纳豆枯草芽孢杆菌对奶牛生产性能、瘤胃发酵和血液指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过四个试验研究纳豆枯草芽孢杆菌在奶牛胃肠道存活效率,流通规律及其对泌乳初期奶牛生产性能,瘤胃发酵、血液代谢产物和血液蛋白组的影响。
     试验一:本试验旨在通过静态发酵试验研究纳豆枯草芽孢杆菌在奶牛瘤胃和十二指肠中的存活率,确定其能否耐受奶牛胃肠道环境。采集1头健康瘘管牛瘤胃液和十二指肠液过滤后,加入105/mL纳豆枯草芽孢杆菌芽孢,对照组不添加,于39℃厌氧培养,瘤胃液发酵0、6、12、24、48、72 h后检测VFA和芽孢数。十二指肠液发酵0,1,2,3,4和6 h后检测芽孢数。瘤胃发酵结果表明,纳豆枯草芽孢杆菌在瘤胃液发酵72 h过程中,芽孢数呈先增高后降低的趋势,发酵24 h和72 h的芽孢数增加了将近2倍,促进了瘤胃液丙酸和丁酸的产生(P < 0.05),减少乙酸、异丁酸和异戊酸的产生(P < 0.01)。十二指肠液发酵结果表明,纳豆枯草芽孢杆菌芽孢数在十二指肠液中发酵3 h内芽孢数几乎无变化,发酵3 h后急剧降低(P < 0.001),发酵4 h后几乎不再变化,对照组始终无法检测出芽孢。
     试验二:本试验旨在通过研究纳豆枯草芽孢杆菌投喂奶牛后在其胃肠道的停留时间,确定其能否在奶牛胃肠道定植。试验选取7头瘘管牛随机分成两组:处理组(4头)通过瘤胃瘘管投放1010纳豆枯草芽孢杆菌芽孢,对照组(3头)不投放。投放后6,12,24,48和72 h采集瘤胃液、十二指肠液和粪样,测定芽孢数。结果表明瘤胃液、十二指肠液和粪便中的芽孢数均随投喂时间的延长而逐渐降低,投喂48 h后三个位点很难检出芽孢。
     试验三:本试验旨在探讨日粮中添加纳豆枯草芽孢杆菌发酵物对泌乳初期荷斯坦奶牛产奶量、乳成分、血液代谢产物和瘤胃发酵的影响。以胎次和泌乳日龄为区组,将36头奶牛(DIM = 29±6 d,胎次= 2.8±1.1)随机分为三组(对照,DFM1,DFM2)进行为期9周的饲养试验。对照,DFM1和DFM2三个处理组添加纳豆枯草芽孢杆菌发酵物的量分别为0,6和12 g/d。结果表明:DFM1和DFM2处理组血浆NEFA浓度低于对照组(P = 0.03)(685 vs. 639和633μmol/L)。随着纳豆枯草芽孢杆菌发酵物添加浓度的增加,瘤胃丙酸浓度升高(P = 0.02) (23.9 vs. 26.3和26.9 mol/100 mol,对照vs. DFM1和DFM2),乙酸浓度降低(P < 0.05()64.2 vs. 62.7和62.1 mol/100 mol,对照vs. DFM1和DFM2)。发酵物的添加对DMI无影响,但DFM1和DFM2处理组奶牛产奶量分别比对照组提高3.2和3.1 kg/d(P < 0.06),显著差异出现在试验第5~9周,最终导致DFM1和DFM2处理组的饲料转化率分别比对照组高9.5%和11.7%(P < 0.06)。发酵物的添加对乳脂率和乳蛋白产量无影响,但增加了乳脂产量(P < 0.05)和乳糖含量(P < 0.01),并有降低乳蛋白率的趋势(P = 0.06)。
     试验四:本试验旨在研究纳豆枯草芽孢杆菌发酵物对奶牛血液蛋白数量和结构的影响。以胎次和泌乳天数为区组将24头奶牛随机分成两组,对照组和DFM2组分别饲喂纳豆枯草芽孢杆菌发酵物0,12 g。采用二维凝胶电泳技术分离了饲喂发酵物8周奶牛的血浆蛋白,经考马斯亮蓝染色后PDQuest 7.4软件匹配、检测凝胶中差异表达的蛋白点,对差异蛋白点采用MALDI-TOF-TOF质谱分析,SEQUEST软件搜索NCBInr数据库,结果表明,DFM2组奶牛血浆蛋白有3个蛋白点表达量升高,但未得到有效鉴定,1个蛋白点表达量降低,经鉴定为转甲状腺素蛋白。纳豆枯草芽孢杆菌能长时间耐受奶牛瘤胃环境,发酵24 h,芽孢数约增加了1倍,能促进丙酸的发酵,能在十二指肠液中耐受3 h,但不能在奶牛胃肠道定植,投喂48 h后,瘤胃、十二指肠和粪便中几乎检测不到芽孢。为了在胃肠道发挥代谢活性,应在日粮中持续添加。在对泌乳初期奶牛血液代谢产物不产生负面影响的情况下,该菌的固体发酵物可提高奶牛产奶量3 kg/d,饲料利用率约10%,其机制可能是改变了瘤胃发酵模式,并与血液中转甲状腺素蛋白等蛋白的表达有关。
Four experiments were conducted to study survival of Bacillus subtilis natto in rumen and duodenum, dispear time and its effects on the performance, rumen fermentation, blood meterbolites and blood proteiniom.
