重载交通高速公路连续纵坡交通安全保障关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国交通建设与公路运输事业的快速发展,建设重心开始从平原微丘区向山岭重丘区转变,载重交通比例日益增大,致使山区高速公路交通安全问题十分严峻。因此,深入研究载重汽车在连续纵坡路段的运行特征,考虑并评估路段潜在安全风险,建立连续纵坡路段安全保障体系,不仅是山区高速公路运营安全的基础性课题,也是实现公路交通科学、可持续发展的迫切需要。
     以国内外研究现状分析为基础,界定了高速公路连续纵坡的明确含义,研究了基于运行速度的连续上坡理想坡长。从调查路段、观测地点、主导车型、调查时段等四个方面确定了高速公路连续纵坡交通安全调查方案,选择载重50t欧曼六轴载重货车做为实验车型,开展了运行速度和刹车毂温度的实测调查。
     通过分析高速公路连续下坡路段交通事故的发生机理,确定了运行速度预测模型和车毂温度预测模型等基础模型。以六轴载重货车的运行速度为因变量,选用连续下坡路段的累计坡长l和平均纵坡i作为自变量,基于多元线性回归理论,分别构建了平均纵坡i≤2%、i>2%两种路段情况下的运行速度预测模型。采用拟合优度检验和回归方程显著性检验,检查了残差分布情况,结果表明符合正态假设的要求,并采用实测数据进一步验证,验证了模型的准确性和可行性。
     根据能量守恒定律,通过计算连续下坡路段汽车能量转换等式,引入坡度与坡长等自变量因素,建立了坡度、坡长与刹车毂温度关系模型。以内蒙某高速公路连续下坡路段K346+548-K334+637段为实测刹车毂温度数据为基础,对比分析了预测模型理论温度值。通过拟合刹车毂温度预测值、实测值的分布关系,建立了修正后的连续下坡路段刹车毂温度预测模型。
     以汽车受力分析为基础,考虑驱动平衡状态下的汽车运动方程,构建了基于性能的载重汽车运行速度预测模型,提出了综合反映各线性要素、路面情况、海拔以及风速等因素综合影响下的载重汽车运行速度预测方法,基于Visual Basic开发了运行速度预测系统。以内蒙某高速公路K000+000-K265+000段为例,进行了系统的实例应用。
     在现场调研和资料收集的基础上,深入分析了平面线形、纵断面线形、弯坡组合要素等道路线形与交通安全的关系,并探讨了交通组成及交通量对交通安全的影响,确定了高速公路交通安全的主要影响因素。根据重载汽车特性,考虑运用运行速度和刹车毂温度的二维影响,提出了高速公路连续下坡危险度分级方法,明确了危险度等级的划分标准,给出不同危险度等级对应的量化坡长。以国内八条高速公路的交通事故统计资料为基础,运用SPSS数据统计分析软件,分析了亿万车公里事故率与平均速度、速度标准差的相关性,构建了高速公路连续上坡风险评价模型,阐述了的具体评价流程和步骤。
     通过现场调查与资料收集,分析了避险车道、标志标线、减速带、车道限制等既有高速公路交通安全设施的适用性。阐述了高速公路连续下坡安全保障方案的设计原则,提出了连续下坡安全保障方案理论分析与建设实施两阶段实施过程,并详细论述了诱导设施、警示设施、强制措施及避险车道的设置方法。考虑保障高速公路连续上坡通行能力及交通安全,提出了连续上坡路段限制措施的设置方法,结合大型车特性探讨了爬坡车道的布置条件和几何尺寸。
     重载交通高速公路连续纵坡交通安全保障关键技术研究采用现场调查、数学建模、理论分析、工程验证相结合的研究方法,提高了连续纵坡路段高速公路运营安全水平。不仅对山区高速公路建设具有重要的实践意义,对保障重大工程交通安全、交通建设和谐发展也有着重要的理论意义。
With the rapid development of China's transport construction and road transportationindustry, the focus of contribution began to be shifted from the plains to the mountains and theproportion of truck traffic increased gradually, which led to the phenomeonon that trafficsafety problem of highway in mountains became more and more serious. Therefore,in-depth study on operating characteristics of trucks with heavy loads in a continuouslongitudinal sections, consideration and evaluation of sections with potential security risks,and the establishment of a continuous longitudinal sections security system, are not only basictopics on operational safety issues of highway in mountains, but also the urgent need toachieve sustainable development of road transport science.
