基于MMS的三峡库区森林流域暴雨水文过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林植被究竟在多大程度上影响洪水是急待解决的科学问题。本文结合国家自然科学基金“三峡库区以流域为单元森林植被对洪水影响研究”,从主要森林植物群落对降水、径流、入渗等水文环节的影响作用研究着手,构建、拟合和验证适合三峡库区森林流域的分布式暴雨水文模型(PRMS Storm)。以四面山响水溪两个嵌套流域为例,通过模型拟合和参数率定,以检验模型模拟精度;在此基础上,总结归纳得到三峡库区森林流域模型主要水文参数数值,为该模型推广到不同尺度提供参数依据及支撑;利用该模型模拟不同情景下森林植被对洪水的影响作用,为进一步揭示三峡库区流域森林植被的生态水文过程提供研究基础。
     以MMS(模块化模型系统)为基础,应用ArcGIS等手段,结合定位观测和实验研究,构建了具有物理基础的流域分布式暴雨水文模型。
     通过野外调查、观测,计算得到四面山响水溪森林流域主要参数数值。对于土壤最大滞留贮水量(非毛管贮水量),计算1m深度得到该值最大为尖杉、马尾松阔叶林混交林,最小为荒草地;土壤入渗主要参数水力传导度kpar在0.6~6.3mm/min之间,最大值为楠竹林,最小为马尾松阔叶混交林;林冠截留量与林外降雨量表现出明显的幂函数关系;典型林分枯落物持水率最大为柳杉林,最低为板栗林;林地糙率系数n值介于0.0182~0.2575之间;利用地理信息系统获取基本地形数据参数,将响水溪流域划分为16条河网,30个水文响应单元(HRU)。
     两个嵌套流域进行拟合验证后,得到:1号小流域Nash确定性系数为0.738,洪水预报合格率达80%;2号小流域Nash确定性系数为0.697,洪水预报合格率达83.3%,两个流域模拟均得到较高的精度。
     总结归纳获得三峡库区森林流域模型主要参数数值。库区土壤最大滞留贮水量最大值为黄棕壤土壤,最小值为南方水稻土;三峡库区5类主要森林土壤入渗kpar、psp、rgf三个参数数值差异较大,水力传导度kpar均值大小顺序为:黄棕壤>紫色土>石灰土>水稻土>黄壤,而psp和rgf两个参数值则均以黄壤最大;得到库区4种主要森林类型林冠截留估算方程,各方程相关系数在0.60~0.81之间;库区几种主要植被类型枯落物持水量最大为针阔混交林,最小为竹林;通过灰色关联分析得到,影响糙率系数各指标因子的关联度顺序为0~20cm土层容重(0.68)、土壤总孔隙度(0.66)、非毛管孔隙度(0.64)、>2mm石砾含量(0.61)、坡度(0.48)及林下枯落物量(0.44)。
     在此基础上,模拟森林覆盖率变化及不同森林群落的情景下森林植被对洪水过程的影响得到:无植被及森林覆盖率在20%、40%、60%下,实测12场降雨产生洪峰的平均值分别为0.294mm/min、0.248mm/min、0.214mm/min和0.167mm/min;特大暴雨情景下,洪峰分别为1.160mm/min、1.002mm/min、0.849mm/min和0.659mm/min。同时可知在同一森林覆盖率下,森林的不同分布位置削减峰值的作用也不相同,即在流域内低海拔处造林,削减洪峰效果更明显;模拟实测的12场降雨得到无植被条件下的径流总量均值分别为20%、40%、60%以及现状情况下的1.13、1.26、1.45和2.47倍;而特大暴雨情景下产生的径流总量分别为森林覆盖率在20%、40%、60%以及现状情况下的1.09、1.17、1.29和1.61倍。
     根据三峡库区流域三种森林群落配置类型,即针阔混交林型、常绿阔叶林型和综合配置型(针阔混交林,常绿阔叶林和灌木林综合配置),模拟各自的洪峰及径流量,可得出针阔混交林型和综合配置型的作用要好于阔叶混交林型,而针阔混交林型的削减洪峰和缓解洪水流量作用最佳。但由于综合配置型更符合营林实际情况,建议选用此配置类型。
In which extent that forest vegetation affect flooding is a scientific problem still need to be solved. The study on storm event hydrological processes in the Three Gorges Reservoir watershed based on MMS (Modular Modeling System) sponsored by national natural science foundation program-The forest vegetation impacts on flooding in the watershed of the Three Gorges Reservoir- is been done from the hydrological processes such as the effect of forest vegetation on precipitation, runoff and infiltration etc.. A storm event distributed hydrological model (PRMS_ Storm) with physical mechanism is built and the model is calibrated and validated by the data of the Xiangshuixi forest watershed of Simian Mountain. According to the results of case study, the values of main parameters of the Three Gorges Reservoir Region are work out in order to do further study for the different scale. And the storm event process in the different vegetation cover scenarios is simulated and could be useful for discovering forest watershed eco-hydrological process in the Three Gorges Reservoir Region.