     In experiment 1, experiment in vitro was conducted to evaluate the survival laws of Bacillus subtilis natto (BSN) in rumen and duodenum of Holstein dairy cows. BSN spores were added at 105/mL to strained rumen fluid or duodenum fluid taken from a healthy dairy cow and incubated in vitro at 39°C. Strained rumen fluid or duodenum fluid with no BSN inoculants served as controls. Changes of BSN spore counts and volatile fatty acid in rumen fluid were monitored at 0, 6, 12, 24, 48 and 72 h. Changes of BSN spore counts in duodenum fluid were monitored at 0, 1, 2, 3, 4, 5 and 6 h. The results of rumen fermentation showed that spores increased in the first 24 h, and then decreased. The spores at 24 h were two times of 0 h. In addition, BSN increased the concentration of propionate and butyrate in rumen fluid (P < 0.05), but reduced the concentration of acetic acid (P < 0.01). The results of duodenum fermentation showed that spore counts tended to increase in the first 2 h, and then decreased gradually.
     In experiment 2: seven cows were randomly assigned to two groups. Four cows were infused with 1010 spores of BSN into rumen through rumen cannula and the other three cows received no infusion. Rumen fluid, duodenum fluid and feces were collected at 0, 6, 12, 24, 48, 72 h after the infusion. Spore counts in rumen, duodenum and feces continued to decrease and almost can't be detected at 48 h after infusion in all of the location.
     In experiment 3: This experiment was conducted to determine the effect of B. subtillis natto fermentation product supplementation on blood metabolites, rumen fermentation, milk production and composition in early lactation dairy cows. Thirty-six multiparous Holstein cows (DIM = 29±6 d, parity = 2.8±1.1) were blocked by DIM and parity and then randomly assigned to 3 treatments (12 per treatment) in a 9-wk trial. Cows in control, DFM1 and DFM2 were fed TMR diets supplemented with 0, 6 or 12 gram of B. subtillis natto solid state fermentation product per day per cow respectively. Plasma nonesterified fatty acids were lower (P = 0.03) in DFM1 and DFM2 compared with control cows (633 and 639 vs. 685μmol/l). Ruminal propionate increased (P = 0.02) (23.9 vs. 26.3 and 26.9 mol/100 mol, control vs. DFM1 and DFM2, respectively) and acetate decreased (P < 0.05) (64.2 vs. 62.7 and 62.1 mol/100 mol, control vs. DFM1 and DFM2, respectively) with increasing B. subtillis natto fermentation product supplementation. DMI of the cows in three treatments was not affected by B. subtillis natto fermentation product supplementation, but milk yield was 3.1 kg/day and 3.2 kg/day higher for DFM1 and DFM2 than control cows on average across the 9-wk trial and significant differences were observed during wk 5 to 9 of the trial, which resulted in 9.5% and 11.7% increase in feed efficiency. B. subtillis natto fermentation product supplementation did not affect milk fat percentage and protein yield, but increased (P < 0.05) milk fat yield and lactose percentage (P < 0.01) and tended to decrease protein percentage (P = 0.06).
     In experiment 4: This experiment was conducted to study the effect of Bacillus subtilis natto on blood protein quantity and construction. Tweenty-four multiparous Holstein cows (DIM = 29±6 d, parity = 2.8±1.1) were blocked by DIM and parity and randomly assigned to 2 treatments (12 per treatment). Cows in control and DFM2 were fed TMR diets supplemented with 0 and 12 gram of B. subtillis natto solid state fermentation product per day per cow respectively. Changes of plasma proteins on the 8 wk after the fermentation product was fed were separated by two-dimensional electrophoresis providing a platform for parallel analysis. After proteins were stained with Coomassie Blue G-250, differentially expressed proteins were analyzed by PDQuest 7.4 software, and identified by HPLC equipped with ion trap mass spectrometer. The result showed that three proteins were up-regulated for the feeding of fermentation product; however, they were not identified. Transthyretin was down-regulated.
     In conclusion, B. subtillis natto spores have the ability to survive in rumen and alter rumen fermentation and survive in duodenum fluid for 3 h but can not permanently colonize in the gastrointestinal tract of Holstein dairy cows. The supplementation should be repeated in order to keep metabolic activities of B. subtillis natto additives and exert their effects on the ruminal microflora. When B. subtillis natto fermentation product was fed to dairy cows in early lactation, it was found that fermentation product was effective in increasing lactation performance of early lactation dairy cows possibly by altering the rumen fermentation pattern and down-regulat the express of transthyretin without any negative effects on blood metabolites.
引文
1布坎南R E,吉本斯N E.伯杰氏细菌鉴定手册.北京:中国科学出版社, 1998: 732.
