用户名: 密码: 验证码:
高超声速咽式进气道流场特性和设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速进气道,作为超燃冲压发动机的重要组成部分,一方面要为发动机提供所需的空气,另一方面对来流进行足够的压缩,以满足燃烧的需要,其性能已成为决定发动机乃至整个吸气式高超声速飞行器性能的关键因素。美国空军实验室的Malo-Molina等人于2005年提出了一种新型三维内收缩高超进气道——“咽”式进气道,数值模拟结果表明:“咽”式进气道与常规进气道相比,具有更好的综合性能。但是目前国外公开文献并没有对其具体设计方法、内部流场特性进行详细的阐述,关于“咽”式进气道的许多问题还需要进一步的深入研究。本文以寻求适合作为吸气式高超声速飞行器进气道的,在宽马赫数范围内(Ma=5,6,7)具有较高性能的流线追踪“咽”式进气道为主要目标,利用理论分析、数值模拟、风洞实验等手段,对流线追踪“咽”式进气道进行了较为系统的研究。
     对“咽”式进气道无粘流场、设计理论及方法进行了详细介绍,采用数值模拟的方法比较了具有相同基本流场的矩形进气道和“咽”式进气道的流动特性和性能,并分析了不同马赫数,不同攻角以及粘性对其流动特性和性能的影响,使本文所述的流线追踪设计方法得到了验证。另外可知,与矩形进气道相比,“咽”式进气道对设计状态下的攻角变化不太敏感,在非设计状态下具有较高的流量捕获和压缩能力,由于其浸湿面积小,进气道内附面层增长缓慢,激波与附面层干扰较弱,总压恢复较高。
     通过数值模拟,选择了较为合适的进气道设计参数,并为解决由于粘性的存在可能引起的基于无粘流场设计方法的失效问题,利用Cebeci和Bradshaw提供的有限差分法求解二维可压缩附面层方程的程序,根据求得的进气道附面层位移厚度对8-7(即俯仰平面内的斜激波由和自由来流呈8o夹角的斜压缩面产生;偏航平面内的斜激波由和自由来流呈7o夹角的斜压缩面产生)“咽”式进气道进行了附面层修正,比较分析了修正前后粘性计算以及未修正无粘计算得到的进气道性能参数。
     对进行附面层修正前后的“咽”式进气道开展了不同马赫数和攻角条件下的风洞实验和数值模拟,实验测量了进气道壁面中心线沿程静压分布,分析了附面层修正、来流马赫数及攻角的变化对“咽”式进气道流场和性能的影响。研究表明,壁面中心线沿程静压的数值模拟结果与风洞试验结果吻合较好,特别在进气道唇口前的压缩面上,壁面静压几乎完全相同,只是在进气道内收缩段的压力分布存在误差,但变化趋势是一致的,数值模拟结果基本能反映进气道内的压力变化,具有一定的可信度;另外,附面层修正能大幅度的提高“咽”式进气道模型的总压恢复系数,减小其内收缩比,提高其起动性能,从而扩大了其工作范围,对进气道设计有着积极的作用。
     运用本文提出的高超声速飞行器一体化设计思想,对基于“咽”式进气道的飞行器外形设计进行了初步研究。通过数值模拟,对设计出的满足技术要求的高超声速飞行器的气动特性进行了分析,为今后“咽”式进气道的工程应用做了一定的尝试和铺垫。
As the important component of scramjet, the hypersonic inlet not only provides the necessary air for the engine, but also compresses enough air to meet the needs of combustion, so its performance is a key factor to scramjet and airbreathing hypersonic vehicle. In 2005, Malo-Molina et al from U.S. Air Force Laboratory propose Jaws inlet, a kind of innovative inward turning inlet. Numerical simulation results indicate that Jaws inlet has better property compared to routine inlet. But now the foreign open literature does not dictate a detailed exposition on specific design method, the internal flow field of the Jaws inlet, a lot of problems need more thorough investigation.