    First of all, the storm event distributed hydrological model (PRMS_Storm) with physical mechanism is built based on MMS (Modular Modeling System) with ArcGIS tools.
    Main model parameters of Xiangshuixi forest watershed in Simian Mountain are acquired by field investigation, plot observation and experiments. In which, the maximum value of soil non-capillary moisture capacity is in the mixed forest of Cephalotaxus fortunei Hook, with Pinus massoniana and broad-leaved trees and the minimum one is in the wild land; the amount of hydraulic conductivity varies from 0.6 to 6.3mm/min and the maximum is Phyllostachys pubescens, the minimum is in the mixed forest of Pinus massoniana and broad-leaved trees; the maximum of water holding capacity of litters is Cryptpomeria fortunei Hooibrenk forest, the minimum is in the Castanea mollissima forest stand; the surface roughness coefficient varies from 0.0182 to 0.2575 and results also show that there is typical power function relationship between interception and rainfall. 16 channel networks and 30 hydrologic response units in Xiang shuixi watershed are obtained by using the GIS tools.
    The model-fit efficiency is 0.738 and over 80% of result is qualified in the first watershed. And in the second watershed, the model-fit efficiency is 0.697 and over 83.3% of result is qualified. Accordingly, the simulation precisions of two nested watershed are high.
    Main model parameters in the Three Gorges Reservoir Areas are gained in terms of soil map, topographical map and land use map. In which, the maximum of soil non-capillary moisture capacity is in the yellow brown soil and the minimum is in the paddy soil. And in 5 main forest types of the Three Gorges Reservoir Area, the amounts of soil infiltration parameters of kpar, psp and rgf have great difference. The mean of kpar from high to low is as follows: yellow brown soil, purple soil, lime stone soil, paddy soil and yellow soil, but the maximum of psp and rgf are all in the yellow soil. Furthermore, the correlation coefficients of canopy interception equation of 4 main forests are between 0.60 and 0.81; the maximum of water holding capacity of litters is coniferous and broad-leaved mixed forest, the minimum is in the bamboo forest stand. At last, the amount of correlation degree affecting roughness by using the grey correlation analysis method is calculated, that is: soil density in 0~20cm (0.68), soil total porosity (0.66), soil non-capillary porosity (0.64), the gravel content greater than 2mm (0.61), slope (0.48) and litter (0.44).
    The storm event processes under the different forest coverage and forest community scenarios are simulated, the results show that: when forest coverage is 0, 20 percent, 40 percent and 60 percent, the corresponding average peak flow under 12 storm events are 0.294 mm/min, 0.248 mm/min, 0.214 mm/min and 0.167 mm/min, but under a 100-year storm recurrence scenario, the corresponding average peaks flood are 1.16 mm/min, 1.002 mm/min, 0.849mm/min and 0.659mm/min. The result also suggested that peak flow reduction in the different forest distribution is different even in the same forest coverage, and it means that effect on reducing peak flow is more obvious when forest vegetation is distributed in low elevation of the watershed. The amount of average runoff of 12 measuring storms under no vegetation condition is 1.13 times, 1.26 times, 1.45 times and 2.47 times of those forest coverage is 0, 20 percent, 40 percent and 60 percent and current condition, and runoff in 100-year recurrence storm event is 1.09 times, 1.17 times, 1.29 times and 1.61 times.
    The peak flow and runoff of three forest community spatial pattern scenarios which are mixed conifer-broadleaf forest type, broadleaf forest type, and synthetic arrange type (mixed conifer-broadleaf forest, broadleaf forest and shrub forest) in the Three Gorges Reservoir Areas are simulated, the results indicated that the reduction effect on peakflow of mixed conifer-broadleaf forest type and general arrange type are better than broadleaf forest type. At the same time, mixed conifer-broadleaf forest type is the best for reducing peakflow in the study region and the synthetic arrange type is selected considering forestation actual situation.
引文
[1] 鲍文,包维楷,何丙辉,丁德蓉.岷江上游油松人工林对降水的截留分配效应[J],北京林业大学学报,2004,26(5):10-16.
    [2] 陈凤琴,石辉.缙云山常绿阔叶林土壤大孔隙与入渗性能关系初探[J],西南师范大学学报,2005(2):350-353.
    [3] 陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响[J],农业工程学报,2006,22(1):44-47.
    [4] 陈丽华等.森林水文研究.林业译丛[M],北京:中国林业出版社,1989.