    2邓露芳.日粮添加纳豆枯草芽孢杆菌对奶牛生产性能、瘤胃发酵及功能微生物的影响.北京:中国农业科学院,2009.
    3高志刚,穆国东,龙淼和邢欣,活性干酵母对瘤胃微生态系统的作用.中国饲料2009, (7): 5-7.
    4刘相玉,毛胜勇,朱伟云.高精料日粮条件下酵母培养物对瘤胃细菌体外发酵的影响.动物营养学报,2009,21:199-204.
    5覃宗华,蔡建平,叶秀华,王佩瑶,陈闻,王星和谢明权,纳豆芽孢杆菌16S rRNA基因的克隆及其系统进化分析.中国微生态学杂志2005, 17(5): 324-326.
    6杨永新,王加启,卜登攀,张乐颖,李珊珊,张春林和周凌云,基于2-DE结合质谱研究围产期奶牛血浆蛋白表达的变化.畜牧兽医学报2010, 41(2): 188-192.
    7于萍.饲喂纳豆枯草芽孢杆菌对断奶后犊牛瘤胃细菌区系的影响.北京:中国农业科学院,2009.
    8张骞,顾小卫和赵国琦,酵母培养物在反刍动物饲料中的应用.饲料工业2009, 30(2): 4-6.
    9 AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA.
    10 Abu-Tarboush H.M., Al-Saiady M.Y., Keir E.D. and Ahmed H., Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. Animal Feed Science and Technology 1996, 57(1-2): 39-49.
    11 Adami A. and Cavazzoni V., Occurrence of selected bacterial groups in the faeces of piglets fed with Bacillus coagulans as probiotic. Journal of Basic Microbiology 1999, 39(1): 3-9.
    12 Adams M.C., Luo J., Rayward D., King S., Gibson R. and Moghaddam G.H., Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Animal Feed Science and Technology 2008, 145(1-4): 41-52.
    13 Adolfsson O., Meydani S.N. and Russell R.M., Yogurt and gut function. The American Journal of Clinical Nutrition 2004, 80(2): 245-256.
    14 Aleman M.M., Stein D.R., Allen D.T., Perry E., Lehloenya K.V., Rehberger T.G., Mertz K.J., Jones D.A. and Spicer L.J., Effects of feeding two levels of propionibacteria to dairy cows on plasma hormones and metabolites. Journal of Dairy Research 2007, 74(2): 146-153.
    15 Allen M.S., Bradford B.J. and Harvatine K.J., The cow as a model to study food intake regulation. Nutrition 2005, 25(1): 523-547.
    16 Amaral D.M., Veenhuizen J.J., Drackley J.K., Cooley M.H., McGilliard A.D. and Young J.W., Metabolism of propionate, glucose, and carbon dioxide as affected by exogenous glucose in dairy cows at energy equilibrium. Journal of Dairy Science 1990, 73(5): 1244-1254.
    17 Arthur T.M., Bosilevac J.M., Kalchayanand N., Wells J.E., Shackelford S.D., Wheeler T.L. and Koohmaraie M., Evaluation of a direct-fed microbial product effect on the prevalence and load of Escherichia coli O157: H7 in feedlot cattle. Journal of Food Protection 2010, 73(2): 366-371.
    18 Bach A., Calsamiglia S. and Stern M.D., Nitrogen Metabolism in the Rumen. Journal of Dairy Science 2005, 88(E. suppl.): E9-E21.
    19 Baumgard L, Rhoads R. The effects of heat stress on metabolism, energetics and production in growing and lactating cattle. Proceedings in 1st International Symposium on Dairy Cow Nutrition and Milk Quality. Beijing, 2009.
    20 Baile C.A., Metabolites as feedbacks for control of feed intake and receptor sites in goats and sheep. Physiology & Behavior 1971, 7(6): 819-826.
    21 Beecher C., Daly M., Berry D.P., Klostermann K., Flynn J., Meaney W., Hill C., McCarthy T.V., Ross R.P. and Giblin L., Administration of a live culture of Lactococcus lactis DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly IL-1 and IL-8 gene expression. Journal of Dairy Research 2009, 76(3): 340-348.
    22 Bell A.W., Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science 1995, 73(9): 2804-2819.
    23 Broderick G.A. and Kang J.H., Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science 1980, 63(1): 64-75.
    24 Brunoa R.G.S., Rutiglianoab H.M., Cerric R.L., Robinsonb P.H. and Santosc J.E.P., Effect of feeding Saccharomyces Cerevisiae on performance of dairy cows during summer heat stress. Animal Feed Science Technology 2009, 150(3): 175-186
    25 Callaway E.S. and Martin S.A., Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Journal of Dairy Science 1997, 80(9): 2035-2044.
    26 Callaway T.R., Carr M.A., Edrington T.S., Anderson R.C. and Nisbet D.J., Diet, Escherichia coli O157: H7, and cattle: a review after 10 years. Current Issues in Molecular Biology 2009, 11(2): 67-80.
    27 Cartman S.T., La Ragione R.M. and Woodward M.J., Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Applied and Environmental Microbiology 2008, 74(16): 5254-5258.
