乳酸菌黏附派伊尔结及免疫调节作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
派伊尔结(Peyer’s patch,PP)是肠道黏膜免疫系统的重要部位,是乳酸菌进入肠黏膜免疫诱导部位的主要通道。本课题研究乳酸菌表面性质和黏附黏液、PP性能的关系,不同黏附性能的乳酸菌和强黏附菌株(三种状态:活、紫外灭活和热灭活)的免疫调节作用,强黏附菌株的抗感染作用和调节PP基因表达的作用。这些研究有助于阐明乳酸菌调节黏膜免疫机制,也将为乳酸菌免疫调节制剂的开发提供理论依据。
     试验先用大鼠黏液、小鼠PP为黏附基质,研究23株细菌的黏附性,结果显示,Lactobacillus plantarum Fn008、Lactobacillus acidophilus Fn037、Lactobacillus rhamnosus GG(LGG)和Salmonella Typhimurium为强黏附菌株。利用细菌黏附正十六烷、水接触角法测定细菌表面疏水性,结果表明,23株细菌的表面疏水性与黏附性没有相关性。利用红细胞凝集试验分析乳酸菌细胞表面凝集素的表达情况,结果表明23株的细菌凝集性与其黏附性没有相关性。利用细菌表面疏水性、表面电荷和液体表面张力计算细菌表面自由能,结果表明22株乳酸菌的表面自由能与其黏附PP性呈负相关。
     为了研究乳酸菌黏附PP能力与免疫调节的关系,分别给小鼠连续3天灌胃四株黏附PP能力不同的乳酸菌(LGG、Fn008、Fn022和Fn036)以及Salmonella,检测脾淋巴细胞增殖能力及其基因IL-12表达能力、腹腔和派伊尔结巨噬细胞吞噬能力、细胞因子(IL-4,IL-10,IFN-γ,TGF-β,IL-17)、黏膜免疫指标sIgA、免疫相关基因(CD80,Mfge8,CXCL13和CD79a)及细菌易位,结果表明:乳酸菌(LGG、Fn008、Fn022和Fn036)黏附派伊尔结能力与其增强PP巨噬细胞吞噬活性及产生sIgA能力呈正相关;乳酸菌(LGG、Fn008、Fn022和Fn036)可诱导抗原呈递细胞特异基因(CD80和Mfge8)和B细胞趋化因子CXCL13表达上调,同时可抑制B细胞特异性基因CD79a表达,这种作用依赖于其黏附PP的能力;乳酸菌和Salmonella都诱导了Th1免疫;乳酸菌Fn008、Fn022、LGG和Fn036没有破坏肠道黏膜屏障,而Salmonella却破坏肠道黏膜屏障引起细菌显著易位。
     为了研究乳酸菌Fn008经过不同处理后黏附PP能力与其免疫调节作用的关系,分别给小鼠灌胃活菌Fn008 (V-Fn008)、紫外灭活菌Fn008 (UV-Fn008)、热灭活菌Fn008 (HK-Fn008)、Fn008+Salmonella和Salmonella,连续3天,检测脾淋巴细胞增殖能力及其基因IL-12表达能力、腹腔和派伊尔结巨噬细胞吞噬能力、细胞因子(IL-4,IL-10,IFN-γ,TGF-β,IL-17)、黏膜免疫指标sIgA、免疫相关基因(CD80,Mfge8,CXCL13和CD79a)及细菌易位,结果表明:V-Fn008、UV-Fn008和HK-Fn008黏附PP的能力与其增强PP巨噬细胞吞噬能力及产生sIgA的能力呈正相关。V-Fn008、UV-Fn008和HK-Fn008可诱导抗原呈递细胞特异基因(CD80和Mfge8)和B细胞趋化因子CXCL13表达,同时可抑制B细胞特异性基因CD79a表达,这种作用依赖于其黏附派伊尔结的能力。口服V-Fn008、UV-Fn008和HK-Fn008都诱导了Th1细胞免疫,且UV-Fn008和HK-Fn008诱导的Th1免疫反应弱于V-Fn008;活菌Fn008能抑制Salmonell引起的细菌易位;
     利用On-tools分析口服乳酸菌Fn008小鼠空肠派伊尔结显著改变的基因,研究相关的显著性通路,结果表明,口服乳酸菌Fn008引起空肠派伊尔结内的响应基因主要与免疫、黏膜屏障和其它通路(肌动蛋白骨架的调节和自然杀伤性细胞介导的细胞毒性等)通路有关。采用定量PCR结果表明,乳酸菌(LGG、Fn008、Fn022、Fn036、UV-Fn008和HK-Fn008)可诱导派伊尔结黏着斑通路中Itgb1、lamaα3和Thbs2三个基因表达上调,这种作用依赖于其黏附派伊尔结的能力;乳杆菌Fn008通过使黏着斑中的基因FAK表达下调,而上调Itgb1、lamaα3、Itgb4、Thbs2基因表达,从而抑制沙门氏菌引起的细菌易位。
     总之,本研究结果表明,特定乳酸菌主要通过表面自由能介导的作用力黏附PP,其黏附PP性与其增强派伊尔结巨噬细胞吞噬活性及诱导sIgA产生的能力呈正相关;乳酸菌可诱导派伊尔结黏着斑通路中Itgb1、lamaα3和Thbs2三个基因表达上调、可诱导抗原呈递细胞特异基因CD80和Mfge8表达上调,同时可抑制B细胞特异性基因CD79a表达,这种作用依赖于其黏附派伊尔结的能力;乳杆菌Fn008通过使黏着斑中的基因FAK表达下调,而上调Itgb1、Itgb4、lamaα3、Thbs2基因表达,从而抑制沙门氏菌引起的细菌易位。
Peyer’s patches (PP) are the main site of intestinal mucosa immunity system through which Lactobacillus come into contact with intestinal mucosal immunity system to modulate their functions.This study was focused on relationship with adhesion of Lactobacillus to immobilized mucus from rat small intestine or mice PP in vitro and Lactobacillus surface properties, Lactobacillus with different adhesive properties or treatment (three states: live,ultraviolet (UV)-inactivated and heat-killed(HK)) in the role of immune regulation, anti-infection and regulation of gene expression in PP with strong adhesive strain.The aim was to give some explanation on mechanism that Lactobacillus modulates mucosal immunity and to help developing immunomodulatory agents related to Lactobacillus.