    [5] 陈仁升,康尔泗,杨建平,张济世.水文模型研究综述[J].中国沙漠,2003,23(3):221-229.
    [6] 陈引珍,何凡,张洪江,温熙胜.缙云山区影响林冠截留量因素的初步分析[J],中国水土保持科学,2005(3):69-72.
    [7] 程根伟,余新晓,赵玉涛,周杨明,罗辑.贡嘎山亚高山森林带蒸散特征模拟研究[J],北京林业大学学报,2003,25(1):23-27.
    [8] 程根伟,余新晓,赵玉涛.山地森林生态系统水文循环与数学模拟[M]北京:科学出版社,2004.
    [10] 程金花,张洪江,史玉虎,潘磊,祁生林,程云,何凡.三峡库区几种林下枯落物的水文作用[J],北京林业大学学报,2003(2):8-13.
    [9] 程金花,张洪江,史玉虎.三峡库区花岗岩林地土壤特性与“优先路经”的关系[J],中国水土保持科学,2005(1):97-101.
    [11] 邓慧平,李秀彬,陈军锋,张明,万洪涛.流域土地覆被变化水文效应的模拟[J],地理学报,2003,58(1):53-62.
    [12] 刁一伟,裴铁墦.森林流域生态水文过程动力学机制与模拟研究进展[J],应用生态学报,2004,15(12):2369-2376.
    [13] 杜榕桓,史德明,袁建模等.长江三峡库区水土流失对生态与环境的影响[M],北京:科学出版社,1994.
    [14] 樊军,邵明安,王全九.田间测定土壤导水率的方法研究进展[J],中国水土保持科学,2006(2):114-119.
    [15] 范广州,吕世华,程国栋.气候变化对滦河流域水资源影响的水文模式模拟[J],高原气象,2001,20(2):173-179.
    [16] 郭生练,刘春蓁.大尺度水文模型及其与气候模型的联结耦合研究[J],水利学报,1997(7):37-41.
    [17] 郭生练,熊立华,杨井,彭辉,王金星.分布式流域水文物理模型的应用和检验[J].武汉大学学报(工学版),2001:34 (1):1-6.
    [18] 胡建华,李兰.数学物理方程模型在水文预报中的应用[J],水电能源科学,2001,19(2):11-14.
    [19] 雷瑞德,张仰渠.秦岭林区森林水文效应的研究[A].林业部科技司.中国森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1996,223-233.
    [20] 雷瑞德.秦岭火地塘林区华山松林水源涵养功能的研究[J],西北林学院学报,1984(1):19-33.
    [21] 李文华,何永涛,杨丽韫.森林对径流影响研究与回顾和展望,自然资源学报,2001,11(5):390-406.
    [22] 廖晓勇,陈治谏,刘邵权,王海明.三峡库区小流域土地利用方式对土壤肥力的影响[J].生态环境,2005(1):99-101.
    [23] 刘昌明,曾燕.植被变化对产水量影响的研究,中国水利,2002,(10):112-117.
    [24] 刘昌明,钟骏襄.黄土高原森林对年径流影响的初步研究[J],地理学报,1978,33(2):112-126.
    [25] 刘昌明.21世纪水文科学研究的新问题、新技术、新方法[M].北京:科学出版社,2001.
    [26] 刘春蓁.气候变化对我国水文水资源的可能影响[J],水科学进展,1997,8(3):220-225.
    [27] 刘刚才,林三益,刘淑珍.四川丘陵区常规耕作制下紫色土径流发生特征及其表面流数值模拟[J],水利学报,2002(12):101-108.
    [28] 刘丽娟,咎国盛,葛建平.岷江上游典型流域植被水文效应模拟[J],北京林业大学学报,2004,26(6):19-24.
    [29] 刘世荣,温光远.中国森林生态系统水文生态功能规律[M],北京:中国林业出版社,1996.
    [30] 刘霞,张光灿,李雪蕾,邢先双,赵玫.小流域生态修复过程中不同森林植被土壤入滲与贮水特征[J],水土保持学报,2004(6):1-5.
    [31] 刘新仁.系列化水文模型研究[J].河海大学学报,1997,25(3):7-14.
    [32] 刘卓颖,倪广恒,雷志栋,王玲.黄土高原地区中小尺度分布式水文模型[J],清华大学学报,2006(9):1546-1550.
    [33] 吕俊强.三峡库区生态环境问题的核心—林业生态[J],四川师范师院学报(自然科学版),1998(3):244-248.
    [34] 马良清,张毓锐.重庆地区森林水文作用的初步研究[J],北京林业大学学报,1998(1):14-19.
    [35] 马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [36] 穆宏强,夏军,王中根,分布式流域水文生态模型的理论框架,长江职工大学学报,2003,18(1):38-41.