     Based on analysis of research status from domestic and foreign, a clear meaning ofcontinuous longitudinal section on expressway was given, and ideal slope length ofcontinuous uphill based on operating speed was also studied. Survey sections, observationsites, dominant model and survey period were chosen in the survey program of traffic safetyof continuous longitudinal sections on expressway, trucks with50t load and Auman six-axiswere selected as text models, and measured survey of operating speed and brake drumtemperature were launched.
     Through the analysis of the mechanisms of trafic accidents on continuous downhillsections on expressway, basic models such as the operating speed prediction model and thebrake drum temperature prediction model were determined. Taking the operating speed oftrucks with six-axis as the dependent variable, and the slope length l and averagelongitudinal slope i of continuous downhill sections as independent variables, two kinds ofoperating speed prediction models under the condition of i≤2%and i>2%were builtrespectively. Goodness of fit test and regression test of significance were used to check thedistribution of the residuals, which showed that the result met the requirements of normalityassumption. Further validation with measured datas was also conducted to verify the accuracyand feasibility of the model.
     According to the law of conservation of energy, through the calculation of the energyconversion equation of trucks on continuous downhill sections, independent variables factorssuch as slope and slope length were introduced, relational model of slope, slope length andbrake drum temperature was established. Based on the measured temperature data taken fromcontinuous downhill section K346+548~K334+637on a expressway In Inner Mongolia, thetheory temperature value of the predictive model were analysed by comparison. By fitting thedistribution of relationship between brake drum temperature predictive value and measuredvalue, revised brake hub temperature prediction model on continuous downhill sections wasestablished.
     Based on stress analysis of trucks, considering the equation of truck motion under thecondition of driven equilibrium, performance-based operating speed prediction model oftrucks was constructed, which gave a comprehensive reflection of combined effects of thelinear elements, road conditions, altitude and wind speed and other factors. Operating speed prediction system was also developed based on Visual Basic. Taking K000+000-K265+000onan expressway in Inner Mongoli as an example, an instance of the application of the systemwere conducted.
     Based on the on-spot investigation and data collection, the relationship of road alignmentsuch as horizontal alignment, vertical alignment, combining elements of curved slope andtraffic safety were analyzed, the effect of composition of traffic and the volume of traffic onthe traffic safety were discussed, and finally the main influence factors of traffic safety ofexpressway was found out. According to the characteristics of heavy vehicles, considering theuse of two-dimensional effects of operating speed and brake drum temperature,method ofrisk level classification of continuous downhill section on expressway was proposed, theclassification standard of risk level was given, and at the same time, different quantitativelengths corresponding to different risk levels were figured out.On the base of the statisticaldata of the traffic accidents of eight domestic expressways, using SPSS as the statisticalanalysis software, the correlation of hundreds of millions car accident rate per kilometer andaverage velocity、standard deviation of velocity was analyzed, and finally risk assessmentmodel of continuous uphill sections of expressway was established, specific evaluationprocess and steps were expatiated.
     With on-spot investigation and data collection, the applicability of traffic safetyfacilities on expressway such as the emergency lane, signs and markings, speed hump, lanerestrictions was analyzed. With the elaboration of the design principles of security ensuringscheme for continuous downhill sections of expressway was described, the two phase processof the scheme theory security analysis and implementation of construction of the continuousdownhill sections were put forward, and the setting method of induced facilities, warningfacilities, and emergency lane compulsory measures were discussed. Considering theassurance of traffic capacity and traffic safety of continuous uphill sections on expressway, asetting method of restrictive measures of continuous uphill sections was put forward, settingrequirement and geometric size of the climbing lane were also discussed combining with thecharacteristics of large vehicles.
     The research method combining site investigation, mathematical modeling, theoreticalanalysis and engineering verification was used in the research on the key technology of trafficsafety assurance of continuous longitudinal sections on expressway with heavy traffic, and thesafety level of continuous longitudinal sections on expressway operation was improved,which has not only an important practical influence on the construction of expressway inmountain area, but also an significant theoretical effect on the assurance of the traffic safety ofimportant project and harmonious development of traffic construction。
引文
[1]中华人民共和国交通部.2010年道路运输发展报告[C].北京:人民交通出版社.
    [2]陈荫三,李彬,肖润谋.2010年中国高速公路网运输状态[J].交通运输工程学报,2011,(06):68-73.