    28 Casewell M., Friis C., Marco E., McMullin P. and Phillips I., The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. Journal of Antimicrobial Chemotherapy 2003, 52(2): 159-161.
    29 Casula G. and Cutting S.M., Bacillus probiotics: spore germination in the gastrointestinal tract. Applied and environmental microbiology 2002, 68(5): 2344-2352.
    30 Chaucheyras-Durandab F., Walkerab N.D. and Bachcd A., Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology 2008, 145(1): 5-26.
    31 Chaucheyras-Durand F. and Durand H., Probiotics in animal nutrition and health. Beneficial Microbes 2010, 1(1): 3-9.
    32 Chen K.L., Kho W.L., You S.H., Yeh R.H., Tang S.W. and Hsieh C.W., Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growthperformance of broilers. Poultry Science 2009, 88(2): 309-315.
    33 Chiquette J., Allison M.J. and Rasmussen M.A., Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. Journal of Dairy Science 2008, 91(9): 3536-3543.
    34 Crispie F., Alonso-Gómez M., O'Loughlin C., Klostermann K., Flynn J., Arkins S., Meaney W., Paul Ross R. and Hill C., Intramammary infusion of a live culture for treatment of bovine mastitis: effect of live lactococci on the mammary immune response. Journal of Dairy Research 2008, 75(03): 374-384.
    35 Cross M.L., Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunology & Medical Microbiology 2002, 34(4): 245-253.
    36 Dairy Records Management Systems. 2011. DHI Glossary. http://www.drms.org/PDF/materials/ glossary.pdf. Accessed February, 2011.
    37 Dann H.M., Drackley J.K., McCoy G.C., Hutjens M.F. and Garrett J.E., Effects of yeast culture (Saccharomyces cerevisiae) on prepartum intake and postpartum intake and milk production of Jersey cows. Journal of Dairy Science 2000, 83(1): 123-127.
    38 Davis M.E., Parrott T., Brown D.C., de Rodas B.Z., Johnson Z.B., Maxwell C.V. and Rehberger T., Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. Journal of Animal Science 2008, 86(6): 1459-1467.
    39 DeFrain J.M., Hippen A.R., Kalscheur K.F. and Patton R.S., Effects of feeding propionate and calcium salts of long-chain fatty acids on transition dairy cow performance. Journal of Dairy Science 2005, 88(3): 983-993.
    40 Desnoyers M., Giger-Reverdin S., Bertin G., Duvaux-Ponter C. and Sauvant D., Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. Journal of Dairy Science 2009, 92(4): 1620-1632.
    41 Drackley J.K., Biology of dairy cows during the transition period: the final frontier? Journal of Dairy Science 1999, 82(11): 2259-2273.
    42 Drackley J.K., Overton T.R. and Douglas G.N., Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. Journal of Dairy Science 2001, 84(E. Suppl.): E100-E112.
    43 Duc L.H., Hong H.A., Barbosa T.M., Henriques A.O. and Cutting S.M., Characterization of Bacillus probiotics available for human use. Applied and Environmental Microbiology 2004, 70(4): 2161-2171.
    44 Duc L.H., Hong H.A. and Cutting S.M., Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 2003, 21(27-30): 4215-4224.
    45 Durand-Chaucheyras F., Fonty G., Bertin G., Theveniot M. and Gouet P., Fate of Levucell SCI-1077 yeast additive during digestive transit in lambs. Reproduction, Nutrition, Development 1998, 38(3): 275-280.
    46 Elam N.A., Gleghorn J.F., Rivera J.D., Galyean M.L., Defoor P.J., Brashears M.M. and Younts-Dahl S.M., Effects of live cultures of Lactobacillus acidophilus (strains NP45 and NP51) and Propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and Escherichia coli strain O157 shedding of finishing beef steers. Journal of Animal Science 2003, 81(11): 2686-2698.
    47 Emery R.S., Liesman J.S. and Herdt T.H., Metabolism of long chain fatty acids by ruminant liver. Journal of Nutrition 1992, 122(3 Suppl): 832-837.
    48 Enjalbert F., Garrett J.E., Moncoulon R., Bayourthe C. and Chicoteau P., Effects of yeast culture (Saccharomyces cerevisiae) on ruminal digestion in non-lactating dairy cows. Animal Feed Science and Technology 1999, 76(3-4): 195-206.
    49 Erasmus L.J., Robinson P.H., Ahmadi A., Hinders R. and Garrett J.E., Influence of prepartum and postpartum supplementation of a yeast culture and monensin, or both, on ruminal fermentation and performance of multiparous dairy cows. Animal Feed Science and Technology 2005, 122(3-4): 219-239.
    50 Faille C., Membre J.M., Kubaczka M. and Gavini F., Altered ability of Bacillus cereus spores to grow under unfavorable conditions (presence of nisin, low temperature, acidic pH, presence of NaCl) following heat treatment during sporulation. Journal of Food Protection 2002, 65(12): 1930-1936.