    [37] 潘维伟.全国森林水文学术讨论会文集[C].北京:测绘出版社,1989.
    [38] 戚隆溪,黄兴法.坡面降雨径流和土壤侵蚀的数值模拟[J],力学学报,1997,29(3):344-348.
    [39] 秦耀东.土壤物理学[M],北京:高等教育出版社,2003.
    [40] 饶良懿.三峡库区理水调洪型防护林空间配置与结构优化技术研究[D].北京:北京林业大学博士论文,2003.
    [41] 任立良.流域数字水文模型[J].河海大学学报,2000,28(4):1-7.
    [42] 芮孝芳.地貌瞬时单位线研究进展[J],水科学进展,1999,10(3):345-350.
    [43] 芮孝芳.利用地形地貌资料确定NASH模型参数数据的研究,水文,1999(3):73-79.
    [44] 沈冰.地表水文有限元模拟[M],西安:西北工业大学出版社,1996.
    [45] 石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J],自然资源学报,2001,16(5):481-486.
    [46] 史玉虎,袁克侃.鄂西三峡库区森林变化对河川径流泥沙的影响[J],北京林业大学学报:1998,20(6):54-58.
    [47] 史玉虎,朱仕豹,熊峰,蔡晟,刘学全,潘磊,陈双田.三峡库区端坊溪小流域的森林水文效益[J],中国水土保持科学,2004(3):17-20.
    [48] 孙凡,冯沈萍.论恢复生态学原理及其在三峡库区退耕还林(草)中的指导作用[J],中国农业科技导报,2001,(1):17-20.
    [49] 田大伦.森林生态系统人为干扰的水文学效应研究[A].刘煊章.森林生态系统定位研究[C].北京:中国林业出版社,1993,187-494.
    [50] 汪有科.林地枯落物抗冲机理研究[J],水土保持学报,1993,7(1):75-80.
    [51] 王兵,崔相慧.从第21届国际林联世界大会看全球“森林与水”研究进展[J],世界林业研究,2001,14(5):1-6.
    [52] 王礼先,解明曙.山地防护林水土保持水文生态效益及其信息系统[M],北京:中国林业出版社,1997.
    [54] 王礼先,张志强.森林植被变化的水文生态效应研究进展,世界林业研究,1998,(6):14-22.
    [53] 王礼先,张志强。干旱地区森林对流域径流的影响[J],自然资源学报,2001,16(5):454-459.
    [55] 王鸣远,王礼先.鄂西长江三峡库区森林集水区拦洪作用分析[J],长江流域资源与环境,1995,4(3).
    [56] 王子义,赵传.三峡库区土壤渗透特性实验研究[J],重庆交通学院学报,2004(6):86-89.
    [57] 王清华,李怀恩,卢科锋,蔡明,李越.森林植被变化对径流及洪水的影响分析[J],水资源与水工程学报,2004,15(2):21-24.
    [58] 王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1):61-65.
    [59] 王秀英,曹文洪,付玲燕,马永.分布式流域产流数学模型的研究[J],水土保持学报,2001,3:38-40.
    [60] 王彦辉,于澎涛,徐德应,赵茂盛.林冠截留降雨模型转化和参数规律的初步研究[J],北京林业大学学报,1998,20(6):25-30.
    [61] 王云琦.三峡库区森林理水调洪机理及空间配置研究[D].北京:北京林业大学博士论文,2006.
    [62] 温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J],林业科学,1995,31(4):289-298.
    [63] 吴长文.北京密云水库水源保护林水土保持效益的研究[D].北京:北京林业大学博士论文,1994.
    [64] 吴钦孝,赵鸿雁,刘向东等.森林集水区水文效应的研究[J],人民黄河,1994,(12):25-27.
    [65] 吴险峰,刘昌明.流域水文模型研究的若干进展望[J],地理科学进展,2002,21(4):341-347.
    [66] 肖文发等.长江三峡库区动植物生态[M],重庆:西南范大学出版社,2000.
    [67] 肖玉保.基于MMS的分布式暴雨水文模型的构建和验证[D].北京:北京林业大学硕 士论文,2004.
    [68] 许炯心.长江上游干支流的水沙变化及其与森林破坏的关系,水利学报,2000,(1):72-80.
    [69] 阎俊华.森林水文学研究进展[J],热带亚热带植物学报,1999,7(4):49-52.
    [70] 杨大三.从'98特大洪水透析长江流域生态环境[J],南京林业大学学报,1998,(2):47-50.
    [71] 杨海龙,朱金兆,齐实,朱国平.三峡库区森林流域林地的地表糙率系数[J],北京林业大学学报,2005(1):38-41.
    [72] 杨立文,石清峰.太行山主要植被枯枝落叶层的水文作用[J],林业科学研究,1997,10(3):281-188.