     Adhesive properties of twenty-three bacteria were studied by using immobilized mucus from rat or PP under spectroscopic methodology or radioactivity.The results indicted that Lactobacillus plantarum Fn008, Lactobacillus acidophilus Fn037, Lactobacillus rhamnose GG (LGG) and Salmonella Typhimurium were the strong adhesive strains. Bacterial surface hydrophobicity was studied by hexadecane (BATH) and water contact angle method. Bacterial surface electric charge was determined by Zeta potential. Surface free energy was calculated by surface tension, electric charge and water contact angle. Expression of lectin was studied by hemagglutination of rabbit red cells.The results indicated that surface free energy of Lactobacillus had a negative correlation with adhesion ability to PP. Expression of lectin on bacterial surface was studied by hemagglutination of rabbit red cells.The results indicated that there was no correlation with hemagglutination of Lactobacillus and adhesion ability.
     In order to determine the relationship between the immune modulation and adhesion ability, LGG, Fn008, Fn022 and Fn036 were oral administrated to mice with consecutive 3 days.Spleen lymphocyte proliferation and IL-12 gene expression, phagocytosis of peritoneal and PP macrophage, cytokine (IL-4, IL-10, IFN-γ, TGF-β, IL-17), mucosal immunity indicators sIgA, immune-related genes (CD80,Mfge8,CXCL13 and CD79a)and bacterial translocation were analysised respectively.The results indicated that adhesion ability with PP of Lactobacillus(LGG,Fn008,Fn022 and Fn036) was correlated with macrophage phagocytic activity in PP and ability to production of sIgA. Lactobacillus (LGG, Fn008, Fn022 and Fn036) could induce antigen presenting cell specific genes(CD80 and Mfge8)and B-cell chemokines (CXCL13)expression up-regulated,but inhibit B cell specific gene CD79a expression.This function was dependent on adhesion ability to PP.The immune response induced by Lactobacillus was strong than Salmonella; they all induced Th1 immune response. Lactobacillus (Fn008, Fn022, LGG and Fn036) could not destroy mucosa barrier, but Salmonella could cause bacterial translocation significantly through destroying mucosa barrier.
     In order to determine the relationship between the immune modulation and adhesion ability of different-treated Fn008, V-Fn008,UV-Fn008, HK-Fn008,Fn008+Salmonella and Salmonella were oral administrated to mice with consecutive 3 days. Spleen lymphocyte proliferation and IL-12 gene expression, phagocytosis of peritoneal and PP macrophage, cytokine (IL-4, IL-10, IFN-γ, TGF-β, IL-17), mucosal immunity indicator sIgA, immune-related genes (CD80, Mfge8, CXCL13 and CD79a) and bacterial translocation were analysised respectively.The results indicated that adhesion ability with PP of V-Fn008, UV-Fn008 and HK-Fn008 were correlated with macrophage phagocytic activity in PP and ability to production of sIgA.V-Fn008,UV-Fn008 and HK-Fn008 could induce antigen presenting cell specific genes(CD80 and Mfge8)and B-cell chemokines (CXCL13)expression up-regulated,but inhibit B cell specific gene CD79a expression.This function was dependent on the adhesion ability to PP.The immune response induced byUV-Fn008 and HK-Fn008 was weaker than V-Fn008; they all induced Th1 immune response. Lactobacillus (Fn008, Fn022, LGG and Fn036) could not destroy mucosa barrier, but Salmonella could cause bacterial translocation significantly through destroying mucosa barrier. V-Fn008 can inhibit bacterial translocation induced by Salmonella.
     Onto-Tools were applied to explore significant genes in jejunal Peyer’s patch induced by oral administration Fn008 with consecutive 14 days. The results indicated that responsive genes in jejunal Peyer’s patch mainly related to immunity, mucosal barrier and other pathways (regulation of actin cytoskeleton, natural killer cell-mediated cytotoxicity and etc.). The results of quantitative PCR indicated that Lactobacillus (LGG,Fn008,Fn022,Fn036, UV-Fn008 and HK-Fn008) could induce focal adhesion gene(Itgb1,lamaα3 and Thbs2) expression upregulated.This function was dependent on the adhesion ability to PP.V-Fn008 can induce key gene FAK down-regulated and genes ( Itgb1,lamaα3,Itgb4,Thbs2) up-regulated in focal adhesion.This caused inhibition of bacterial translocation induced by Salmonella.
     In conclusion, the results of present study had revealed that adhesive ability of Lactobacillus to PP mainly determined by surface free energy.Its adhesive ability to PP had correlation with macrophage phagocytic activity in PP and ability to production sIgA. Lactobacillus can induce focal adhesion gene(Itgb1,lamaα3 and Thbs2),antigen presenting cell specific genes(CD80 and Mfge8)and B-cell chemokines (CXCL13)expression up-regulated,but inhibit B cell specific gene CD79a expression.This function was dependent on the adhesion ability to PP. V-Fn008 can induce key gene FAK down-regulated and genes (Itgb1,lamaα3,Itgb4,Thbs2) up-regulated in focal adhesion.This caused inhibition of bacterial translocation induced by Salmonella.
引文
[1]姜艳美,王加启,邓露芳,等.益生菌对宿主机体免疫调节作用研究进展[J].乳业科学与技术. 2008(03): 139-142.
    [2] Macpherson A J, Geuking M B, Mccoy K D. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria.[J]. Immunology. 2005, 115(2): 153-162.
    [3]蔡长春,杨翠萍.肠道疾病与益生菌[J].时珍国医国药. 2007(03): 697-698.
    [4]顾瑞霞.乳酸菌与免疫调节作用[J].乳业科学与技术. 2008(06) : 251-256.
    [5] Borchers A T, Selmi C, Meyers F J, et al. Probiotics and immunity.[J]. J Gastroenterol. 2009, 44(1): 26-46.
    [6] Prioult G, Fliss I, Pecquet S. Effect of probiotic bacteria on induction and maintenance of oral tolerance to beta-lactoglobulin in gnotobiotic mice.[J]. Clin Diagn Lab Immunol. 2003, 10(5): 787-792.
    [7] Brayden D J, Jepson M A, Baird A W. Keynote review: intestinal Peyer's patch M cells and oral vaccine targeting.[J]. Drug Discov Today. 2005, 10(17): 1145-1157.
    [8] Rimoldi M, Rescigno M. Uptake and presentation of orally administered antigens.[J]. Vaccine. 2005, 23(15): 1793-1796.
    [9] Mestecky J, Elson C O. Peyer's patches as the inductive site for IgA responses.[J]. J Immunol. 2008, 180(3): 1293-1294.