    [3]周磊.连续下坡路段汽车行驶特性与制动器制动性能研究[J].长安大学,2007.
    [4]周荣贵.公路纵坡坡度与坡长限制的研究[D].北京:北京工业大学,2004.4.
    [5] KARLAFTIS M G, GOLIAS I.Effects of Road Geometry and Traffic Volumes onRoadway Accident Rates[J].Accident Analysis&Prevention,2002,34(3):357-365.
    [6] HARWOOD D W,COUNCIL F M,HAUER E,et al.Prediction of the Expected SafetyPerformance of Rural TWO-lane Highways[R].Mclcan;Federal HighwayAdministration,2000.
    [7] YUAN Wei,FU Rui,GUO Ying-shi,et al.Influences of Longitudinal Gradient on TrafficAccident Rate Considering Length of Downgrate[J].journal of Highway andTransportation Research and Development,2008,25(5):130-135.
    [8]李杰,陈学武,王炜.交通冲突严重度模糊评价方法[J].交通运输系统工程与信息,2008.
    [9]汪亚桥.山区高速公路线形综合评价研究[D].哈尔滨:哈尔滨工业大学,2010.7
    [10]梁夏,郭忠印,方守恩.道路线形与道路安全性关系的统计分析[J].同济大学学报,2002,30(2):203-206.
    [11]杨少伟.道路勘测设计.北京:人民交通出版社,2004,24-39.
    [12] Kay F, Mark D W Omer T, et al. Alternative Design Consistency Rating Methods forTwo-Lane Rural Highways. Washington D. C.:Federal Highway Administration,2000,12-16
    [13]杨少伟,朱照宏.道路勘测设计[M].北京:人民交通出版社,2008
    [14]范振宇,张剑飞.运行车速概念及在我国线形设计中的应用研究[J].山西交通科技.2001,4(2):8~10
    [15]郑安文,牛倬民.高等级公路运行速度与设计车速匹配研究[J].武汉科技大学学报(自然科学版).2003.9:273~275
    [16]范振宇,张剑飞.公路运行车速测算模型的研究和标定[J].中国公路学报,2002,15(1):107-109.,
    [17]许金良,胡圣能,杨宏志.基于曲率变化率的运行速度模型[J].长安大学学报,2011,9
    [18] JTG/T B05-2004.公路项目安全性评价指南[S].北京:人民交通出版社,2004.9
    [19]戈若愚,陈飞,左仁广.长大下坡路段重型车辆刹车毂温度模型研究。
    [20]张建军.连续长大下坡路段避险车道设置原则研究[D]:合肥工业大学,2005
    [21]袁伟.鼓式制动器温升计算模型及其应用研究[D]:长安大学,2003.
    [22]肖宁,田晨.避险车道设置的必要性研究[J].北方交通,2008,(8):157-159.
    [23]陈兴旺.鼓式制动器制动温度场的研究[J].长安大学,2006.
    [24] GeometrieDesignGuide[S].SouthAfrieanNationalROadsAgnlcy.2003:8-34。
    [25] JTJ074—94,高速公路交通安全设施设计及施工技术规范[S].北京:人民交通出版社,1994
    [26] John L.Moore. Cost-benefit analysis: Issues in its use in regulation.[A]CRSreport forcongress.June,1995.
    [27]张小东,高建平,孔令旗.高速公路连续下坡路段行车安全分析[J].山东交通科技,2005,17~19
    [28]周荣贵.公路纵坡坡度与坡长限制的研究[D].北京:北京工业大学,2004.4
    [29]张建军.连续长大下坡路段避险车道设置原则研究[D]合肥工业大学.2005.
    [30]李丹丹.高速公路减速设施的设置与应用[J].长安大学,2011.
    [31]王磊.山区公路陡坡路段增设爬坡车道的研究[J].山东大学,2010.
    [32] Wooldbridge, M. D., K., Green, P.,&Fitzpatrick, K., Comparison of driver visualdemand in test truck, simulator, and on-road environments[J].Proc.,79th Annual Meeting,Transportation Research Board,Washington,D.C.,2000
    [33]郭孔辉.稳态条件下用车车辆动力学分析的轮胎模型[J].汽车工程,1998,20(3):129-134.
    [34]杜博英.运行速度与道路线形[D].同济大学硕士论文.2003.03
    [35]符锌砂.理论运行速度与公路线形设计及评价方法研究[D].西安:长安大学,2008.