     In present paper,the main objective is finding in a wide range of Mach number (Ma = 5,6,7), high-performance stream tracing Jaws inlet, which is suitable for air-breathing hypersonic vehicle inlet. A system investigation on streamline tracing Jaws inlet has been carried out using theoretical analysis, numerical simulation, wind tunnel experiments and other means.
     Inviscid basic flow field and design method of Jaws inlet was described in details. Jaws inlet was explored numerically and compared with a rectangular cross-section inlet in the same basic flow field. The performance and flow-field characteristic of Jaws inlet on different Mach number and attack angle was compared, and the effect of viscosity were also analyzed. The design method of streamline traced has been verified. In addition, compared to the rectangular cross-section, inlet performance of the Jaws inlet is insensitive to the angles of attack on design point; inlet has high mass capture and compression capability on off-design point; boundary layer growth of the develops slowly and shock boundary layer interaction is weak because of the diminished wetted area, and total pressure recovery coefficient is much higher.
     Because the presence of viscosity, a more suitable inlet design parameters are selected by numerical simulation, in order to solve the possible failure of design problems based on inviscid flow. Cebeci and Bradshaw’s finite difference program is used to solve the two-dimensional compressible boundary layer equation, according to the achieved displacement thickness of the boundary layer, the 8-7 (the ramp in pitch plane is inclined at 8o to the free stream and in yaw plane is inclined at 7o to the free stream, yielding planar shocks).inlet internal profile is then corrected, and the inlet performance after correction is compared with uncorrected flow by numerical simulation. Jaws inlet with and without boundary layer correction were investigated using numerical simulation and hypersonic wind tunnel tests. Static pressure distribution along the centerline of the walls was measured. The performance of Jaws inlet on different Mach number and attack angle was compared, and the effect of boundary layer correction was also studied. The tunnel experimental data agree well with the numerical simulation. Especially at the wall before the lip, the static pressures almost have the same value. Although there is small deviation existing at inward contraction section, the pressure changing trends of the wall are consistent. The experimental results prove that the numerical simulation can reflect the pressure distribution with good reliability. In addition, boundary layer correction improves the total pressure recovery coefficient of Jaws inlet, reduce internal contraction ratio, and enhance the start performance. So the working range is enlarged, it has positive effect on the design of inlet.
     Using the proposed hypersonic propulsion/airframe integration design, based on Jaws inlet, shape design of an aircraft was studied. By numerical simulation, hypersonic vehicle's aerodynamic characteristics are analyzed; the design meets the technical requirements. Some try and bedding are carried out for the future engineering application of Jaws inlet.
引文
[1] Tsien, H S.Similarity Laws of Hypersonic Flows[J] .J. of Math. and Phys., 1946, 25 247-251
    [2] John J.Bertin, Russell M.Cummings. Fifty years of hypersonic: where we’ve been, where we’re going. Progress in Aerospace Sciences 39 (2003) 511-536.2003