    [10] Sansonetti P J, Phalipon A. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process.[J]. Semin Immunol. 1999, 11(3): 193-203.
    [11] Perdigon G, Medina M, Vintini E, et al. Intestinal pathway of internalisation of lactic acid bacteria and gut mucosal immunostimulation.[J]. Int J Immunopathol Pharmacol. 2000, 13(3): 141-150.
    [12] Ouwehand A C, Tuomola E M, Tolkko S, et al. Assessment of adhesion properties of novel probiotic strains to human intestinal mucus.[J]. Int J Food Microbiol. 2001, 64(1-2): 119-126.
    [13] Niers L E, Timmerman H M, Rijkers G T, et al. Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines.[J]. Clin Exp Allergy. 2005, 35(11): 1481-1489.
    [14] Salminen S, Benno Y, De V W. Intestinal colonisation, microbiota and future probiotics?[J]. Asia Pac J Clin Nutr. 2006, 15(4): 558-562.
    [15] Szymanski H, Chmielarczyk A, Strus M, et al. Colonisation of the gastrointestinal tract by probiotic L. rhamnosus strains in acute diarrhoea in children.[J]. Dig Liver Dis. 2006, 38 Suppl 2: 274-276.
    [16] Galdeano C M, Perdigon G. Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation.[J]. J Appl Microbiol. 2004, 97(4): 673-681.
    [17] Clark M A, Jepson M A, Simmons N L, et al. Preferential interaction of Salmonella typhimurium with mouse Peyer's patch M cells.[J]. Res Microbiol. 1994, 145(7): 543-552.
    [18] Rinkinen M, Westermarck E, Salminen S, et al. Absence of host specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus.[J]. Vet Microbiol. 2003, 97(1-2): 55-61.
    [19] Pedersen C, Jonsson H, Lindberg J E, et al. Microbiological characterization of wet wheat distillers' grain, with focus on isolation of lactobacilli with potential as probiotics.[J]. Appl Environ Microbiol. 2004, 70(3): 1522-1527.
    [20] Monteleone G, Peluso I, Fina D, et al. Bacteria and mucosal immunity.[J]. Dig Liver Dis. 2006, 38 Suppl 2: 256-260.
    [21] Boirivant M, Amendola A, Butera A. Intestinal microflora and immunoregulation.[J]. Mucosal Immunol. 2008, 1 Suppl 1: 47-49.
    [22] Ouwehand A, Isolauri E, Salminen S. The role of the intestinal microflora for the development of the immune system in early childhood.[J]. Eur J Nutr. 2002, 41 Suppl 1: 32-37.
    [23] Johansson M E, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria.[J]. Proc Natl Acad Sci U S A. 2008, 105(39): 15064-15069.
    [24] Atuma C, Strugala V, Allen A, et al. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo.[J]. Am J Physiol Gastrointest Liver Physiol. 2001, 280(5): 922-929.
    [25] Makala L H, Suzuki N, Nagasawa H. Peyer's patches: organized lymphoid structures for the induction of mucosal immune responses in the intestine.[J]. Pathobiology. 2002, 70(2): 55-68.
    [26] Sherman P M, Ossa J C, Johnson-henry K. Unraveling mechanisms of action of probiotics.[J]. Nutr Clin Pract. 2009, 24(1): 10-14.
    [27] Corr S C, Gahan C C, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis.[J]. FEMS Immunol Med Microbiol. 2008, 52(1): 2-12.
    [28] Stoy N. Macrophage biology and pathobiology in the evolution of immune responses: a functional analysis.[J]. Pathobiology. 2001, 69(4): 179-211.
    [29] Macdonald T T, Carter P B. Isolation and functional characteristics of adherent phagocytic cells from mouse Peyer's patches.[J]. Immunology. 1982, 45(4): 769-774.
    [30] Lee S H, Starkey P M, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80.[J]. J Exp Med. 1985, 161(3): 475-489.
    [31] Platt A M, Mowat A M. Mucosal macrophages and the regulation of immune responses in the intestine.[J]. Immunol Lett. 2008, 119(1-2): 22-31.
    [32] Farstad I N, Halstensen T S, Fausa O, et al. Heterogeneity of M-cell-associated B and T cells in human Peyer's patches.[J]. Immunology. 1994, 83(3): 457-464.
    [33] Brandtzaeg P. The human intestinal immune system: basic cellular and humoral mechanisms.[J]. Baillieres Clin Rheumatol. 1996, 10(1): 1-24.
    [34] Cross M L. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens.[J]. FEMS Immunol Med Microbiol. 2002, 34(4): 245-253.
    [35] Mosmann T R, Cherwinski H, Bond M W, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986.[J]. J Immunol. 2005, 175(1): 5-14.
    [36] Mosmann T R, Coffman R L. Heterogeneity of cytokine secretion patterns and functions of helper T cells.[J]. Adv Immunol. 1989, 46: 111-147.
    [37] Abbas A K, Murphy K M, Sher A. Functional diversity of helper T lymphocytes.[J]. Nature. 1996, 383(6603): 787-793.
    [38] Ng S C, Hart A L, Kamm M A, et al. Mechanisms of action of probiotics: recent advances.[J]. Inflamm Bowel Dis. 2009, 15(2): 300-310.
    [39] Collado M C, Isolauri E, Salminen S, et al. The impact of probiotic on gut health.[J]. Curr Drug Metab. 2009, 10(1): 68-78.
    [40] Takahashi I, Nochi T, Yuki Y, et al. New horizon of mucosal immunity and vaccines.[J]. Curr Opin Immunol. 2009.
    [41] Gill H S, Rutherfurd K J, Prasad J, et al. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019).[J]. Br J Nutr. 2000, 83(2): 167-176.
    [42] Marin M L, Tejada-simon M V, Lee J H, et al. Stimulation of cytokine production in clonal macrophage and T-cell models by Streptococcus thermophilus: comparison with Bifidobacterium sp. and Lactobacillus bulgaricus.[J]. J Food Prot. 1998, 61(7): 859-864.
    [43] Pelto L, Isolauri E, Lilius E M, et al. Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects.[J]. Clin Exp Allergy. 1998, 28(12): 1474-1479.
    [44] Christensen H R, Frokiaer H, Pestka J J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells.[J]. J Immunol. 2002, 168(1): 171-178.
    [45] De J E, Vieira P L, Kalinski P, et al. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals.[J]. J Immunol. 2002, 168(4): 1704-1709.