    [36]范振宇,张剑飞.公路运行车速测算模型的研究和标定[J].中国公路学报,2002,15(1):107-109.
    [37]符锌砂,高捷.高速公路纵坡路段货车运行车速预测[J].公路交通科技,2008,25(6):139-143.
    [38]许丽明.长大上坡路段车辆对路面动作用力的研究[D][D].西安:长安大学,2012.
    [39]周荣贵,孙家凤,吴万阳,等.高速公路纵坡坡度与运行速度的关系[J].公路交通科技,2003,20(4):34-37.
    [40]徐洪涛.基于速度一致性的高速公路分流区安全服务水平研究[D].哈尔滨:哈尔滨工业大学.2011.6
    [41] Douglas W Harwood. Review of truck characteristics as factors in roadway design[M]:Transportation Research Board,2003
    [42]裴玉龙,邢恩辉.高等级公路纵坡的坡度,坡长限制分析[J].哈尔滨工业大学学报,2005,37(5):629-632.
    [43]李英帅.基于车路耦合安全行驶机理的山区典型道路安全设计理论研究[D].重庆交通大学,2012.
    [44] Phillip Jordan, ITE and Road Safety Audit-A Partnership for Traffic Safety, ITE JournalMarch1999.
    [45]张小东,高建平,孔令旗.高速公路连续下坡路段行车安全分析[J].山东交通科技,2005,17~19
    [46]周荣贵.公路纵坡坡度与坡长限制的研究[D].北京:北京工业大学,2004.4
    [47]郑柯,荣建,任福田.高速公路平曲线半径与车辆行驶速度之间的关系分析[J].公路交通科技,2003,20(2):29-30.
    [48]任福田.交通工程导论[M].北京:建筑工业出版社,1987:95-98
    [49]王建军.交通调查与分析[M].北京:人民交通出版社,2003
    [50]中华人民共和国交通部.公路路线设计规范(JTG D20-2006)[S].北京:人民交通出版社,2006.9
    [51]吴文斌.互通立交匝道运行速度预测模型研究[D]:北京工业大学,2009
    [52]张小东,高建平,孔令旗.高速公路连续下坡路段行车安全分析[J].山东交通科技,2005,17~19
    [53]岳晓晗.长下坡路段交通安全分析与评价[D]:长安大学,2009
    [54]袁伟.鼓式制动器温升计算模型及其应用研究[D]:长安大学,2003
    [55]杨少伟.道路勘测设计[M].北京:人民交通出版社,2004
    [56]郭腾峰,刘建蓓,汪双杰.基于运行速度特征的公路平曲线设计半径推荐取值研究[J].中国公路学报,2010(S1):8-12
    [57]伍剑奇,符锌砂,王晓飞.基于平面线形运行速度预测模型研究[J].公路工程,2009(04):89-93
    [58]王晓原,张敬磊,邢丽.基于人-车-路-环境综合计算的驾驶员期望车速[J].计算机工程与应用,2012(1):223-227
    [59]李可强,张振秋,董平. SPSS统计软件在药学研究中的应用——相关分析与回归分析[J].中医药学刊,2006(7):1300-1301
    [60]石森昌.使用SPSS进行回归分析应注意的一个问题[J].统计教育,2006(08):16-17
    [61]张文璋.实用现代统计分析方法与SPSS应用[M].北京市:中国统计出版社,2003
    [62]苏金明.统计软件SPSS12.0for Windows应用及开发指南[M].北京:电子工业出版社,2004
    [63]佘国辉.汽车制动性能的热衰退[J].中南汽车运输,1997(12)
    [64]任礼行,刘青,张艾谦,管迪华.轮胎滚动阻力测量与分析[J].汽车工程,2000(05):316-319
    [65]王登祥.轮胎滚动阻力文献述评[J].轮胎工业,1997(12):707-712
    [66]司徒莉英.考虑制动温升的长下坡段驾驶员视觉控速设计方法[D]:武汉理工大学,2010
    [67]栗庆耀.公路线形评价与运行速度预测研究[D]:西南交通大学,2007
    [68]王丽金.高速公路限速与运行速度的关系研究[D]:北京工业大学,2010
    [69] Krammes R A, Bracken R Q, Shafer M A, et al. Horizontal Alignment DesignConsistency for Rural Two一Lane Highways. Washington,D.C.: U.S. Department ofTransportation Association of Canada,1999,45-61
    [70]杨少伟,许金良,李伟,陈军.路线设计中车辆行驶速度预测模型[J].长安大学学报(自然版),2003,(3):51-55
    [71]吴义虎,武志平.基于平均速度和车速标准差的路段安全评价方法[J].公路交通科技,2008,Vol.25(3):139-142
    [72] Leisch J E, Leich J P. New Concepts in Design Speed Application. WashingtonD.C.:TRB National Research Council,1977,138-147
    [73] Garber, N. J., and R. Gadiraju. Factors Affecting Speed Variance and Its Influence onAccidents. AAA Foundation for Traffic Safety, Falls Church, Val.,1998.