    [73] 叶爱中,夏军等.黄河流域时变增益分布式水文模型[J],武汉大学学报,2006(4):29-32.
    [74] 于东升,史学正.用Guelph法研究南方低斤缓坡地不同坡位土壤渗透性[J],水土保持通报,2002(1):6-9.
    [75] 于澎涛.分布式水文模型在森林水文学中的应用[J],林业科学研究,2000,13:431-438.
    [76] 于志民,王礼先.水源涵养林效益研究[M]北京:中国林业出版社,1999.
    [77] 于志民,余新晓.水源涵养林效益研究[M],北京:中国林业出版社,1999.
    [79] 余新晓,程根伟,赵玉涛,张志强.森林流域分布式水文模型研究[J],中国水土保持科学,2003,(1):35-49.
    [78] 余新晓,张志强,陈丽华,谢宝元,王礼先等.森林生态水文学[M],北京:中国林业出版社,2004.
    [80] 张春梅,卢玉东,王农.重庆市三峡库区水土流失现状与防治对策[J],水土保持科技情报,2005(3):33-35.
    [81] 张东,张万昌,朱利,朱求安.SWAT分布式流域水文物理模型的改进及应用研究[J],地理科学,2005(4):434-440.
    [82] 张洪江,北原曜.晋西不同林地状况对糙率系数n值影响的研究[J],水土保持通报,1995(2):10-21.
    [83] 张洪江,解明署,杨柳春,张宏玲.长江三峡花岗岩区坡面糙率系数研究[J],水土保持学报,1994(1):33-38.
    [84] 张继光,陈洪松,苏以荣,吴金水,张伟.湿润和干旱条件下喀斯特地区洼地表层土壤水分的空间变异性[J],应用生态学报,2006,17(12):2277-2282.
    [85] 张建云,李纪生等译.水文学手册[M],北京:科学出版社,2002.
    [86] 张文卓,杨志海,张志永,陈玉生,崔鸿侠,袁玉万,朱传忠.三峡库区莲峡河小流域马尾松林冠降雨截留模拟研究[J],华中农业大学学报,2006(3):318-322.
    [87] 张志强,余新晓,赵玉涛,秦永胜.森林对水文过程影响研究进展[J],应用生态学报,2003,14(1):113-116.
    [88] 张志强.森林水文:过程与机制[M].北京:中国环境科学出版社,2002.
    [89] 张治国,张云龙,刘徐师等.林业生态工程学[M],北京:中国林业出版社,1999.
    [90] 赵鸿雁,吴钦孝,刘国彬.森林流域水文及水沙效益研究进展,西北林学院学报,2001,16(4):85-91.
    [91] 赵人俊.流域水文模拟[M],北京:水利电力出版社,1984.
    [92] 赵人俊.流域水文模型参数的客观优选方法[J],水文,1993,4:21-24.
    [93] 赵晓光,吴发启,姚军.人工模拟坡耕地入渗研究[J],土壤侵蚀与水土保持学报,1999(5):39-43.
    [94] 郑远长,裴铁王番.林冠分配降雨过程的模拟与模型[J],林业科学,1996,32(2):85-91.
    [95] 钟祥浩,程根伟.森林植被变化对洪水的影响分析[J],山地学报,2001,19(5):413-417.
    [96] 周晓峰.帽儿山、凉水森林水分循环的研究[A].中国森林生态系统定位研究[M],哈尔滨:东北林业大学出版社,1994.
    [97] 左小平,邓元珍.三峡库区的生态环境状况及保护对策[J],区域经济研究,2002(4):86-87
    [98] Andersen J., Refsgaard J. C.and Jensen K. H... Distributed hydrological modeling of the Senegal River Basin-model construction and validation [J]. Jouranl of Hydrology, 2001, 247:200-214.
    [99] B radford P Wilcox, et al. Hydraulic conductivity in a pinon-juniper woodland: Influence of vegetation [J]. Soil Science Society of America Journal, 2003, 67 (4) : 1243.
    [100] Barlage, M. J. Richards, P. L. SOUSOUNIS PJ. et al. Impacts of climate change and land use change on runoff from a Great Lakes Watershed [J]. Journal of Great Lakes Research, 2002, 28(4):568-582.
    [101] Benven K J. A discussion of distributed modeling [A]. In: Abbott M B, Refsgard J-C eds. Distributed Hydrological Modelling [C]. Kluwer, Dordrech t, 1996. 255-278.
    [102] Beven K. J..Rainfall-RunoffModelling, The Primer [M]. John Wiley & Sons. LTD, 2004.
    [103] Beven KJ. Kirkby MJ. A physically-based, variable contributing area model of basin hydrology [J]. Hydrol. Sci. Bull, 1997, 24 (1) : 43-69.
