日粮添加纳豆枯草芽孢杆菌对奶牛生产性能、瘤胃发酵及功能微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳豆枯草芽孢杆菌为枯草芽孢杆菌的亚种,具有广泛的益生作用。本研究旨在评价纳豆枯草芽孢杆菌(Bacillus subtilis natto strain RNLBSN002,BSN2)作为奶牛安全饲用微生物的应用效果,并初步探讨了其发挥益生作用的机理。
     试验一通过对BSN2生长曲线、生理生化指标和16S rDNA分子测定,研究了BSN2的生长特性、生理生化特性;通过正交试验和单因素试验,优化了BSN2液、固态发酵的培养条件。试验结果表明,通过菌落形态、生理生化指标和16S rDNA序列测定,可判断此菌为枯草芽孢杆菌属(Bacillus subtilis)。此菌液体发酵的最佳培养条件组合为葡萄糖1%、蔗糖1%、大豆蛋白胨6%、胰蛋白胨4%、接种量2%、装液量5 mL/dL、转速180 r/min和温度37℃。1000 mL发酵容器的最适装液量为400 mL,细菌产量达到4.6×1010 cfu/mL。此菌固体发酵以豆粕为基质,添加NaC1 0.30%、蔗糖5%、大豆蛋白胨5%,蒸馏水50%,pH 6.5,接种5%(v/w)种子菌液,培养36 h时活菌数达到最大3.58×109 cfu/g,菌体蛋白含量为4.77 mg/g。发酵产物氨基酸含量较未发酵豆粕培养基有总体提高趋势,其中天门冬氨酸、苏氨酸、丝氨酸、谷氨酸、丙氨酸和酪氨酸分别提高6.29、7.32、6.99、5.08、6.63和6.81%(P < 0.05)。
     试验二通过瘤胃体外发酵产气试验,研究了BSN2对瘤胃体外发酵的影响。本试验以不添加BSN2为对照,动态观测基础日粮中BSN2添加量分别为0.3×1011 cfu/d(处理Ⅰ)和1.5×1011 cfu/d(处理Ⅱ)对瘤胃液体外发酵产气量、pH、氨氮和各挥发性脂肪酸含量的影响。结果表明,处理Ⅱ与对照相比,产气量提高了11.89% (P < 0.05),瘤胃pH显著降低(P < 0.05),氨氮浓度提高了16.07% (P < 0.05),乙酸、丙酸和总挥发性脂肪酸浓度分别提高10.43%,50.35%和20.70%(P < 0.05)。说明BSN2培养物在基础日粮中的添加量为1.5×1011 cfu/d时能促进瘤胃微生物发酵,提高瘤胃代谢产物浓度。
     试验三通过动物饲喂试验,研究了BSN2对奶牛产奶性能的影响,评价此菌作为奶牛饲用微生物的效果。本试验选用36头泌乳早期荷斯坦奶牛,采用完全随机试验设计,分成3个处理组:1)对照组,基础日粮+ 60 g豆粕载体;2)处理Ⅰ,基础日粮+ 0.5×1011 cfu/d BSN2;3)处理Ⅱ,基础日粮+ 1.0×1011 cfu/d BSN2。试验期70 d,每头奶牛每天测定产奶量和采食量,每周采集牛奶样本进行乳成分测定。试验结果表明,与对照组相比较,处理Ⅱ在干物质采食量差异不显著的情况下,显著提高奶牛产奶量,4%乳脂校正乳产奶量和能量校正乳产奶量达14.7、17.0和17.4%(P < 0.05),显著提高乳中乳蛋白和乳糖含量达18.8%和15.1%(P < 0.05),乳中体细胞数log10值降低5.5%(P < 0.05)。说明BSN2具有促进奶牛奶产量,提高饲料转化效率,促进牛奶中乳蛋白和乳糖产量,降低体细胞数,改善牛奶品质的作用。
     试验四通过瘘管奶牛饲喂试验,研究了BSN2对奶牛产奶性能、瘤胃发酵和瘤胃微生物的影响,验证此菌作为奶牛饲用微生物的效果,初步探讨此菌发挥益生作用的机理。采用4头瘘管奶牛进行为期28 d的自体前后配对饲喂试验。分成3个处理阶段:1)试验期第1~7 d,饲喂基础日粮+ 60 g豆粕培养基,即对照组;2)试验期第8~21 d,饲喂基础日粮+ 1.0×1011 cfu/d BSN2,即处理组;3)试验期第22~28 d,饲喂基础日粮+ 60 g豆粕培养基,即停喂组。试验结果表明,不同处理期奶牛干物质采食量差异不显著。与对照期比较,BSN2处理期奶牛产奶量显著增加,奶中乳蛋白和乳糖产量增加(P < 0.05),瘤胃pH降低(6.64 vs. 6.46, P < 0.05),氨氮、总挥发性脂肪酸和丙酸摩尔比显著提高37.7、47.4和6.4%,乙酸摩尔比显著降低1.9%,乙酸/丙酸降低(3.23 vs. 3.02,P < 0.05)。传统培养法结果表明,与对照期相比,BSN2处理期奶牛瘤胃中瘤胃细菌、蛋白分解菌、淀粉分解菌和原虫数量显著增加;实时定量PCR结果表明,试验期奶牛瘤胃纤维分解菌,包括溶纤维丁酸弧菌、黄色瘤胃球菌和白色瘤胃球菌数量分别提高6.97%、4.51%和9.6%(P < 0.05),两种淀粉分解菌,牛链球菌和嗜淀粉瘤胃杆菌分别提高25.4%和14.6%(P < 0.05),乳酸利用菌埃氏巨球型菌也提高8.85%(P < 0.05)。普雷沃氏菌,包括布氏普雷沃氏菌、普雷沃氏菌短杆菌及普雷沃氏菌属均有显著提高,总细菌数和原虫纤毛虫数量显著提高。说明BSN2具有促进瘤胃某些瘤胃微生物种类生长的作用,促进瘤胃发酵,从而改善奶牛奶产量和乳成分产量。因此,BSN2具有作为奶牛饲用益生菌的潜力。
Bacillus sublitis natto is one of subspecies of Bacillus subtilis and used to produce Natto, and has benefit functions for human and animals. This study aims to estimate the effect of B. sublitis natto strain RNLBSN002(BSN2)as safe and direct-fed bacteria for dairy cows on performance, and makes a preliminary exploration on its probiotic mechanism.