    [74]姜祖啸,基于TruckSim的重型卡车整车动力学建模与仿真分析[D],吉林大学硕士论文,2009
    [75]孙璐,邓学钧,速度与车辆动态特性对于车路相互作用的影响[J],土木工程学报,1997(06)
    [76]许金良,叶亚丽,苏英平,杨宏志,双车道二级公路纵坡段车辆运行速度预测模型[J],中国公路学报,2008(06)
    [77]美国各州公路与运输工作者协会.公路与城市高速公路几何设计[M].西安:西北工业大学出版社,1988[28]
    [78]美国交通研究委员会.道路通行能力手册[M],任福田等译.北京:建筑工业出版社,2000
    [79]杜博英,运行速度与道路线形[D],同济大学硕士论文.2003.03
    [80]黄进,方守恩.交互式高速公路安全设计模型IHSDM与事故预测模型APM[J].交通与计算机,2202,(5):32~35
    [81]廖明军,王杨.高速公路纵坡自由流运行速度特性及模型.北华大学学报(自然科学版),2005,6(5):455-459
    [82]董德元,杨节等.试验研究德数理统计方法[M].中国计量出版社,1987.12
    [83]刘卫铮.基于大车混入率的交通流状态安全性研究[D].河北工业大学,2007.
    [84]潘晓东,吕明,杨轸.山区公路爬坡车道的设置条件与方法研究[J].城市公用事业,2007.06
    [85]郭忠印,方守恩.道路安全工程[M].北京:人民交通出版社,2003.9.
    [86] Qiao J.G., Rong J.,Ren F.T.,et al.2006. Research on horizontal curves radius based ondriver humanity on two-lane freeway in Chinese mountain areas. Journal of BeijingUniversity of Technology,32(1):33-37.
    [87]钱宇彬,蔡家明.山区高速公路交通事故的分析和预防措施[J].上海工程技术大学学报,2001,15(2):145-149.
    [88]陈斌.交通安全的道路因素分析[J].广西交通科技,2002,27(102):19~22.
    [89] Pei YL,Meng XH. Research of Traffic Accidents on Shen-Da Motorway. TrafficCongestion and Traffic Safety in the21st Century,1997:305-311.
    [90]郭子珍,蒋理兴,石晶.线路坐标计算的通用模型[J].测绘科学技术学报,2006,23(4):242-245.
    [91]裴玉龙,程国柱.高速公路运行车速调查及限制车速问题研究.哈尔滨工业大学学报,2003,35(2):168-172.
    [92] Shively T.S., Kockelman K.,Damien P. A Bayesian semi-parametric model to estimaterelationships between crash counts and roadway characteristics. Transportation ResearchPart B: Methodological,2010,44(5):699-715.
    [93] Wang, H.r.,He,Y.L., Sun, X.D.,et al. Effects of geometric features on rear-end crashincidence on mountainous two-lane freeway. Proceedings of the2nd InternationalConference on Transportation Engineering,2009,pp.1444-1450.
    [94]赵一飞.高速公路交通安全若干问题研究[D].西安:长安大学,2009:96-98.
    [95] Baruya A. Speed-accident relationships on different kinds of Euro-pean roads[R].London: Transportation Research Laboratory,1998.
    [96] Yau K K W, Lo H P,Fung S H H. Multiple-vehicle Traffic Accidents in HongKong[J].Accident Analysis&Prevention,2006,38(6):1157-116.
    [97]邹健.浅论道路线形设计对交通安全的影响及改善措施[J].公路交通科技,2002,6:42-47.
    [98]高建平,郭忠印基于运行车速的公路线形设计质量评价[J].同济大学学报(自然科学版),2004,(7).