    [104] Beven KJ. How far can we go in distributed hydrological modeling [J]. Hydrology and Earth System Sciences, 2001, 5(1): Andersen J., Refsgaard J. C.and Jensen K. H.. Distributed hydrological modeling of the Senegal River Basin-model construction and validation [J]. Jouranl of Hydrology 2001,247:200-214.12.
    [105] Beven KJ. Linking parameters across scales: sub - grid parameterizations and scale dependent hydrological models [J]. Hydrological Processes, 1995, 9: 507-526.
    [106] Binley A. M., Beven K. J., Calver A. and Watts L.G...Changing responses in hydrology: assessing the uncertainity in physically based model predictions [J]. Water Resources Research, 1991, 27(6), 1253-1261.
    [107] Bonell M. Progress in the understanding of runoff generation dynamics in forests [J]. Hydrol, 1993, 150:217-275.
    [108] Bonell M. Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale [J]. A meri Water Resour Assoc, 1998, 34 (4) :765-785.
    [109] Bronstert A., NiehoffD. and Burger G.. Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities [J]. Hydrological Process, 2002,16: 509-529.
    [110] Bruijnzeel L A , Wiersum K F. Rainfall interception by a young Acacia Auriculiformis (A. Cunn) plantation forest in west Java, Indonesia : Application of Gash's analytical model [J]. Hydrogeology Processes, 1987, 1:309-319.
    [111] Buttle JM, Creed IF and Pomeroy JW. Advances in Canadian forest hydrology [J]. Hydrol Process,2000, 14 (9):1551-1578.
    [112] Calder I. R.. Hydrologic effects of land use chane [A]. In: Maidment, D.R., (ed.), Handbook of Hydrology[C], McGraw-Hill, New York,, 1993,pp.13.1-13.50.
    [113] Chang, M. Forest hydrology: An introduction to water and forest [M]. New York: CRC Press, 2002.
    [114] David R. and DeWalle. Forest hydrology revisited [J]. Hydrological Processes,2003,17 (6) :1255-1256.
    [115] Dawes W. R., Zhang L., Hatton T. J., Reece P. H., Beale G. T. H. and Packer. Evaluation of a distributed parameter ecohydrological model (TOPOG-IRM) on a small cropping rotation catchment [J]. Journal of Hydrology, 1997, 191:64-86.
    [116] Delphis F, Levia J R, Ethan E. Frost. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems [J]. Journal of Hydrology, 2003, 274: 1-29.
    [117] Dykes A P. Rainfall interception from a lowland tropical rainforest in Brunei [J]. Journal of Hydrology, 1997 , 200 : 260-279.
    [118] Famiglietti JS, Rudnicki JW, RodellM. Variability in surface moisture content along a hill slope transects Rattlesnake Hill Texas [J]. Hydrol, 1998,210: 259-281.
    [119] Feldman A. D. HEC-1 FLOOD HYDROGRAPH PACKAGE [A]. In Singh V.P. (ed.) Computer Models of Watersheds Hydrology[C]. Water Resource Publications, Highland Ranhc,CO, 1995, pp: 119-150.
    [120] Fitzjohn C, Ternan JL, WilliamsAG. Soilmoisture variability in a semi-arid gully catchment: Imp lications for runoff and erosion control [J]. Catema, 1998, 32: 55-70.
    [121] Gash J. H. C, Wright I. R. and Lloyd C. R.. Comparative estimates of interceptiong loss from three coniferous forests in Great Britain [J]. Journal of Hydrology, 1980,48:89-105.
    [122] Gash J. H. C. An analytical model of rainfall interception by forests [J]. Quarterly Journal of the Royal Meterorological Society, 1979, 105:43-55.
    [123] Gomez, J. A. , Giraldez, J. V. , Fereres, E. Analysis of infiltration and runoff in an olive orchard under notill[J]. Soil Science Society of America Journal, 2001 , 65 (2) : 291-299.
    [124] Green, W. H., and G. A. Ampt. Studies on Soil Physics: Flow of Air and Water through Soils [J].Agri. Sci, 1911 (4) : 1-24.
    [125] Hewlett J. D., et al. The dependence of strom flows on rainfall intensity and vegetal cover in South Africa [J]. Journal of Hydrology, 1984, 75: 365-381.
    [126] Hewlett, J D. Prcinciples of forest hydrology [M]. Athens: The University of Georgia Press, 1982.
    [127] Hoermann G. Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany. Agricultural and Forest Meteorology, 1996, 79 :131-148
    [128] Hornbeck JW and Swank WT. Watershed ecosystem analysis as a basis for multiple use management of eastern forests [J]. Ecol Appl, 1992, 2:238-247.