    51 Ferrari E., Jarnagin A.S. and Schmidt B.F., Commercial production of extracellular enzymes. Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, DC 1993: 917-937.
    52 Fiems L.O., Cottyn B.G., Dussert L. and Vanacker J.M., Effect of a viable yeast culture on digestibility and rumen fermentation in sheep fed different types of diets. Reproduction, Nutrition, Development 1993, 33(1): 43-49.
    53 Fleige S., Preissinger W., Meyer H.H. and Pfaffl M.W., The immunomodulatory effect of lactulose on Enterococcus faecium fed preruminant calves. Journal of Animal Science 2009, 87(5): 1731-1738.
    54 Flint J.F. and Garner M.R., Feeding beneficial bacteria: A natural solution for increasing efficiency and decreasing pathogens in animal agriculture. The Journal of Applied Poultry Research 2009, 18: 367-378.
    55 Fonty G. and Chaucheyras-Durand F., Effects and modes of action of live yeasts in the rumen Biologia 2006, 61(6): 741-750.
    56 Fooks L.J. and Gibson G.R., Probiotics as modulators of the gut flora. British Journal of Nutrition 2002, 88(S1): s39-s49.
    57 Francisco C.C., Chamberlain C.S., Waldner D.N., Wettemann R.P. and Spicer L.J., Propionibacteriafed to dairy cows: effects on energy balance, plasma metabolites and hormones, and reproduction. Journal of Dairy Science 2002, 85(7): 1738-1751.
    58 Fuller R., Probiotics in man and animals. The Journal of Applied Bacteriology 1989, 66(5): 365.
    59 Gibson G.R., Beatty E.R., Wang X. and Cummings J.H., Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 1995, 108(4): 975-982.
    60 Gilchrist M.J., Greko C., Wallinga D.B., Beran G.W., Riley D.G. and Thorne P.S., The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environmental Health Perspectives 2007, 115(2): 313-316.
    61 Harrison G.A., Hemken R.W., Dawson K.A., Harmon R.J. and Barker K.B., Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial populations. Journal of Dairy Science 1988, 71(11): 2967-2975.
    62 Hillman K., Lloyd D. and Williams A.G., Use of a portable quadrupole mass spectrometer for the measurement of dissolved gas concentrations in ovine rumen liquor in situ. Current Microbiology 1985, 12: 335–340.
    63 Hoa T.T., Duc L.H., Isticato R., Baccigalupi L., Ricca E., Van P.H. and Cutting S.M., Fate and dissemination of Bacillus subtilis spores in a murine model. Applied and Environmental Microbiology 2001, 67(9): 3819-3823.
    64 Hong H.A., Duc L.H. and Cutting S.M., The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews 2005, 29(4): 813-835.
    65 Hong H.A., Huang J.M., Khaneja R., Hiep L.V., Urdaci M.C. and Cutting S.M., The safety of Bacillus subtilis and Bacillus indicus as food probiotics. Journal of Applied Microbiology 2008, 105(2): 510-520.
    66 Hosoi T., Ametani A., Kiuchi K. and Kaminogawa S., Changes in fecal microflora induced by intubation of mice with Bacillus subtilis (natto) spores are dependent upon dietary components. Canadian Journal of Microbiology 1999, 45(1): 59-66.
    67 Jadamus A., Vahjen W., Schafer K. and Simon O., Influence of the probiotic strain Bacillus cereus var. toyoi on the development of enterobacterial growth and on selected parameters of bacterial metabolism in digesta samples of piglets. Journal of Animal Physiology and Animal Nutrition 2002, 86(1-2): 42-54.
    68 Jadamus A., Vahjen W. and Simon O., Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Archives of Animal Nutrition 2001, 54(1): 1-17.
    69 Jesse B.W., Emery R.S. and Thomas J.W., Control of bovine hepatic fatty acid oxidation. Journal of Dairy Science 1986, 69(9): 2290-2297.
    70 Jones G.W. and Rutter J.M., Role of the K88 antigen in the pathogenesis of neonatal diarrhea caused by Escherichia coli in piglets. Infection and Immunity 1972, 6(6): 918-927.
    71 Jouany J.P., Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Animal Reproduction Science 2006, 96(3-4):250-264.
    72 Khafipour E., Li S., Plaizier J.C. and Krause D.O., Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology 2009, 75(22): 7115-7124.
    73 Khampa S., Chaowarat P., Singhalert R. and Wanapat M., Supplementation of malate and yeast in concentrate containing high cassava chip on rumen ecology in dairy steers. Pakistan Journal of Nutrition 2009, 8(5): 592-596.
    74 Klostermann K., Crispie F., Flynn J., Ross R.P., Hill C. and Meaney W., Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials. Journal of Dairy Research 2008, 75(03): 365-373.
    75 Knowlton K.F., Dawson T.E., Glenn B.P., Huntington G.B. and Erdman R.A., Glucose metabolism and milk yield of cows infused abomasally or ruminally with starch. Journal of Dairy Science 1998, 81(12): 3248-3258.