    [99]裴玉龙,马骥.道路交通事故道路条件成因分析及预防对策研究[J].中国公路学报,2003,16(4):77-82.
    [100]刘晓冬.基于公路线形和视距的运行速度云模型初步研究[D].吉林大学,2009年.
    [101]匡艳,王海星.交通环境对交通安全的影响及对策.铁道劳动安全卫生与环保,2005,32(2):63-65.
    [102]裴玉龙,王炜.道路交通事故成因分析及预防对策[M].北京:人民交通出版社,2004.10
    [103]景天然.交通事故与公路条件的关系.同济大学学报,1991,19(3):287一294.
    [104]郑安文,牛倬民.山区高速公路交通事故原因特殊性分析与改进措[J].武汉科技大学学报(自然科学版),2002,25(3):284-287.
    [105]裴玉龙,程国柱.高速公路车速离散性与交通事故的关系及车速管理研究「J].中国公路学报,2004.1.
    [106]裴玉龙.道路交通安全[M].北京:人民交通出版社,2005.1.
    [107]杜殿虎.山区高速公路交通安全保障理论与方法[D].长安大学,2011.
    [108]郭应时,袁伟,付锐.道路交通安全评价指标特性分析[J].公路交通科技,2006,23(5):102-105.
    [109]张建军,连续长大下坡路段避险车道设置原则研究[D]合肥工业大学,2005.
    [110]郑蔚澜.公路避险车道平均阻尼系数的研究[J].公路交通科技,2005,10(2)
    [111]吴京梅.山区避险车道的设置[J].公路,2006,7:105-109
    [112]侯永安.山区公路避险车道分析[J].公路与汽运,2006,4:55-57
    [113] Truck Escape Ramps: Determining the Need and the Location[Z],http://www.usroads.com/journals/rej/9708/re970801.htm,1997-8-10
    [114]孙智勇,高速公路避险车道的安全性评价.第六届交通运输领域国际学术会议
    [C].大连:大连理工大学,2006:
    [115]梁瑞娟,山区高速公路避险车道设计合理性评价[D],长安大学,2012
    [116]陈渤,山区高速公路长大下坡路段避险车道设计方法研究,[D]西南交通大学,2007
    [117]张小剑;高速公路紧急避险车道的设计,[J]铁道勘测与设计,2005
    [118]刘义清,王文杰,徐国栋.山区长下坡路段避险车道设置方法[J].公路与汽运,2006,5:43-45
    [119]蒋枫,陈红,周立友.公路紧急避险车道设置方案研究[A].第一届(2004)同济交通论坛-城市交通系统设计学术会议文集[C].上海:同济大学,2004:228-233
    [120] GB5768—1999,道路交通标志标线[S].北京:中国标准出版社,1999
    [121]石茂清.道路交通安全设施设计研究[D].成都:西南交通大学,2005
    [122]易威,高速公路道路安全保障设施安全性评价研究[D].华南理工大学,2008
    [123]林煌,.连续长大下坡路段安全保障系统研究[D].重庆交通大学.2012.
    [124]石茂清,道路交通安全设施设计研究[D].西南交通大学,2005.:
    [125]鲍兴建,孙小端,贺玉龙;高速公路减速标线应用效果研究[J]交通标准化,2010(Z2),
    [126]吴华金;横断山区高速公路运营安全保障模式及其实现研究[D].长安大学.2009.
    [127]赵一飞,高速公路交通安全若干问题研究[D]长安大学,2009
    [128]边浩毅,侯德藻,山区公路桥梁护栏安全评估方法研究[J]公路交通科技(应用技术版),2013
    [129]彭瀑,在役高速公路交通安全设施适应性分析,[D]长安大学
    [130]张建军,连续长大下坡路段避险车道设置原则研究[D]合肥工业大学
    [131]中华人民共和国交通部.公路路线设计规范[S].北京:人民交通出版社,2006]
    [132]中华人民共和国交通部.公路工程技术标准(JTG B01-2003)[S].北京:人民交通出版社,2004
    [133] Douglas W Harwood. Review of truck characteristics as factors in roadway design[M]:Transportation Research Board,2003
    [134]蔡晓萌.基于仿真的高速公路货车影响的改善措施研究[D].湖南大学,2010
    [135]叶曾.高速公路货车车道限制仿真模型研究[D].长安大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700