    [129] Horton, R. E. An Approach toward a Physical Interpretation of Infiltration-Capacity[J]. Soil Sci, Soc. Am. J, 1940, 5: 399-417.
    [130] Huber W. C. EPA storm water management model-SWMM [A]. In Singh V.P.(ed.) Computer Models of Wateshed Hydrology[C]. Water Resource Publicaitons, Hyghlands Ranch, CO, 1995,pp. 783-808.
    [131] Hutjes R WA. , Wierda A, Veen A WL. Rainfall interception in the Tai Forest, Ivory Coast: Application of two simulation models to a humid tropical system [J]. Journal of Hydrology,1990, 114:259-275.
    [132] JacquesD, Monanty B, Timmerman A, et al. Study of time dependency of factors affecting the spatial distribution of soil water content in a field-plot [J]. Phys Chem Earth (B), 2001, 26:629-634.
    [133] Kell B Wilson, et al. A comparison of methods for determining forest evapotranspiration and its components: sapflow, soil water budget, eddy covariance and catchment water balance [J]. Agriculture and Forest Meteorology, 2001,106(2): 153-168.
    [134] Leaf, C. F., and Brink, G. E. Hydrologic simulation model of Colorado subalpine forest: U. S. Department of Agriculture, Forest Service Research Paper RM-107,23p.
    [135] Leavesley G. H., Markstrom S. L., Restrepo P. J. et al... A modular approach to addressing models design, scale, and parameter estimation issues in distributed hydrological modeling [J]. Hydrological Processes,2002,16 (2) : 173-187.
    [136] Leavesley G. H... Modeling the effects of climate change on water resources-a review [J].Climate change, 1994,28,159-177.
    [137] Leavesley, G. H., Lichty, R. W., Troutman, B. M., and Saindon, L. G., Precipitation-runoff modeling system-user's manual: U. S. Geological Survey Water Resources Investigations report. 1983
    [138] Legesse D., Vallet-Coulomb C. and Gasse F... Hydrological response of a catchment to climate and land use change in tropical Africa: case study South Central Ethiopia [J], Jouranl of Hydrology, 2003,275:67-85.
    [139] Liu S. A new model for the prediction of rainfall interception in forest canopies [J]. Ecological Modelling, 1997,99:151-159.
    
    [140] Liu S. Predictive models of forest canopy interception [J]. Sci Silvate Sin, 1992,28:445-449.
    [141] Lloyd C R, Marques A D O. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest [J]. Agricultural and Forest Meteorology, 1988,42: 63-73.
    [142] Lloyd C. R., Gash J. H. C, Shuttelworth W. J. and Marques F., A.de. O. The measurement and modeling of rainfall interception by Amazonian rain forest [J]. Agric.Forest Meteorology, 1988,43:277-294.
    [143] Lull HW, Reinhart KG. Forests and floods in the Eastern United. States. United States Department of Agriculture, Forest Service. Research Paper. 1972.
    [144] Massman W. J.. The derivation and validation of a new model for the interception of rainfall by forests [J]. Agricultural and Forest Meteorology, 1983,28:261-286.
    [145] Massman W. J.. Water storage on forest foliage: A general model [J]. Water Resources Research, 1980,16 :210-216.
    [146] Mazi K., Koussis A. D., Restrepo P. J. and Koutsoyiannis D.. A groundwater-based,objective-heuristic parameter optimization method for a precipitation-runoff model and its application to a semi-arid basin [J]. Journal of Hydrology, 2004,290:243-258.
    [147] McCulloch J G, Robinson M. History of forest hydrology [J]. Hydrol, 1993. 150:189-216.
    [148] McCulloch J. S. G. and Robinson M.. Histrory of forest hydrology [J]. Journal of Hydrology,1993, 150:189-216.
    [149] Mein, R. G., and C. L. Larson, Modeling Infiltration During a Steady Rain [J] . Water. Resour.Res,1973 (9) : 384-394.
    [150] Monji N, Hamotani K, Tosa R, Fukagawa T, Yabuki K, Hirano T, Jintana V, Piriyayota S,Nishimiya A, Iwasaki M. CO_2 and water vapor flux evaluations by modified gradient methods over a mangrove forest. J. Agric. Meteorol., 2002, 58 (2): 63-69.
    [151] Navar J. and Bryan R. B.. Fitting the analytical model of rainfall interception of gash to individual shrubs of semi-arid vegetation in northeastern Mexical[J].Agric.Forest. Meteorology, 1994, 68:133-143.
    [152] Parkin G., O'Donnell G., Ewen J., Bathurst J.C., O'Connell P.E. and Lavabre J. Validation of catchment models for predicting land-use and climate change impacts. 1. Case study for a Mediterranean catchment [J]. Journal of Hydrology, 1996,175:595-613.