     Experiment 1 studied the growth traits, physiology and biochemistry character of BSN2 by describing growth curve, and detecting physiology and biochemistry indexes. Liquid culture condition and solid culture condition were optimized by orthogonal design and single factor design. The best liquid fermentation condition was at glucose 1%, sucrose 1%, soy peptone 6%, tryptone 4%, inoculant concentration 2%, 5 mL culture in 100 mL conical flask, shaking speed 180 rpm and 37℃. The small scale test was carried out at the same conditions but the different capacity of culture in 1000 mL conical flask. The best capacity was 400 mL, and the bacteria product reached 4.6×1010 cfu/mL. The solid fermentation condition was at NaC1 0.30%、sugar 5%、soy peptone 5%,distilled water 50%,pH 6.5, inoculant concentration 5%(v/w). After 36 h solid fermentation, the available bacteria cells reached the highest point 3.58×109 cfu/g and the bacterial protein was 4.77 mg/g. The fermented culture contains higher amino acid than fermented before, especially increased aspartic acid, threonine, serine, glutamic acid, alanine, valine and tyrosine 6.29, 7.32, 6.99, 5.08, 6.63, 6.28 and 6.81%, respectively (P < 0.05).
     In Experiment 2, Gas production technique was used to examine the effect of BSN2 on rumen fermentation in vitro, then made a prediction on the benefits used in dairy cows. There were 3 group: 1) control group (CK); 2) 0.3×1011 cfu/d BSN2 (groupⅠ); 3) 1.5×1011 cfu/d BSN2 (groupⅡ). Gas production, pH value, NH3-N concentration and VFA concentrations in vitro were detected in this experiment. The result showed that, compared with control group (CK), the gas production in groupⅡincreased by 11.89% (P < 0.05), the pH value decreased (P < 0.05), the NH3-N concentration increased by 16.07% (P < 0.05), and the concentrations of acetic acid, propionic acid and total VFA increased by 10.43%, 50.35% and 20.70% (P<0.05), respectively. The conclusion indicated that the dosage of BSN2 at 1.5×1011 cfu/d benefit ruminal fermentation and increased the metabolites in vitro.
     In experiment 3, the animal feeding trial was conducted to evaluate effects of BSN2 on the production performance of dairy cows. Thirty six dairy cows in early lactation were randomly assigned into 3 groups: Control, basal diet; Group 1, basal diet plus 0.5×1011 cfu/d of BSN2 per cow and Group 2, basal diet plus 1.0×1011 cfu/d of BSN2 per cow. During the 70-d treatment period the following were determined on individual cow: daily milk production and dry matter intake (DMI), and weekly milk composition. Compared with Control, uncorrected milk yield, 4% FCM, energy-corrected milk, milk protein and lactose production of Group 2 were 14.7, 17.0, 17.4, 18.8 and 15.1% higher (P < 0.05) than cows fed Control, but Log10 SCC was 5.5% lower (P < 0.05). It concluded that BSN2 could increase the milk production, improve the feed conversion efficiency, benefit for milk protein and lactose production, and decrease the number of somatic cells, and thus improve the quality of milk.