    76 Kowalski Z.M., G¨?rka P., Schlagheck A., Jagusiak W., Micek P. and Strzetelski J., Performance of Holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. Journal of Animal and Feed Sciences 2009, 18(3): 399-411.
    77 Krehbiel C.R., Rust S.R., Zhang G. and Gilliland S.E., Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. Journal of Animal Science 2003, 81(E. Suppl. 2): E120-E132.
    78 Kritas S.K., Govaris A., Christodoulopoulos G. and Burriel A.R., Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality. Journal of Veterinary Medicine Series A 2006, 53(4): 170-173.
    79 Kung L., Jr., Chen J.H., Kreck E.M. and Knutsen K., Effect of microbial inoculants on the nutritive value of corn silage for lactating dairy cows. Journal of Dairy Science 1993, 76(12): 3763-3770.
    80 Kung L., Jr. and Hession A.O., Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. Journal of Animal Science 1995, 73(1): 250-256.
    81 Kung L., Jr., Kreck E.M., Tung R.S., Hession A.O., Sheperd A.C., Cohen M.A., Swain H.E. and Leedle J.A., Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. Journal of Dairy Science 1997, 80(9): 2045-2051.
    82 Lascano G.J., Zanton G.I., Suarez-Mena F.X. and Heinrichs A.J., Effect of limit feeding high- and low-concentrate diets with Saccharomyces cerevisiae on digestibility and on dairy heifer growth and first-lactation performance. Journal of Dairy Science 2009, 92(10): 5100-5110.
    83 Lehloenya K.V., Krehbiel C.R., Mertz K.J., Rehberger T.G. and Spicer L.J., Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion. Journal of Dairy Science 2008, 91(2): 653-662.
    84 Lehloenya K.V., Stein D.R., Allen D.T., Selk G.E., Jones D.A., Aleman M.M., Rehberger T.G., Mertz K.J. and Spicer L.J., Effects of feeding yeast and propionibacteria to dairy cows on milkyield and components, and reproduction. Journal of Animal Physiology and Animal Nutrition 2008, 2(2): 190-202.
    85 Leser T.D., Knarreborg A. and Worm J., Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. Journal of Applied Microbiology 2008, 104(4): 1025-1033.
    86 Littell R.C., Pendergast J. and Natarajan R., Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine 2000, 19: 1793–1819.
    87 Liz M.A., Faro C.J., Saraiva M.J. and Sousa M.M., Transthyretin, a new cryptic protease. Journal of Biological Chemistry 2004, 279(20): 21431-21438.
    88 Liu C.H., Chiu C.S., Ho P.L. and Wang S.W., Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. Journal of Applied Microbiology 2009, 107(3): 1031-1041.
    89 Liu Q., Wang C., Yang W.Z., Guo G., Yang X.M., He D.C., Dong K.H. and Huang Y.X., Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows. Journal of Animal Physiology and Animal Nutrition 2010, 94(5): 605-614.
    90 Loesche W.J., Oxygen sensitivity of various anaerobic bacteria. Applied and Environmental Microbiology 1969, 18(5): 723.
    91 Longuski R.A., Ying Y. and Allen M.S., Yeast culture supplementation prevented milk fat depression by a short-term dietary challenge with fermentable starch. Journal of Dairy Science 2009, 92(1): 160-167.
    92 Lynch H.A. and Martin S.A., Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. Journal of Dairy Science 2002, 85(10): 2603-2608.
    93 Marden J.P., Julien C., Monteils V., Auclair E., Moncoulon R. and Bayourthe C., How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? Journal of Dairy Science 2008, 91(9): 3528-3535.
    94 Mathieu F., Jouany J.P., Senaud J., Bohatier J., Bertin G. and Mercier M., The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reproduction, Nutrition, Development 1996, 36(3): 271-287.
    95 McGinn S.M., Beauchemin K.A., Coates T. and Colombatto D., Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science 2004, 82(11): 3346-3356.
    96 Meydani S.N. and Ha W.K., Immunologic effects of yogurt. The American Journal of Clinical Nutrition 2000, 71(4): 861-872.
    97 Miller-Webster T., Hoover W.H., Holt M. and Nocek J.E., Influence of yeast culture on ruminalmicrobial metabolism in continuous culture. Journal of Dairy Science 2002, 85(8): 2009-2014.
    98 Miron J., Ben-Ghedalia D. and Morrison M., Invited review: adhesion mechanisms of rumen cellulolytic bacteria. Journal of Dairy Science 2001, 84(6): 1294-1309.
    99 Moallem U., Lehrer H., Livshitz L., Zachut M. and Yakoby S., The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. Journal of Dairy Science 2009, 92(1): 343-351.
    100 Moir A. and Smith D.A., The genetics of bacterial spore germination. Annual Review of Microbiology 1990, 44: 531-553.
    101 Moss A.R., Jouany J.P. and Newbold J., Methane production by ruminants: its contribution to global warming. Annales de Zootechnie 2000, 49: 231-253.
    102 Moya D., Calsamiglia S., Ferret A., Blanch M., Fandino J.I., Castillejos L. and Yoon I., Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers. Journal of Animal Science 2009, 87(9): 2874-2881.