    [153] Paulo Rodolfo Leopoldo, et al. Real evapotranspiration and transpiration through a tropical rain forest in central Amazonia as estimated by the water balance method [J]. Forest Ecology and Management, 1995,73 (1- 3): 185-195.
    [154] Philip J. R... The theory of infiltration. I. The infiltration equation and its solution [J]. Soil Science, 1957, 83:345-357.
    [155] Prueger JH, Hatifield JL, Aase JK. Bowen-ratio comparisons with lysimeter evapotranspiration. Agronomy Journal, 1997, 89:730-736.
    [156] Putuhena W M, Cordery I. Estimation of interception capacity of the forests floor [J].Hydrol., 1996, 180: 283-299.
    [157] QI S, SUN G, MCNULTY S, et al. Modeling the climate change and climate change sensitivity on water yield in a coast watershed of North Carolina [C]PPHU C H , TAN Y. Proceedings of the Ninth International Symposium on River Sedimentation. Beijing: Tsinghua University Press, 2004: 2437-2441.
    [158] Qin Y S, Yu X X. Study on water intercepting and retarding characteristics of forest litters in the upper stream of Miyun Reservoir [J]. Forestry Studies in China, 2000, (1): 58-62.
    [159] Rao A S. Interception losses of rainfall from Cashew trees [J]. Journal of Hydrology, 1987,90:293-301.
    [160] Rawls, W. J. , and D. L. Brakensiek, A Procedure to Predict Green Ampt Infiltration Parameters. Adv. Infiltration, Am. Soc. Agric. Eng, 1983,102-112.
    [161] Regalado, C. M., Munoz-Carpena, R. Estimating the saturated hydraulic conductivity in a spatially variable soil with different permeameters: a stochastic Kozeny-Carman relation. Soil Tillage Research, 2004 , 77 :189-202
    [162] Reynolds, W. D , Elrick, D. E. In-situ measurement of field-saturated hydraulic conductivity ,sorptivity and thea-parameter using the Guelph permeameter. Soil Science, 1985,140:292-302.
    [163] Robert A Vertessy, Peter J Dye. Effects of Forest Cover on Catchment Water Balances and Runoff Dynamics. Forests and Society: The Role of Research, 2000.
    [164] Schellekens J, Scatena F N, Bruijnzeel L A , et al. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico [J]. Journal of Hydrology, 1999,225: 168-184.
    [165] Smith R. E., Goodrich D. C, Wooolhiser D. A. and Unkrich C. L.. KINEROS-a Kinematic runoff and EROSion model[A]. In Singh V.P.(ed.) Computer Models of Watershed Hydrology[C]. Water Resouce Publications, Highlands Ranch, CO, 1995,pp.697-732.
    [166] Stednick JD. Monitoring the effects of timber harvest on annual water yield [J]. Hydrol, 1996, 176:79-95.
    [167] Swanson R. H.. Forest hydrology issues for the 21~(st) Century: A consultant's viewpoint. JAmeri. Water Resource Assoc, 1998, 34 (4) :755-763.
    [168] Thompson, E. S., Computation of solar radiation from sky covers [J]. Water Resources Research, 1976 (5) : 859-865.
    [169] Vanderlinden, K., Gabriels, D., Giraldez, J. V. Evaluation of infiltration measurements under olive trees in Cordoba [J]. Soil Tillage Research, 1998,48:303-315.
    [170] Vertessy, R. A., Dye, P. G. Effects of forest cover on catchment water balances and runoff dynamics : XXI IUFRO World Congress :Forests and society : The role of research [C] . Kuala Lumpur: IUFRO, 2000.
    [171] Watanabe Mizutani. Model study on micrometeorological aspects of rainfall interception over an evergreen broad-leaved forest. Agricultural and Forest Meteorology, 1996, 80:195-214.
    [172] Watson F. G. R., Vertessy R. A. and Grayson R. B.. Large-scale modelling of forest hydrological processes and their long-term effect on water yield [J]. Hydrological Processes,1999, 13:689-700.
    [173] Western AW, Gunter B, Rodger B, et al. Geostatistical characterizations of soilmoisture patterns in Tarrawarra catchment [J]. Hydrol, 1998,205: 20-37.
    [174] Whitehead PG, Robinson M. Experimental basin studies —An international and historical perspective of forest impactsy [J]. Hydrol, 1993, 145:217-230.
    [175] Woolhiser D. A. and Liggett J. A... Unsteady one-dimenstional flow over a plane: The rising hydrograph [J]. Water Resources Research, 1967,3 (3) :753-771.
    [176] Ziemer, R R. The role of vegetation in the stability of forested slopes: proceedings of the International Forestry Research Organizations, XVII World Congress. Volume 1 [C]. Kyoto: International Forestry Research Organization, 1981: 2972-2308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700