     In Experiment 4, four rumen-cannulated dairy cows were researched on to study the effect of BSN2 on production performance, rumianl fermentation and ruminal microflora, estimate the benefits of BSN2 on dairy cows as direct-fed microbials and make a preliminary exploration of its probiotic mechanism. Four rumen-cannulated dairy cows were fed with the treatment diets in different period. There were three period: 1) from 1 to 7 d, Control diet + 60 g soybean meal culture (Pre-trial); 2) from d 8 to 21, Control diet + 60 g soybean meal culture containing 1.0×1011 cfu/d BSN2 (Trial); 3) from d 8 to 21, Control diet + 60 g soybean meal culture (Post-trial). The result showed that the DMI was not significantly different among these three periods. Compared with the Pre-trial period, during the Trial period milk production, milk protein and lactose production significantly increased, ruminal pH decreased (6.64 vs. 6.46, P < 0.05), and NH3-N, total VFA, and molar proportion of propionate increased 37.7, 47.4, and 6.4% (P < 0.05), respectively. Molar proportion of acetate decreased 1.9% (P < 0.05), and the A/P ratio dropped (3.23 vs. 3.02, P < 0.05). Total ruminal bacteria, proteolytic and amylolytic bacteria, and protozoa in rumen enumerated by culture method all increased (P < 0.05) in the Trial period. Real-time PCR analysis was used to compare Pre-trial and Trial populations of cellulolytic species, including Butyrivibrio fibrisolvens, Ruminococcus flavefaciens and Ruminococcus albus, which were increased by 7.0, 4.5 and 9.6%(P < 0.05), respectively. Two starch-fermenting bacteria species, Streptococcus bovis and Ruminobacter amylophilus, were increased by 25.4% and 14.6% (P < 0.05), respectively. Megasphaera elsdenii was also increased 8.8% (P < 0.05). When BSN2 was fed, Prevotella bryantii and P. brevis were increased significantly. The total bacteria and ciliate protozoa also increased (P < 0.05). These results demonstrate that BSN2 can enhance some ruminal bacteria and protozoa growth as well as ruminal fermentation, thus improving milk production, and milk component production. Therefore, BSN2 is proved to have a potential for being used as a probiotic for dairy cows.
引文
1.布坎南, R. E.,吉布斯, N. E.伯杰细菌学鉴定手册(第八版).北京:科学出版社, 1984.
    2.陈兵,朱凤香,陈巧云,等. 2003a.纳豆芽孢菌分离纯化及对大白鼠肠道微生态系统的影响.浙江农业学报, 15 (4):223-227.
    3.陈兵,何世山,朱凤香,等. 2003b.纳豆芽孢杆菌剂对AA鸡生产性能和十二指肠消化酶的影响.浙江农业学报, 15 (5):289-292.
    4.陈惠,朱继喜,吕道俊.芽孢杆菌对生长肥育猪肠道菌群及酶活性的影响.四川农业大学学报, 1994, (12(增刊)):550-553,549.
    5.邓露芳,王加启,姜艳美,等.犊牛饲用纳豆枯草芽孢杆菌液体培养条件的优化.饲料工业, 2008, (6):41-44.
    6.刁其玉,屠焰,齐广海.益生菌(素)的研究及其在饲料中的应用.饲料工业, 2002, 23 (10):1-4
    7.胡东新,潘康成. 2001.微生态制剂及其作用机理.中国饲料, (3):14-16.
    8.段智变,江汉湖,张书霞,等.纳豆激酶纤溶功能及其机理研究.食品与发酵工业, 2002, 29(2):1-5.
    9.冯仰廉.反刍动物营养学.北京:科学出版社. 2004.
    10.戈登, R. E.,海恩斯W. G.,帕格, C. H.芽孢杆菌属.北京:农业出版社, 1983.
    11.郭彦军,龙瑞军,张德罡,等.利用体外产气法测定高山牧草和灌木的干物质降解率.草业学报, 2003,12(2): 54-60.
    12.胡东新,潘康成.微生态制剂及其作用机理.中国饲料, 2001, (3):14-16.
    13.黄俊文,林映才,冯定远.纳豆菌、甘露寡糖对仔猪肠道pH、微生物区系及肠黏膜形态的影响.畜牧兽医学报, 2005, 36 (10):1021-1027.
    14.纪宁,孔繁东,祖国仁,等.纳豆菌抗菌作用的研究现状与展望. 2006, 27(1):138-141.
    15.贾力敏,陈晓蔚,江晓,等.纳豆菌对致病菌生长抑制作用的初步研究.中国公共卫生, 2002, 18 (5):577-578.