    [46] Macdonald T T, Monteleone G. Immunity, inflammation, and allergy in the gut.[J]. Science. 2005,307(5717): 1920-1925.
    [47] Czerkinsky C, Svennerholm A M, Holmgren J. Induction and assessment of immunity at enteromucosal surfaces in humans: implications for vaccine development.[J]. Clin Infect Dis. 1993, 16 Suppl 2: 106-116.
    [48] Delcenserie V, Martel D, Lamoureux M, et al. Immunomodulatory effects of probiotics in the intestinal tract.[J]. Curr Issues Mol Biol. 2008, 10(1-2): 37-54.
    [49] Scibelli A, Roperto S, Manna L, et al. Engagement of integrins as a cellular route of invasion by bacterial pathogens[J]. The Veterinary Journal. 2007, 173(3): 482-491.
    [50] Terahara K, Yoshida M, Igarashi O, et al. Comprehensive Gene Expression Profiling of Peyer's Patch M Cells, Villous M-Like Cells, and Intestinal Epithelial Cells.[J]. J Immunol. 2008, 180(12): 7840-7846.
    [51] Wessler S, Backert S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori.[J]. Trends Microbiol. 2008, 16(8): 397-405.
    [52] Galdeano C M, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity.[J]. Clin Vaccine Immunol. 2006, 13(2): 219-226.
    [53] Dogi C A, Galdeano C M, Perdigon G. Gut immune stimulation by non pathogenic Gram(+) and Gram(-) bacteria. Comparison with a probiotic strain.[J]. Cytokine. 2008, 41(3): 223-231.
    [54] Thorvaldson L, Sandler S. Factors influencing the regulation of cytokine balance during islet transplantation in mice.[J]. Transpl Immunol. 2009, 20(3): 186-194.
    [55]斯大勇,张日俊.乳酸菌粘附的机制、特点、生物学作用[J].中国微生态学杂志. 2008(03).
    [56] Sansonetti P. [How to define the species barrier to pathogen transmission?][J]. Bull Acad Natl Med. 2006, 190(3): 611-226236257.
    [57] Busscher H J, Weerkamp A H, Van M H, et al. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion.[J]. Appl Environ Microbiol. 1984, 48(5): 980-983.
    [58] Plant L, Conway P. Association of Lactobacillus spp. with Peyer's patches in mice.[J]. Clin Diagn Lab Immunol. 2001, 8(2): 320-324.
    [59] Sun J, Chang G F, Le G W, et al. [Pathway analysis of modulation on geen expression in murine lymphocytes by Lactobacillus peptidoglycan.][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2008, 24(6): 553-556.
    [60] Sun J, Shi Y H, Le G W, et al. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp.[J]. World J Gastroenterol. 2005, 11(40): 6330-6337.
    [61] Asong J, Wolfert M A, Maiti K K, et al. Binding and Cellular Activation Studies Reveal That Toll-like Receptor 2 Can Differentially Recognize Peptidoglycan from Gram-positive and Gram-negative Bacteria.[J]. J Biol Chem. 2009, 284(13): 8643-8653.
    [62] Konstantinov S R, Smidt H, De V W, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions.[J]. Proc Natl Acad Sci U S A. 2008, 105(49): 19474-19479.
    [63] Wallace T D, Bradley S, Buckley N D, et al. Interactions of lactic acid bacteria with human intestinal epithelial cells: effects on cytokine production.[J]. J Food Prot. 2003, 66(3): 466-472.
    [64] Hart A L, Lammers K, Brigidi P, et al. Modulation of human dendritic cell phenotype and function byprobiotic bacteria.[J]. Gut. 2004, 53(11): 1602-1609.
    [65] Braat H, De J E, Van B J, et al. Dichotomy between Lactobacillus rhamnosus and Klebsiella pneumoniae on dendritic cell phenotype and function.[J]. J Mol Med. 2004, 82(3): 197-205.
    [66] Butler M, Ng C Y, Van H D, et al. Modulation of dendritic cell phenotype and function in an in vitro model of the intestinal epithelium.[J]. Eur J Immunol. 2006, 36(4): 864-874.
    [67] Miura S, Fujimori H, Koseki S, et al. [Mucosal immune system of the intestine][J]. Nippon Rinsho. 1998, 56(9): 2228-2234.
    [68] Brandtzaeg P, Farstad I N, Haraldsen G, et al. Cellular and molecular mechanisms for induction of mucosal immunity.[J]. Dev Biol Stand. 1998, 92: 93-108.
    [69] Louis P, Scott K P, Duncan S H, et al. Understanding the effects of diet on bacterial metabolism in the large intestine.[J]. J Appl Microbiol. 2007, 102(5): 1197-1208.
    [70] Klarin B, Johansson M L, Molin G, et al. Adhesion of the probiotic bacterium Lactobacillus plantarum 299v onto the gut mucosa in critically ill patients: a randomised open trial.[J]. Crit Care. 2005, 9(3): 285-293.
    [71] Bourlioux P, Koletzko B, Guarner F, et al. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium "The Intelligent Intestine," held in Paris, June 14, 2002.[J]. Am J Clin Nutr. 2003, 78(4): 675-683.
    [72]伦永志,黄敏,袁杰利,等.灭活的双歧杆菌对EPEC的黏附抑制作用[J].中国微生态学杂志. 2003(01): 13-14.
    [73] Tuomola E M, Ouwehand A C, Salminen S J. Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins.[J]. Int J Food Microbiol. 2000, 60(1): 75-81.
    [74]苗燕.益生素的作用机理及其应用前景[J].北京农业. 2007(24):10-13.
    [75] Brodsky I E, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens.[J]. Nat Cell Biol. 2009, 11(5): 521-526.
    [76] Neumann E, Ramos M G, Santos L M, et al. Lactobacillus delbrueckii UFV-H2b20 induces type 1 cytokine production by mouse cells in vitro and in vivo.[J]. Braz J Med Biol Res. 2009, 42(4): 358-367.
    [1] Schneeberger E E, Lynch R D. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol, 2004, 286(6): 1213~1228.
    [2] Plant L, Conway P. Association of Lactobacillus spp. with Peyer's patches in mice. Clin Diagn Lab Immunol, 2001, 8(2): 320~324.
    [3] Hashizume T, Togawa A, Nochi T, et al. Peyer's patches are required for intestinal immunoglobulin A responses to Salmonella spp. Infect Immun, 2008, 76(3): 927~934.