    103 Mwenya B., Santoso B., Sar C., Pen B., Morikawa R., Takaura K., Umetsu K., Kimura K. and Takahashi J., Effects of yeast culture and galacto-oligosaccharides on ruminal fermentation in holstein cows. Journal of Dairy Science 2005, 88(4): 1404-1412.
    104 Nakano M.M., Dailly Y.P., Zuber P. and Clark D.P., Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. Journal of Bacteriology 1997, 179(21): 6749-6755.
    105 Nakano M.M. and Zuber P., Anaerobic Growth of a“Strict Aerobe”(Bacillus Subtilis). Annual Review of Microbiology 1998, 52: 165-190.
    106 Newbold C.J. (1995). Microbial feed additives for ruminants.
    107 Nicholson W.L., Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences 2002, 59(3): 410-416.
    108 Nocek J.E. and Kautz W.P., Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. Journal of Dairy Science 2006, 89(1): 260-266.
    109 Nocek J.E., Kautz W.P., Leedle J.A.Z. and Block E., Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. Journal of Dairy Science 2003, 86(1): 331-335.
    110 Oba M. and Allen M.S., Dose-response effects of intrauminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. Journal of Dairy Science 2003, 86(9): 2922-2931.
    111 Oetzel G.R., Emery K.M., Kautz W.P. and Nocek J.E., Direct-fed microbial supplementation and health and performance of pre- and postpartum dairy cattle: a field trial. Journal of Dairy Science 2007, 90(4): 2058-2068.
    112 Oshio S., Tahata I. and Minato H., Effects of diets differing in ratios of roughage to concentrate on microflora in the rumen of heifers. The Journal of General and Applied Microbiology 1987, 33:99-100.
    113 Owens F.N., Secrist D.S., Hill W.J. and Gill D.R., Acidosis in cattle: a review. Journal of Animal Science 1998, 76(1): 275-286.
    114 Prapunpoj P. and Leelawatwattana L., Evolutionary changes to transthyretin: structure-function relationships. FEBS Journal 2009, 276(19): 5330-5341.
    115 Qiao G.H., Shan A.S., Ma N., Ma Q.Q. and Sun Z.W., Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. Journal of Animal Physiology and Animal Nutrition 2010, 94(4): 429-436.
    116 Raeth-Knight M.L., Linn J.G. and Jung H.G., Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of Holstein dairy cows. Journal of Dairy Science 2007, 90(4): 1802-1809.
    117 Ramsing E.M., Davidson J.A., French P.D., Yoon I., Keller M. and Peters-Fleckenstein H., Effects of yeast culture on peripartum intake and milk production of primiparous and multiparous holstein cows. The Professional Animal Scientist 2009, 25: 487-495.
    118 Ripamonti B., Agazzi A., Baldi A., Balzaretti C., Bersani C., Pirani S., Rebucci R., Savoini G., Stella S., Stenico A. and Domeneghini C., Administration of Bacillus coagulans in calves: recovery from faecal samples and evaluation of functional aspects of spores. Veterinary Research Communications 2009, 33(8): 991-1001.
    119 Robinson J.A., Smolenski W.J., Greening R.C., Ogilvie M.L., Bell R.L., Barsuhn K. and Peters J.P., Prevention of acute acidosis and enhancement of feed intake in the bovine by Megasphaera elsdenii 407A. Journal of Animal Science 1992, 70(Suppl 1): 310.
    120 Rodriguez-Palacios A., Staempfli H.R., Duffield T. and Weese J.S., Isolation of bovine intestinal Lactobacillus plantarum and Pediococcus acidilactici with inhibitory activity against Escherichia coli O157 and F5. Journal of Applied Microbiology 2009, 106(2): 393-401.
    121 Rodriguez F. Control of lactate accumulation in ruminants using Prevotella bryantii Ames., Iowa State University, 2003
    122 Roger V., Fonty G., Komisarczuk-Bony S. and Gouet P., Effects of physicochemical factors on the adhesion to cellulose avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Applied and Environmental Microbiology 1990, 56(10): 3081-3087.
    123 Roos T.B., Tabeleao V.C., Dummer L.A., Schwegler E., Goulart M.A., Moura S.V., Correa M.N., Leite F.P.L. and Gil-Turnes C., Effect of Bacillus cereus var. Toyoi and Saccharomyces boulardii on the immune response of sheep to vaccines. Food and Agricultural Immunology 2010, 21(2): 113-118.
    124 Samanya M. and Yamauchi K., Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 2002, 133(1): 95-104.
    125 Sanders M.E. and Klaenhammer T.R., Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. Journal of Dairy Science 2001, 84(2): 319-331.
    126 Sauer F.D., Kramer J.K. and Cantwell W.J., Antiketogenic effects of monensin in early lactation. Journal of Dairy Science 1989, 72(2): 436-442.
    127 Schingoethe D.J., Linke K.N., Kalscheur K.F., Hippen A.R., Rennich D.R. and Yoon I., Feed efficiency of mid-lactation dairy cows fed yeast culture during summer. Journal of Dairy Science 2004, 87(12): 4178-4181.