    16.金燕飞,沈立荣,冯凤琴,吴海洪. 2006.饲用纳豆芽孢杆菌固体发酵和干燥工艺研究.中国粮油学报, 21 (5):120-124.
    17.邝哲师,田兴山,张玲华,等.芽孢杆菌制剂对断奶仔猪体内消化酶活性的影响.中国畜牧兽医, 2005, 32 (6):17-18.
    18.李树聪,王加启.反刍动物饲料蛋白瘤胃降解率的测定方法综述.草食家畜, 2001, (1):32-36.
    19.李晓辉,沈涛,潘俊杰.豆渣固态发酵产生纳豆芽孢杆菌的研究. 2007, 28, 240-41.
    20.缪东,郭照辉,丁祥力,等.纳豆菌制剂作饲料添加剂喂生长肥育猪的试验.饲料研究, 2005, (11):51-52.
    21.刘克琳,何明清,余成瑶,等.鸡微生物饲料添加剂对肉鸡免疫功能影响的研究.四川农业大学学报, 1994, (12(增刊)):606-612.
    22.刘学剑.饲用芽孢杆菌的研究和应用.广东饲料, 2005, 14 (2):30-32.
    23.毛华明.复合化学处理提高作物秸秆营养价值的研究.黄牛杂志, 2001, 27 (2):12-15.
    24.孟庆祥,张宏军.估测饲料蛋白质瘤胃降解率的新方法的研究.北京农业大学学报, 1991,174:95-100.
    25.潘康成,何明清,刘克琳.地衣芽孢杆菌对家兔细胞免疫功能的影响.四川农业大学学报, 1997, 15 (2):368-371.
    26.彭险峰. 2002.饲用抗生素的未来.动物科学与动物医学, 19 (3):M5-M8.
    27.乔国华,单安山.直接饲喂微生物对奶牛瘤胃发酵和肠道的影响.中国饲料, 2007a,(3):10-13.
    28.乔国华,单安山.益生素对奶牛生产性能及瘤胃发酵影响的研究.中国奶牛, 2007b, (3):10-14.邱亦秀.饲用抗生素替代物的应用及发展方向.江西饲料, 2005, (5):6-8.
    29.沈萍.微生物学实验.北京:高等教育出版社, 2000.
    30.石有斐,李培锋,李成应. 2004.纳豆激酶在家兔体内的药代动力学研究.动物科学与动物医学, 21 (2):21-22.
    31.王聪,孔繁东,祖国仁,等.纳豆激酶的研究现状与展望.食品研究与开发, 2004, 25 (6):17-21.
    32.王钢.自由基与中医药.南京:南京大学出版社, 1993.
    33.王俊菊,李培锋,关红.纳豆激酶抗凝血作用的研究.中国生化药物杂志, 2004, 25 (2):276-279.
    34.王丽娟,张广民,孙文志.芽孢杆菌在大肠杆菌应激下对肉仔鸡免疫和抗氧化功能的影响.黑龙江畜牧兽医, 2006, (8):44-46.
    35.王萍,陈钧.纳豆激酶纤溶活性研究.食品科技, 2004, (9): 91-95.
    36.王振华,潘康成,张均利,等.枯草芽孢杆菌制剂在奶牛生产上的应用.饲料广角, 2005, (19):31-32.
    37.杨汉博,周安国.饲用芽胞杆菌研究进展.饲料博览, 2002, (10):7-10.
    38.杨舒黎.日粮添加豆油和胡麻油对奶牛瘤胃细菌及发酵参数的影响.[博士学位论文].北京:中国农业科学院, 2006.
    39.杨晓斌,谢拥葵,韦燕鹏.益生菌纳豆芽孢杆菌的筛选.广州食品工业科技, 2003, (19):9-13.
    40.张鋆.荧光实时定量PCR技术初探.生命科学趋势, 2003, 1 (4):1-28.
    41.赵珺.枯草芽孢杆菌与酵母培养物对奶牛采食量和泌乳量的影响.河南农业科学, 2006, (11):110-112.
    42.赵玉华.瘤胃微生物Real time PCR定量方法的建立及其应用.[博士学位论文].北京:中国农业科学院, 2005.
    43.赵玉华,王加启.利用实时定量PCR对瘤胃甲酸甲烷杆菌定量方法的建立与应用.中国农业科学, 2006, 39 (1):161-169.
    44.钟青萍,石木标,王斌.多功能保健食品——纳豆.食品研究与开发, 2003, 24(4):36.
    45.周国勤,杜宣,吴伟.纳豆芽孢杆菌对鱼类非特异性免疫功能的影响.水利渔业, 2006, 26 (1):101-103.