    [4] Martinoli C, Chiavelli A, Rescigno M. Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity, 2007, 27(6): 975~984.
    [5] Harata G, He F, Kawase M, et al. Differentiated implication of Lactobacillus GG and L. gasseri TMC0356 to immune responses of murine Peyer's patch. Microbiol Immunol, 2009, 53(8): 475~480.
    [6] Man A L, Prieto-garcia M E, Nicoletti C. Improving M cell mediated transport across mucosal barriers: do certain bacteria hold the keys? Immunology, 2004, 113(1): 15~22.
    [7] Kang S S, Conway P L. Characteristics of the adhesion of PCC Lactobacillus fermentum VRI 003 to Peyer's patches. FEMS Microbiol Lett, 2006, 261(1): 19~24.
    [8] Dunne W M. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev, 2002, 15(2): 155~166.
    [9] Dunne W M. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev, 2002, 15(2): 155~166.
    [10] Ouwehand A C, Kirjavainen P V, Gr M -, et al. Adhesion of probiotic micro-organisms to intestinal mucus. International Dairy Journal, 1999, 9(9): 623~630.
    [11] Jonsson H, Strom E, Roos S. Addition of mucin to the growth medium triggers mucus-binding activity in different strains of Lactobacillus reuteri in vitro. FEMS Microbiol Lett, 2001, 204(1): 19~22.
    [12] Schar-zammaretti P, Ubbink J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J, 2003, 85(6): 4076~4092.
    [13] Pelletier C, Bouley C, Cayuela C, et al. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol, 1997, 63(5): 1725~1731.
    [14] Grivet M, Morrier J J, Benay G, et al. Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. J Mater Sci Mater Med, 2000, 11(10): 637~642.
    [15] Mabboux F, Ponsonnet L, Morrier J J, et al. Surface free energy and bacterial retention to saliva-coated dental implant materials--an in vitro study. Colloids Surf B Biointerfaces, 2004, 39(4): 199~205.
    [16] Meng Q, Kerley M S, Russel T J, et al. Lectin-like activity of Escherichia coli K88, Salmonella choleraesuis, and Bifidobacteria pseudolongum of porcine gastrointestinal origin. J Anim Sci, 1998, 76(2): 551~556.
    [17] Martinoli C, Chiavelli A, Rescigno M. Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity, 2007, 27(6): 975~984.
    [18] Collado M C, Grzeskowiak L, Salminen S. Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol, 2007, 55(3): 260~265.
    [19] Mattos-guaraldi A L, Formiga L C, Andrade A F. Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr Microbiol, 1999, 38(1): 37~42.
    [20] Busscher H J, Weerkamp A H, Van M H, et al. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol, 1984, 48(5): 980~983.
    [21] Absolom D R. The role of bacterial hydrophobicity in infection: bacterial adhesion and phagocytic ingestion. Can J Microbiol, 1988, 34(3): 287~298.
    [22] Pereni C I, Zhao Q, Liu Y, et al. Surface free energy effect on bacterial retention. Colloids Surf B Biointerfaces, 2006, 48(2): 143~147.
    [23] Goldhar J. Bacterial lectinlike adhesins: determination and specificity. Methods Enzymol, 1994, 236: 211~231.
    [24] Rigaux P, Daniel C, Hisbergues M, et al. Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy, 2009, 64(3): 406~414.
    [25] Shi J, Casanova J E. Invasion of host cells by Salmonella typhimurium requires focal adhesion kinase and p130Cas. Mol Biol Cell, 2006, 17(11): 4698~4708.
    [26] Delgado S, O S E, Fitzgerald G, et al. Subtractive screening for probiotic properties of lactobacillus species from the human gastrointestinal tract in the search for new probiotics. J Food Sci, 2007, 72(8):310~315.
    [27] Clark M A, Jepson M A, Simmons N L, et al. Differential expression of lectin-binding sites defines mouse intestinal M-cells. J Histochem Cytochem, 1993, 41(11): 1679~1687.
    [28] Veckman V, Miettinen M, Matikainen S, et al. Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. J Leukoc Biol, 2003, 74(3): 395~402.
    [29] Berg R D, Owens W E. Inhibition of translocation of viable Escherichia coli from the gastrointestinal tract of mice by bacterial antagonism. Infect Immun, 1979, 25(3): 820~827.
    [30] Vinderola C G, Medici M, Perdigon G. Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein profiles in indigenous and exogenous bacteria. J Appl Microbiol, 2004, 96(2): 230~243.
    [31] Boonaert C J, Rouxhet P G. Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. Appl Environ Microbiol, 2000, 66(6): 2548~2554.
    [32] Conway P L, Adams R F. Role of erythrosine in the inhibition of adhesion of Lactobacillus fermentum strain 737 to mouse stomach tissue. J Gen Microbiol, 1989, 135(5): 1167~1173.
    [33] Busscher H J, Weerkamp A H, Van M H, et al. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol, 1984, 48(5): 980~983.
    [34]陈臣,郭本恒,陈卫,等.三株益生菌粘附性质及机制的初步研究.中国微生态学杂志, 2007, (06) :492-495.
    [35] Sun J L, Le G W, Hou L X, et al. Nonopsonic phagocytosis of Lactobacilli by mice Peyer's patches' macrophages. Asia Pac J Clin Nutr, 2007, 16 Suppl 1: 204~207.
    [36] Sun J, Le G W, Shi Y H, et al. Factors involved in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucus. Lett Appl Microbiol, 2007, 44(1): 79~85.
    [1] Sansonetti P J, Phalipon A. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process. Semin Immunol, 1999, 11(3): 193~203.
    [2] Salminen S, Benno Y, De V W. Intestinal colonisation, microbiota and future probiotics? Asia Pac J Clin Nutr, 2006, 15(4): 558~562.
    [3] Szymanski H, Chmielarczyk A, Strus M, et al. Colonisation of the gastrointestinal tract by probiotic L. rhamnosus strains in acute diarrhoea in children. Dig Liver Dis, 2006, 38 Suppl 2: 274~276.
    [4] Ibnou-zekri N, Blum S, Schiffrin E J, et al. Divergent patterns of colonization and immune response elicited from two intestinal Lactobacillus strains that display similar properties in vitro. Infect Immun, 2003, 71(1): 428~436.
    [5] Delgado S, O S E, Fitzgerald G, et al. Subtractive screening for probiotic properties of lactobacillus species from the human gastrointestinal tract in the search for new probiotics. J Food Sci, 2007, 72(8): 310~315.