    128 Schreiber G. and Richardson S.J., The evolution of gene expression, structure and function of transthyretin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 1997, 116(2): 137-160.
    129 Seal C.J. and Reynolds C.K., Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutrition Research Reviews 1993, 6(1): 185-208.
    130 Shaw L. and Engel P.C., The suicide inactivation of ox liver short-chain acyl-CoA dehydrogenase by propionyl-CoA. Formation of an FAD adduct. Biochemical Journal 1985, 230(3): 723-731.
    131 Sheperd A.C., Maslanka M., Quinn D. and Kung L., Jr., Additives containing bacteria and enzymes for alfalfa silage. Journal of Dairy Science 1995, 78(3): 565-572.
    132 Shwartz G., Rhoads M.L., VanBaale M.J., Rhoads R.P. and Baumgard L.H., Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. Journal of Dairy Science 2009, 92(3): 935-942.
    133 Spinosa M.R., Braccini T., Ricca E., De Felice M., Morelli L., Pozzi G. and Oggioni M.R., On the fate of ingested Bacillus spores. Research in Microbiology 2000, 151(5): 361-368.
    134 Stein D.R., Allen D.T., Perry E.B., Bruner J.C., Gates K.W., Rehberger T.G., Mertz K., Jones D. and Spicer L.J., Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. Journal of Dairy Science 2006, 89(1): 111-125.
    135 Sullivan H.M. and Martin S.A., Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation. Journal of Dairy Science 1999, 82(9): 2011-2016.
    136 Sun P., Wang J.Q. and Zhang H.T., Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. Journal of Dairy Science 2010, 93(12): 5851-5855.
    137 Sun P., Wang J.Q. and Zhang H.T., Effects of supplementation of Bacillus subtilis natto Na and N1 strains on rumen development in dairy calves. Animal Feed Science and Technology 2011.
    138 Swinney-Floyd D., Gardiner B.A., Owens F.N., Rehberger T. and Parrott T., Effect of inoculation with either strain P-63 alone or in combination with Lactobacillus acidophilus LA53545 on performance of feedlot cattle. Journal of Animal Science 1999, 77(Suppl 1): 77.
    139 Systems D.R.M. ( 2011). "DHI Glossary." from http://www.drms.org/PDF/materials/glossary.pdf.
    140 Talamo F., D'Ambrosio C., Arena S., Del Vecchio P., Ledda L., Zehender G., Ferrara L. and Scaloni A., Proteins from bovine tissues and biological fluids: defining a reference electrophoresis map for liver, kidney, muscle, plasma and red blood cells. Proteomics 2003, 3(4): 440-460.
    141 Tam N.K., Uyen N.Q., Hong H.A., Duc le H., Hoa T.T., Serra C.R., Henriques A.O. and Cutting S.M., The intestinal life cycle of Bacillus subtilis and close relatives. Journal of Bacteriology 2006, 188(7): 2692-2700.
    142 Thrune M., Bach A., Ruiz-Moreno M., Stern M.D. and Linn J.G., Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows: Yeast supplementation on rumen fermentation. Livestock Science 2009, 124(1-3): 261-265.
    143 Van Soest P.J., Robertson J.B. and Lewis B.A., Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 1991, 74(10): 3583-3597.
    144 Wang Z., Eastridge M.L. and Qiu X., Effects of forage neutral detergent fiber and yeast culture on performance of cows during early lactation. Journal of Dairy Science 2001, 84(1): 204-212.
    145 Wehnes C.A., Novak K.N., Patskevich V., Shields D.R., Coalson J.A., Smith A.H., Davis M.E. and Rehberger T.G., Benefits of supplementation of an electrolyte scour treatment with a bacillus-based direct-fed microbial for calves. Probiotics and Antimicrobial Proteins 2009, 1(1): 36-44.
    146 Weinberg Z.G., Muck R.E. and Weimer P.J., The survival of silage inoculant lactic acid bacteria in rumen fluid. Journal of Applied Microbiology 2003, 94(6): 1066-1071.
    147 Weiss W.P., Wyatt D.J. and McKelvey T.R., Effect of feeding propionibacteria on milk production by early lactation dairy cows. Journal of Dairy Science 2008, 91(2): 646-652.
    148 West J.W., Nutritional strategies for managing the heat-stressed dairy cow. Journal of Animal Science 1999, 77(Suppl. 2): 21-35.
    149 Whitley N.C., Cazac D., Rude B.J., Jackson-O'Brien D. and Parveen S., Use of a commercial probiotic supplement in meat goats. Journal of Animal Science 2009, 87(2): 723-728.
    150 Wiedmeier R.D., Arambel M.J. and Walters J.L., Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. Journal of Dairy Science 1987, 70(10): 2063-2068.
    151 Wilkins M.R., Sanchez J.C., Williams K.L. and Hochstrasser D.F., Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 1996, 17(5): 830-838.
    152 Yoon I.K. and Stern M.D., Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: A review. Asian-Australasian Journal of Animal Sciences 1995, 8: 533-555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700