    46.祖国仁,孔繁东,刘阳,等.纳豆固体发酵条件及产品成分分析.食品工业科技, 2006, 27 (12):122-124.
    47. Abe, F., Ishibashi, N., Shimamura, S. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J Dairy Sci, 1995, 78 (12):2838-46.
    48. Abu Ghazaleh, A. A., Schingoethe D. J., Hippen A. R., et al. Fatty acid profiles of milk and rumen digesta from cows fed fish oil, extruded soybeans or their blend. J. Dairy Sci., 2002, 85:2266-2276.
    49. Angert, E. R., Losick, R. M. Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc. Natl. Acad. Sci. USA, 1998, 95:10218–10223.
    50. Barbosa, T. M., Serra, C. R., Ragione R. M. L. Screening for Bacillus isolates in the broiler gastrointestinal tract. Environ. Microbiol. Environ. Microbiol, 2005. 71 (4):968-978.
    51. Bauman, D. E., Griinari, J. M. Nutritional regulation of milk fat synthesis. Annu Rev Nutr, 2003, 23:203-227.
    52. Bhandari, S. K., Xu, B., Nyachoti, C. M., Giesting, D. W., Krause, D. O. Evaluation ofalternatives to antibiotics using an Escherichia coli K88+ model of piglet diarrhea: effects on gut microbial ecology. J Anim Sci, 2008, 86 (4):836-847.
    53. Broderick G. A., Kang J. H. Automated situltaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J Dairy Sci, 1980, 63 (1):64-71.
    54. Callaway, E. S. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. J Dairy Sci, 1997, 80:2035-2044.
    55. Casula, G., Cutting, S. M. Bacillus probiotics: spore germination in the gastrointestinal tract. Applied and environmental microbiology, 2002, 68 (5):2344-2352.
    56. Contreras, P. A., Larrain C., Wittwer F., et al. Effect of dietary sodium bicarbonate and sodium bicarbonate plus magnesium-oxide on rumen fluid and milk yield in cows. Arch Med Vet, 1992, 24:131-139.
    57. Dawson K. A. The use of yeast strain 8417 in manipulating ruminant high concentrate diets. In: Proceedings of the 56th Minnesota Nutrition Conference and Alltech. St. Paul: Inc. Technical Symposium, Minnesota Cooperative Extension Service, 1995, 25-36.
    58. Dawson, K. A., Allison, M. J. Digestive disorders and nutritional toxicity. London: Elsevier Science Publishers Ltd. 1988.
    59. Dawson, K. A., Newman, K. E., Boling, J. A. Effects of microbial supplements containing yeast and lactobacilli on roughage-fed ruminal microbial activities. J Anim Sci, 1990, 68 (10):3392-3398.
    60. De Boever, J. L., Cottyn, B. G., Buysse, F. X. The use of all enzymatic technique to predict digestibility, metabolisable and net energy of compound feedstuffs for ruminants. Anim Feed Sci Tech, 1986, 14:203-214.
    61. Dehority, B. A. Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl Environ Microbiol, 1984, 48(1):182-185.
    62. Dehority, B. A., Tirabasso, P. A., Grifo, A. P. Most-probable-number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. Appl Environ Microbiol, 1989. 55(11):2789-2792.
    63. Doepel, L., Pacheco D., Kennelly J. J., et al. Milk protein synthesis as a function of amino acid supply. J. Dairy Sci., 2004, 87:1279-1297.
    64. Dornand J., Gross A., Lafont, V., et al. The innate immune response against Brucella in humans. Vet Microbiol, 2002, 90:383-394.
    65. Duc, L. H., Huynh, A. H., Barbosa, T. M., et al. Characterization of bacillus probiotics available for humanuse. Appl Environ Microbiol, 2004, 70(4): 2161–2171.
    66. Erasmus, L. J., Botha, P. M., Kistner, A. Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J Dairy Sci, 1992, 75 (11):3056-3065.
    67. Faille, C., Membre, J., Kubaczka, M. Altered ability of Bacillus cereus spores to grow under unfavorable conditions (presence of nisin, low temperature, acidic pH, presence of NaCl) following heat treatment during sporulation. Food Prot., 2002, 65:1930-1936.
    68. Fritts, C. A., Kersey, J. H., Motl, M. A., et al. Bacillus subtilis C-3102(Calsporin) improves live performance and microbiological status of broiler chickens. J. Appl. Poultry Res., 2000, 9:149-155.
    69. Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol., 1989, 66:365-378.
    70. Fuller, R. Probiotics for farm animals. In: G.W. Tannock (Editor), Probiotics: a. Critical Review, Wymondham: Horizon Scientific Press. 1999,15-22.
    71. Galvao, K. N., Santos, J. E., Coscioni, A., et al. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod Nutr Dev, 2005, 45 (4):427-440.