    [6] Ljungh A, Wadstrom T. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol, 2006, 7(2): 73~89.
    [7] Borchers A T, Keen C L, Gershwin M E. The influence of yogurt/Lactobacillus on the innate and acquired immune response. Clin Rev Allergy Immunol, 2002, 22(3): 207~230.
    [8] Mercier A, Gauthier S F, Fliss I. Immunomodulating effects of whey proteins and their enzymatic digests. International Dairy Journal, 2004, 14(3): 175~183.
    [9] Cao Q Z, Lin Z B. Antitumor and anti-angiogenic activity of Ganoderma lucidum polysaccharides peptide. Acta Pharmacol Sin, 2004, 25(6): 833~838.
    [10] Frangakis M V, Koopman W J, Kiyono H, et al. An enzymatic method for preparation of dissociated murine Peyer's patch cells enriched for macrophages. J Immunol Methods, 1982, 48(1): 33~44.
    [11] Diaz-ropero M P, Martin R, Sierra S, et al. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microbiol, 2007, 102(2): 337~343.
    [12] Berg R D, Garlington A W. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun, 1979, 23(2): 403~411.
    [13]马西艺.肠道免疫与肉鸡健康.中国家禽, 2008, (17) :13.
    [14] Simecka J W. Mucosal immunity of the gastrointestinal tract and oral tolerance. Adv Drug Deliv Rev, 1998, 34(2-3): 235~259.
    [15] Donnet-hughes A, Rochat F, Serrant P, et al. Modulation of nonspecific mechanisms of defense by lactic acid bacteria: effective dose. J Dairy Sci, 1999, 82(5): 863~869.
    [16] Gill H S, Rutherfurd K J. Viability and dose-response studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. Br J Nutr, 2001, 86(2): 285~289.
    [17] Karlsson H, Hessle C, Rudin A. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect Immun, 2002, 70(12): 6688~6696.
    [18] Ibnou-zekri N, Blum S, Schiffrin E J, et al. Divergent patterns of colonization and immune response elicited from two intestinal Lactobacillus strains that display similar properties in vitro. Infect Immun, 2003, 71(1): 428~436.
    [19] Jain S, Yadav H, Sinha P R, et al. Modulation of cytokine gene expression in spleen and Peyer's patches by feeding dahi containing probiotic Lactobacillus casei in mice. J Dig Dis, 2009, 10(1): 49~54.
    [20] Torii A, Torii S, Fujiwara S, et al. Lactobacillus Acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergol Int, 2007, 56(3): 293~301.
    [21] Keren D F, Brown J E, Mcdonald R A, et al. Secretory immunoglobulin A response to Shiga toxin in rabbits: kinetics of the initial mucosal immune response and inhibition of toxicity in vitro and in vivo. Infect Immun, 1989, 57(7): 1885~1889.
    [22] Pulimood A B, Mathan M M, Mathan V I. Quantitative and ultrastructural analysis of rectal mucosal mast cells in acute infectious diarrhea. Dig Dis Sci, 1998, 43(9): 2111~2116.
    [23] Corthesy B. Secretory immunoglobulin A: well beyond immune exclusion at mucosal surfaces. Immunopharmacol Immunotoxicol, 2009, 31(2): 174~179.
    [24] Corthesy B, Kraehenbuhl J P. Antibody-mediated protection of mucosal surfaces. Curr Top Microbiol Immunol, 1999, 236: 93~111.
    [25] Corthesy B, Gaskins H R, Mercenier A. Cross-talk between probiotic bacteria and the host immune system. J Nutr, 2007, 137(3 Suppl 2): 781~790.
    [26] Liong M T. Safety of probiotics: translocation and infection. Nutr Rev, 2008, 66(4): 192~202.
    [27] Brandtzaeg P E. Current understanding of gastrointestinal immunoregulation and its relation to food allergy. Ann N Y Acad Sci, 2002, 964: 13~45.
    [28] Smolen J S, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov, 2003, 2(6): 473~488.
    [29] Dogi C A, Galdeano C M, Perdigon G. Gut immune stimulation by non pathogenic Gram(+) and Gram(-) bacteria. Comparison with a probiotic strain. Cytokine, 2008, 41(3): 223~231.
    [30] Kato I, Tanaka K, Yokokura T. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-gamma by mouse splenocytes. Int J Immunopharmacol, 1999, 21(2): 121~131.
    [31] Pohjavuori E, Viljanen M, Korpela R, et al. Lactobacillus GG effect in increasing IFN-gamma production in infants with cow's milk allergy. J Allergy Clin Immunol, 2004, 114(1): 131~136.
    [32] Mckenzie B S, Kastelein R A, Cua D J. Understanding the IL-23-IL-17 immune pathway. Trends Immunol, 2006, 27(1): 17~23.
    [33] Hessle C, Andersson B, Wold A E. Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infect Immun, 2000, 68(6): 3581~3586.
    [34] Pie S, Truffa-bachi P, Pla M, et al. Th1 response in Salmonella typhimurium-infected mice with a high or low rate of bacterial clearance. Infect Immun, 1997, 65(11): 4509~4514.
    [35] Rigaux P, Daniel C, Hisbergues M, et al. Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy, 2009, 64(3): 406~414.
    [36] Veckman V, Miettinen M, Matikainen S, et al. Lactobacilli and streptococci induce inflammatory chemokine production in human macrophages that stimulates Th1 cell chemotaxis. J Leukoc Biol, 2003, 74(3): 395~402.
    [37] Sashihara T, Sueki N, Furuichi K, et al. Effect of growth conditions of Lactobacillus gasseri OLL2809 on the immunostimulatory activity for production of interleukin-12 (p70) by murine splenocytes. Int J Food Microbiol, 2007, 120(3): 274~281.
    [38] Sashihara T, Sueki N, Ikegami S. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J Dairy Sci, 2006, 89(8): 2846~2855.
    [39] Killar L M, Eisenstein T K. Immunity to Salmonella typhimurium infection in C3H/HeJ and C3H/HeNCrlBR mice: studies with an aromatic-dependent live S. typhimurium strain as a vaccine. Infect Immun, 1985, 47(3): 605~612.
    [40] Kirjavainen P V, Elnezami H S, Salminen S J, et al. Effects of orally administered viable Lactobacillus rhamnosus GG and Propionibacterium freudenreichii subsp. shermanii JS on mouse lymphocyte proliferation. Clin Diagn Lab Immunol, 1999, 6(6): 799~802.
