辑的HEV再生制动能量回收的研究[J].武汉理工大学学报(信息与管理工程版).2011(5):717-720.
    [95]张邦基,于德介,邓元望.基于模糊逻辑的并联式混合动力电动汽车能量控制系统[J].汽车工程.2009(6):496-502.
    [96]由勇,吴澄,由俊生,等.基于T-S模糊逻辑推理的DFS预测控制方法的研究[J].系统仿真学报.2006(5):1257-1259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700