    72. Ghorbani, G. R., Morgavi D. P., Beauchemin K. A.,et al. 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J Anim Sci, 80:1977-1985.
    73. Guo, X. H., Li, D. F., Lu, W. Q., et al. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. . Antonie van Leeuwenhoek, 2006, 90 (2):139-146.
    74. Harris, B., Jr., D. E., Dorminey, W. A., et al. Effects of feather meal a two protein concentrations and yeast culture on production parameters in lactating dairy cows. J Dairy Sci, 1992, 75:3524-3530.
    75. Hisanga, S. Studies on the germination of genus Bacillus spores in rabbit and canine intestines. J Nagoya City Med Assoc, 1980, 30:456-469.
    76. Hoa, T. T., Duc, L. H., Isticato, R. Fate and dissemination of Bacillus subtilis spores in a murine model. Environ Microbiol, 2001, 67 (4):3819-3823.
    77. Hobson, P. N. Rumen bacteria. London and New York: Academic Press, 1969.
    78. Hobson, P. N., Stewart, C. S. The rumen microbial ecosystem. London: Chapman & Hall. 1997.
    79. Hoover, W. H. Chemical factors involved in ruminal fiber digestion. J Dairy Sci, 1986, 69 (10):2755-2766.
    80. Hosoi, T., Ametani, A., Kiuchi, K., et al. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can J Microbiol, 2000, 46 (10):892-897.
    81. Hristov, A. N., Ropp, J. K. Effect of dietary carbohydrate composition and availability on utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows. J Dairy Sci, 2003, 86(7): 2416-2427.
    82. Hungate, R. E. The rumen and its microbes. New York: Academic Press. 1966.
    83. Hungate, R. E. The rumen protozoa. New York: Academic Press. 1978.
    84. Inooka, S., Kimura, M. The effect of Bacillus natto in feed on the sheep red blood cell antibody response in chickens. Avian Dis, 1983, 27 (4):1086-1089.
    85. Isolauri, E., Joensuu, J., Suomalainen, H., et al. Improved immunogenicity of oral DxRRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine, 1995. 13:310-312.
    86. Jorgensen, C., Leser, T. D. Estimating amplification efficiency improves multiplex real-time PCR quantification of Bacillus licheniformis and Bacillus subtilis spores in animal feed. Journal of Microbiol Meth, 2007, 68 (3):588-595.
    87. Kim, S. W., D. G. Standford, H. Roman-Rosariolynnetwwwdagriorglynnet. Potential use of Propionibacterium acidipropionici, strain DH42, as a direct-fed microbial for cattle. J Anim Sci, 2000, 78 (Suppl. 1): 1225.
    88. Krause, D. O., Denman, S. E., Mackie, R. I.,et al. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev, 2003, 27 (5):663-693.
    89. Kritas, S. K., Govaris, A., Christodoulopoulos, G., et al. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality. J Vet Med A Physiol Pathol Clin Med, 2006, 53 (4):170-173.
    90. Kung, L., Jr., Hession, A. O. 1995. Preventing in vitro lactate accumulation in ruminalfermentation by inoculation with Megasphaera elsdenii. . J. Anim. Sci., 73(1):250-256.
    91. Kung, L., Jr., Kreck, E. M., et al. Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. J Dairy Sci, 1997, 80 (9):2045-2051.
    92. Larue, R., Yu, Z., Parisi, V. A., et al. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol, 2005, 7 (4):530-43.
    93. Lesmeister, K. E., Heinrichs, A. J., Gabler, M. T. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J Dairy Sci, 2004, 87 (6):1832-9.
    94. Li, L., Xu, C. L., Ji, C., et al. Effects of a dried Bacillus subtilis culture on egg quality. Poult Sci, 2006, 85 (2):364-368.
    95. Makkar, H. P. S., Mcsweeney, C. S. Methods in gut microbial ecology for ruminants. Dordrecht: Springer. 2005.
    96. Martin, S. A., Streeter, M. N. Effect of malate on in vitro mixed ruminal microorganism fermentation. J Anim Sci, 1995, 73:2141-2145.
    97. Mazza, P. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll Chim Farm, 1994. 133:3-18.
    98. McSweendy, C. S., Denman, S. E., Mackie, R. I. Rumen bacteria. Dardrecht: Springer. 2005.
    99. Melby, P.C., Andrade-Narvaez, F. J., Darnell, B. J., et al. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun, 1994, 62:837-842.
    100. Menke K H, R. L., Salewski A. The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor. J Agric Sci, 1979, 93:217-222.
    101. Menke, K. H., Raab, L., Salewski, A. The estimation of the digestibility and metabolisable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor. J Agr Sci, 1979, 93:217-222.