    [41] Tsai Y T, Cheng P C, Fan C K, et al. Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. Int J Food Microbiol, 2008, 128(2): 219~225.
    [42] Galdeano C M, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol, 2006, 13(2): 219~226.
    [43] Berg R D, Owens W E. Inhibition of translocation of viable Escherichia coli from the gastrointestinal tract of mice by bacterial antagonism. Infect Immun, 1979, 25(3): 820~827.
    [44] Gautreaux M D, Deitch E A, Berg R D. Bacterial translocation from the gastrointestinal tract to various segments of the mesenteric lymph node complex. Infect Immun, 1994, 62(5): 2132~2134.
    [45] Berg R D. Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol, 1999, 473: 11~30.
    [46] Liong M T. Safety of probiotics: translocation and infection. Nutr Rev, 2008, 66(4): 192~202.
    [1] Sashihara T, Sueki N, Ikegami S. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J Dairy Sci, 2006, 89(8): 2846~2855.
    [2] Gotoh M, Sashihara T, Ikegami S, et al. Efficacy of oral administration of a heat-killed Lactobacillus gasseri OLL2809 on patients of Japanese cedar pollinosis with high Japanese-cedar pollen-specific IgE. Biosci Biotechnol Biochem, 2009, 73(9): 1971~1977.
    [3] Neumann E, Ramos M G, Santos L M, et al. Lactobacillus delbrueckii UFV-H2b20 induces type 1 cytokine production by mouse cells in vitro and in vivo. Braz J Med Biol Res, 2009, 42(4): 358~367.
    [4]苗燕.益生素的作用机理及其应用前景.北京农业, 2007, (24).
    [5] Brodsky I E, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol, 2009, 11(5): 521~526.
    [6] Berg R D, Garlington A W. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun, 1979, 23(2): 403~411.
    [7] Hirose Y, Murosaki S, Yamamoto Y, et al. Daily intake of heat-killed Lactobacillus plantarum L-137 augments acquired immunity in healthy adults. J Nutr, 2006, 136(12): 3069~3073.
    [8] Jain S, Yadav H, Sinha P R, et al. Modulation of cytokine gene expression in spleen and Peyer's patches by feeding dahi containing probiotic Lactobacillus casei in mice. J Dig Dis, 2009, 10(1): 49~54.
    [9] Chuang L, Wu K G, Pai C, et al. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. J Agric Food Chem, 2007, 55(26): 11080~11086.
    [10] Kato I, Tanaka K, Yokokura T. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-gamma by mouse splenocytes. Int J Immunopharmacol, 1999, 21(2): 121~131.
    [11] Paturi G, Phillips M, Kailasapathy K. Effect of probiotic strains Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 on systemic immune functions and bacterial translocation in mice. J Food Prot, 2008, 71(4): 796~801.
    [12] Sun J L, Le G W, Hou L X, et al. Nonopsonic phagocytosis of Lactobacilli by mice Peyer's patches' macrophages. Asia Pac J Clin Nutr, 2007, 16 Suppl 1: 204~207.
    [13] Sun J L, Le G W, Hou L X, et al. Nonopsonic phagocytosis of Lactobacilli by mice Peyer's patches' macrophages. Asia Pac J Clin Nutr, 2007, 16 Suppl 1: 204~207.
    [14] Galdeano C M, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol, 2006, 13(2): 219~226.
    [15] Torii A, Torii S, Fujiwara S, et al. Lactobacillus Acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergol Int, 2007, 56(3): 293~301.
    [16] Simecka J W. Mucosal immunity of the gastrointestinal tract and oral tolerance. Adv Drug Deliv Rev, 1998, 34(2-3): 235~259.
    [17] Keren D F, Brown J E, Mcdonald R A, et al. Secretory immunoglobulin A response to Shiga toxin in rabbits: kinetics of the initial mucosal immune response and inhibition of toxicity in vitro and in vivo. Infect Immun, 1989, 57(7): 1885~1889.
    [18] Pulimood A B, Mathan M M, Mathan V I. Quantitative and ultrastructural analysis of rectal mucosal mast cells in acute infectious diarrhea. Dig Dis Sci, 1998, 43(9): 2111~2116.
    [19] Corthesy B. Secretory immunoglobulin A: well beyond immune exclusion at mucosal surfaces. Immunopharmacol Immunotoxicol, 2009, 31(2): 174~179.
    [20] Corthesy B, Kraehenbuhl J P. Antibody-mediated protection of mucosal surfaces. Curr Top Microbiol Immunol, 1999, 236: 93~111.
    [21] Corthesy B, Gaskins H R, Mercenier A. Cross-talk between probiotic bacteria and the host immune system. J Nutr, 2007, 137(3 Suppl 2): 781~790.
    [22] Smolen J S, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov, 2003, 2(6): 473~488.
    [23] Mckenzie B S, Kastelein R A, Cua D J. Understanding the IL-23-IL-17 immune pathway. Trends Immunol, 2006, 27(1): 17~23.
    [24] Dogi C A, Galdeano C M, Perdigon G. Gut immune stimulation by non pathogenic Gram(+) and Gram(-) bacteria. Comparison with a probiotic strain. Cytokine, 2008, 41(3): 223~231.
    [25] Hessle C, Andersson B, Wold A E. Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infect Immun, 2000, 68(6): 3581~3586.
    [1] Mowat A M, Viney J L. The anatomical basis of intestinal immunity. Immunol Rev, 1997, 156: 145~166.
    [2] Paturi G, Phillips M, Jones M, et al. Immune enhancing effects of Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 in mice. Int J Food Microbiol, 2007, 115(1): 115~118.
    [3] Thorvaldson L, Sandler S. Factors influencing the regulation of cytokine balance during islet transplantation in mice. Transpl Immunol, 2009, 20(3): 186~194.
    [4] Plant L, Conway P. Association of Lactobacillus spp. with Peyer's patches in mice. Clin Diagn Lab Immunol, 2001, 8(2): 320~324.
    [5] Buda A, Sands C, Jepson M A. Use of fluorescence imaging to investigate the structure and function of intestinal M cells. Adv Drug Deliv Rev, 2005, 57(1): 123~134.
    [6] Gill H, Prasad J. Probiotics, immunomodulation, and health benefits. Adv Exp Med Biol, 2008, 606: 423~454.
    [7] Nerstedt A, Nilsson E C, Ohlson K, et al. Administration of Lactobacillus evokes coordinated changes in the intestinal expression profile of genes regulating energy homeostasis and immune phenotype in mice. Br J Nutr, 2007, 97(6): 1117~1127.
    [8] Di C S, Tao H, Grillo A, et al. Effects of Lactobacillus GG on genes expression pattern in small bowelmucosa. Dig Liver Dis, 2005, 37(5): 320~329.
    [9] A systems biology approach for pathway. 2007, .
    [10] Carlsen H S, Baekkevold E S, Morton H C, et al. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood, 2004, 104(10): 3021~3027.
    [11] Terahara K, Yoshida M, Igarashi O, et al. Comprehensive Gene Expression Profiling of Peyer's Patch M Cells, Villous M-Like Cells, and Intestinal Epithelial Cells. J Immunol, 2008, 180(12): 7840~7846.
    [12] Wessler S, Backert S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori. Trends Microbiol, 2008, 16(8): 397~405.
    [13] Mccarthy J, O M L, O C L, et al. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut, 2003, 52(7): 975~980.
    [14] Geijsen N, Uings I J, Pals C, et al. Cytokine-specific transcriptional regulation through an IL-5Ralpha interacting protein. Science, 2001, 293(5532): 1136~1138.
    [15] Kelly M N, Kolls J K, Happel K, et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun, 2005, 73(1): 617~621.
    [16] Baba N, Samson S, Bourdet-sicard R, et al. Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. J Leukoc Biol, 2008, 84(2): 468~476.
    [17] Hotchkiss R S, Swanson P E, Knudson C M, et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol, 1999, 162(7): 4148~4156.
    [18] Coombes J L, Maloy K J. Control of intestinal homeostasis by regulatory T cells and dendritic cells. Semin Immunol, 2007, 19(2): 116~126.
    [19] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299(5609): 1057~1061.
    [20] Fontenot J D, Rasmussen J P, Williams L M, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity, 2005, 22(3): 329~341.
    [21] Wan Y Y, Flavell R A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A, 2005, 102(14): 5126~5131.
    [22] Galdeano C M, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol, 2006, 13(2): 219~226.
    [23] Perez N, Karumuthil-melethil S, Li R, et al. Preferential costimulation by CD80 results in IL-10-dependent TGF-beta1(+) -adaptive regulatory T cell generation. J Immunol, 2008, 180(10): 6566~6576.
    [24] Nerstedt A, Nilsson E C, Ohlson K, et al. Administration of Lactobacillus evokes coordinated changes in the intestinal expression profile of genes regulating energy homeostasis and immune phenotype inmice. Br J Nutr, 2007, 97(6): 1117~1127.
    [25]杨玉荣,郑世民,马春全等.雏鸡服用益生素后局部粘膜免疫组织抗体生成细胞的动态变化.中国预防兽医学报, 2004, (05) :355-358.
    [26] Veron P, Segura E, Sugano G, et al. Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cells Mol Dis, 2005, 35(2): 81~88.
    [27] Hanayama R, Miyasaka K, Nakaya M, et al. MFG-E8-dependent clearance of apoptotic cells, and autoimmunity caused by its failure. Curr Dir Autoimmun, 2006, 9: 162~172.
    [28] Bu H F, Zuo X L, Wang X, et al. Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Invest, 2007, 117(12): 3673~3683.
    [29] Niess J H, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science, 2005, 307(5707): 254~258.
    [30] Gupta V, Garg R. Probiotics. Indian J Med Microbiol, 2009, 27(3): 202~209.
    [31] Scibelli A, Roperto S, Manna L, et al. Engagement of integrins as a cellular route of invasion by bacterial pathogens. The Veterinary Journal, 2007, 173(3): 482~491.
    [32] Worth D C, Parsons M. Adhesion dynamics: Mechanisms and measurements. Int J Biochem Cell Biol, 2008, .
    [33] Fujita M, Khazenzon N M, Bose S, et al. Overexpression of beta1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res, 2005, 7(4): 411~421.
    [34] Meng H, Zhang X, Hankenson K D, et al. Thrombospondin 2 potentiates notch3/jagged1 signaling. J Biol Chem, 2009, 284(12): 7866~7874.
    [35] Shi J, Casanova J E. Invasion of host cells by Salmonella typhimurium requires focal adhesion kinase and p130Cas. Mol Biol Cell, 2006, 17(11): 4698~4708.
    [36] Arana E, Harwood N E, Batista F D. Regulation of integrin activation through the B-cell receptor. J Cell Sci, 2008, 121(Pt 14): 2279~2286.
    [37] Wozniak M A, Modzelewska K, Kwong L, et al. Focal adhesion regulation of cell behavior. Biochim Biophys Acta, 2004, 1692(2-3): 103~119.
    [38] Arana E, Harwood N E, Batista F D. Regulation of integrin activation through the B-cell receptor. J Cell Sci, 2008, 121(Pt 14): 2279~2286.
    [39] Fasano A, Nataro J P. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev, 2004, 56(6): 795~807.
    [40] Nusrat A, Giry M, Turner J R, et al. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci U S A, 1995, 92(23): 10629~10633.
    [41] Pothoulakis C. Effects of Clostridium difficile toxins on epithelial cell barrier. Ann N Y Acad Sci, 2000, 915: 347~356.
    [42] Tafazoli F, Magnusson K E, Zheng L. Disruption of epithelial barrier integrity by Salmonella enterica serovar typhimurium requires geranylgeranylated proteins. Infect Immun, 2003, 71(2): 872~881.
    [43] Boyle E C, Brown N F, Finlay B B. Salmonella enterica serovar Typhimurium effectors SopB, SopE,SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol, 2006, 8(12): 1946~1957.
    [44] Buret A G. Mechanisms of intestinal tight junctional disruption during infection. Front Biosci, 2008, 13: 7008~7021.
    [45] Halbach A, Morgelin M, Baumgarten M, et al. PACSIN 1 forms tetramers via its N-terminal F-BAR domain. FEBS J, 2007, 274(3): 773~782.
    [46] Sumoy L, Pluvinet R, Andreu N, et al. PACSIN 3 is a novel SH3 domain cytoplasmic adapter protein of the pacsin-syndapin-FAP52 gene family. Gene, 2001, 262(1-2): 199~205.
    [47] Ongol M P, Iguchi T, Tanaka M, et al. Potential of selected strains of lactic acid bacteria to induce a Th1 immune profile. Biosci Biotechnol Biochem, 2008, 72(11): 2847~2857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700