    102. Miller-Webster, T., Hoover, W. H., Holt, M., et al. Influence of yeast culture on ruminal microbial metabolism in continuous culture. J Dairy Sci, 2002, 85(8): 2009-2014.
    103. Moir, A., Smith, D. A. The genetics of bacterial spore germination. Annu Rev Microbiol, 1990, 44:531-553.
    104. Mould, F. L. Predicting feed quality-chemical analysis and in vitro evaluation. Field Crop Res, 2003, 84:31-44.
    105. Nagami, Y., Tanaka, T. Molecular cloning and nucleotide sequence of a DNA fragment from Bacillus natto that enhances production of extracellular proteases and levansucrase in Bacillus subtilis. J Bacteriol, 1986, 166 (1):20-28.
    106. Newbold, C. J., Mcintosh, F. M., Wallace, R. J. Changes in the microbial population of rumen- simulating fermenter in response to yeast culture. Can J Anim Sci, 1998, 78 (2):241-244.
    107. Newbold, C. J., Wallace, R. J., McIntosh, F. M. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Brit J Nutr, 1996, 76249-261.
    108. Nisbet, D. J., Martin, S. A. Factors affecting L-lactate utilization by Selenomonas ruminantium. J Anim Sci, 1994, 72:1355-1361.
    109. NRC, Nutrient Requirements of Dairy Cattle. 7th rev. ed. Washington, D C: Natl Acad Sci.2001.
    110. Oba, M., Allen, M. S. Intraruminal infusion of propionate alters feeding behavior and decreasesenergy intake of lactating dairy cows. J Nutr, 2003, 133 (4):1094-1099.
    111. Oeztuerk, H., Schroeder, B., Beyerbach, M., et al. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J Dairy Sci, 2005, 88 (7):2594-2600.
    112. Osawa, R., Matsumoto, K. Digestion of staphylococcal enterotoxin by Bacillus natto. Antonie van Leeuwenhoek, 1997, 71 (4):307-311.
    113. Ouwerkerk, D., Klieve, A. V., Forster, R. J. Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. J Appl Microbiol, 2002, 92 (4):753-758.
    114. Owens, F. N., Secrist, D. S., Hill, W. J.,et al. Acidosis in cattle: A review. J Anim Sci, 1998, 76:275-286.
    115. Petri, A., Muschen, H., Breves, G., et al. Response of lactating goats to low phosphorus intake 2. Nitrogen transfer from the rumen ammonia to rumen microbes and propor-tion of milk protein derived from microbial amino acids. J Agric Sci(Camb.), 1988, 111:265-271.
    116. Plata, P. F., Mendoza, M. G. D., Barcena-Gama, J. R., et al. Effects of a yeast culture (Saccharomyces cerevisiae) on neutral detergent fiber digestion in steers fed oats straw based diets. Anim Feed Sci Technol, 1994, 49:203-210.
    117. Probert, H. M., Gibson, G. R. Investigating the prebiotic and gas-generating effects of selected carbohydrates on the human colonic microflora. Lett Appl Microbiol, 2002, 35 (6):473-480.
    118. Putnam, D. E., Schwab, C. G., Socha, M. T., et al. Effect of yeast culture in the diets of early lactation dairy cows on ruminal fermentation and passage of nitrogen fractions and amino acids to the small intestine. J Dairy Sci, 1997, 80 (2):374-384.
    119. Rigout, S., C. Hurtaud, S. Lemosquet, H. R. Lactational effect of propionic acid and duodenal glucose in cows. J Dairy Sci., 2003, 86:243-253.
    120. Robinson, J. A., Smolenski, W. J., Greening, R. C., et al. Prevention of acute acidosis and enhancement of feed intake in the bovine by Megasphaera elsdenii 407A. J Anim Sci, 1992, 79 (Suppl. 1):310.
    121. Russi, J. P., Wallace, R. J., Newbold, C. J. Influence of the pattern of peptide supply on microbial activity in the rumen simulating fermenter (RUSITEC). Br J Nutr, 2002, 88 (1):73-80.
    122. Sato T, Yamada, Y., Ohtani Y, et al. Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J Biosci Bioeng, 2001, 91 (1):16-20.
    123. Schiffrin, E. J., Rochat, F., Amster, H. L. Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci, 1995, 78:491-497.
    124. Shih, I. L., Yu, Y. T. Simultaneous and selective production of levan and poly(gamma-glutamic acid) by Bacillus subtilis. Biotechnol Lett, 2005, 27 (2):103-6.
    125. Simone, D., Veseley, C. R., Salvadori, B., et al. The role of probiotics in modulation of the immune system in man and animals. Int Immunother, 1993, 9:23-28.
    126. Stein, D. R., Allen, D. T., Perry, E. B.,et al. Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. J Dairy Sci, 2006, 89 (1):111-125.
    127. Stevenson, D. M., Weimer, P. J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol, 2007, 75 (1):165-74.
    128. Sumi, H. Antibacterial activity of Bacillus natto-growth inhibition against Escherichia coli-O157. Bioindustry, 1997, (14):17.
    129. Sumi, H. Accumulation of Vitamin K (Menaquinone-7) in plasma after ingestion of Natto andNatto Bacilli (B. subtilis natto). Food Sci Technol Res, 1999, 5 (1):48-50.
    130. Sumi H, Hamads. H., Tsushima H, et al. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto: a typical and popular soybean food in the Japanese diet. Exerientia, 1987, 43 (10):1110.
    131. Sylvester, J. T., Karnati, S. K., Yu, Z., et al. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr, 2004, 134 (12):3378-3384.
    132. Tajima, K., Aminov, R. I., Nagamine, T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol, 2001, 67(6):2766-2774.
    133. Tam, N. K. M., Uyen, N. Q., Hong, H. A., et al. The intestinal life cycle of Bacillus subtilis and close relatives. J bacteriol, 2006, 4:2692-2700.
    134. Teo, A. Y., Tan, H. M. Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl Environ Microbiol, 2005, 71 (8):4185-4190.
    135. Teo, A. Y. L., Tan, H. M. Effect of Bacillus subtilis PB6 (CloSTAT) on Broilers Infected with a Pathogenic Strain of Escherichia coli. J Appl Poult Res, 2006, 15:229-235.
    136. Tietyen, J. L., Nevins, D. J., Shoemaker, C. F.,et al. Hypocholesterolemicpotential of oat bran Treated with an endo-β-D-glucanase from Bacillus subtilis. J Food Sci, 1995, 60 (3):558-560.
    137. Tilley, J. M. A., Terry, R. A. A two-stage technique for the digestion of forage crops. Journal of the British Grassland Society, 1963, 18:104-111.
    138. Timmerman, H. M., Mulder, L., Everts, H., et al. Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci, 2005, 88 (6):2154-2165.
    139. Vaerewijck, M. J., De Vos, P., Lebbe, L., et al. Occurrence of Bacillus sporothermodurans and other aerobic spore-forming species in feed concentrate for dairy cattle. J Appl Microbiol, 2001, 91 (6):1074-1084.
    140. Van Koevering, M. T., Owens, F. N., Secrist, D. S., et al. Cobactin II for feedlot steers. J. Anim. Sci. 72(Suppl 1):83.
    141. Verschuere, L., Rombaut, G., Sorgeloos, P., et al. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol R, 2000, 64 (4):655-671.
    142. Wang, Z., Eastridge, M. L., Qiu, X. Effects of forage neutral detergent fiber and yeast culture on performance of cows during early lactation. J Dairy Sci, 2001, 84 (1):204-212.
    143. Weiss, W. P., Wyatt, D. J., McKelvey, T. R. Effect of feeding propionibacteria on milk production by early lactation dairy cows. J Dairy Sci, 2008, 91 (2):646-652.
    144. Williams, P. E., Tait, C. A., Innes, G. M., et al. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J Anim Sci, 1991, 69 (7):3016-3026.
    145. Xu, C. L., Ji, C., Ma, Q., et al. Effects of a dried Bacillus subtilis culture on egg quality. Poultry Sci, 2006, 85:364-368.
    146. Xu, Q., Yajima, T., Li, W., et al. Levan (beta-2, 6-fructan), a major fraction of fermented soybean mucilage, displays immunostimulating properties via Toll-like receptor 4 signalling: induction of interleukin-12 production and suppression of T-helper type 2 response and immunoglobulin E production. Clin Exp Allergy, 2006, 36 (1):94-101.
    147. Yasuda, K., Hashikawa, S., Sakamoto, H., et al. A new synbiotic consisting of Lactobacillus casei subsp. casei and dextran improves milk production in Holstein dairy cows. J Vet Med Sci, 2007,69 (2):205-8.
    148. Yoon, I. K., Stern, M. D. Influence of direct-fed microbials on ruminal fermentation and performance of ruminants: A review. Aust Asian J Anim Sci., 1995, 8:533-555.
    149. Zani, J. L., da Cruz, F. W., dos Santos, A. F.,et al. Effect of probiotic CenBiot on the control of diarrhoea and feed efficiency in pigs. J Appl Microbiol, 1998, 84 (1):68-71.
    150. Zoetendal, E. G., Collier, C. T., Koike, S., et al. Molecular ecological analysis of the gastrointestinal microbiota: A review. J Nutr, 2004, 134:465-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700