    [3]沈剑.国外高超声速研制计划,飞航导弹,2006(8)
    [4]沈赤兵,李清廉,罗世彬等.三组元火箭发动机推力室试验研究,火箭推进,2006(5)
    [5]琚春光,刘宇.塞式喷管发动机的性能预示,宇航学报,2006(5)
    [6] Reusable Launch Vehicle Programs and Concepts[R]. Report from Associate Administrator for Commercial Space Transportation(AST),1998
    [7]张冬青,陈英硕.吸气式高超声速飞行器在军事领域的应用,飞航导弹,2007(9)
    [8] David E.Reubush, Luat T.Nguyen and Vincent L.Rausch. Review of X-43A Return to Flight Activities and Current Status. AIAA 2003-7085
    [9]李桦,范晓樯.高超声速进气道数值与实验研究[C].2005年高超声速进气道技术交流(研讨)会.南京,2005
    [10] Pinkel I.Irving and John S.Serafini. Graphical Method for Obtaining Flow Field in Two-Dimensional Supersonic Stream to Which Heat is Added[R].NASA TN-2206.1950
    [11] Ferri A. Supersonic Combustion Progress[J]. Aeronautics and Astronautics, 1964,2(8):32-37
    [12] Ferri A. Review of Scramjet Technology[J]. Journal of Aircraft, 1968,5(1):3-10
    [13] Andrews E H, Mackley E A. NASA’s Hypersonic Research Engine Project―A Review[C]. AIAA 1993-2323
    [14] Billg F S. SCRAM-A Supersonic Combustion Ramjet Missile[C]. AIAA 1993-2329
    [15] Voland R T and Rock K E. NASP Concept Demonstration Engine and Subscale Parametric Engine Tests[C]. AIAA 1995-6055
    [16] Andrews E H. Scramjet Development and Testing in the United States[C]. AIAA 2001-1927
    [17] Rausch V L, McClinton C R and Crawford J L. Hyper-X: Flight Validation of Hypersonic Airbreathing Technology[C]. ISABE 1997-7024
    [18] Rausch V L, McClinton C R and Hicks J W. NASA Scramjet Flights to Breath New Life into Hypersonics[J]. Aerospace America, 1997,7
    [19] Michael A D. X-43 Flight Test Indicates Thrust is Greater than Drag[C]. Aviation Week & Space Technology. 2004,4(5):28-29
    [20] Faulkner R F and Weber J W. Hydrocarbon Scramjet Propulsion Development, Demonstration and Application[C]. AIAA 1999-4922
    [21] Richard R K. Airbreathing Hypersonic Propulsion at Pratt & Whitney– Overview[C]. AIAA 2005-3256
    [22] Robert M and Charles M. Hypersonic Propulsion-Transforming the Future of Flight[C]. AIAA 2003-2732
    [23] Foelsche R O, Leylegian J C, Betti A A, et al. Progress on the Development of a Freeflight Atmospheric Scramjet Test Technique[C]. AIAA 2005-3297
    [24]丛敏,李文杰. HyFly第四次飞行试验失败,飞航导弹,2008(11)
    [25] Boudreau A H. Hypersonic Air-breathing Propulsion Effort in the Air Force Research Laboratory[C]. AIAA 2005-3255
    [26] Kandebo S W. Landmark Tests Boost Scramjet’s Future[J]. Aviation Week and Space Technology. 2001,3(26):58-59
    [27] Hughes D. Scramjet Tests Stage for AF Hypersonic Flight. Aerospace Daily and Defense Report. 2007,3(7):6
    [28]曾慧,白菡尘. X-51A超燃冲压发动机情报研究[C].第十五届全国高超声速气动力/热学术交流会,山东烟台,2009.
    [29] Alexander S R, Vyacheslav L S, John W H. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program[C]. AIAA 1998-1643
    [30] Roudakov A S, Semenov V L, Strokin M V, et al. The Prospects of Hypersonic Engines In-flight Testing Technology Development[C]. AIAA 2001-1807
    [31] Kislykh V V, Kondratov A A, Semenov V L. The Program for the Complex Investigation of the Hypersonic Flight Laboratory (HFL)‘IGLA’in the PGU of TSNIIMASH[C]. AIAA 2001-1875
    [32] Russell R B, Sullivan G, Allan P. The HyShot scramjet flight experiment - Flight data and CFD calculations compared[C]. AIAA 2003-7029
    [33] Gardner A D, Hannemann K, Steelant J, et al. Ground Testing of the HyShot Supersonic Combustion Flight Experment in HEG and Comparison with Flight Data[C]. AIAA 2004-3345
    [34] Dessornes, Scherrer, Novelli. Tests of the JAPHAR Dual Mode Ramjet Engine[C]. AIAA 2001-1886
    [35] Falempin F, Serre L. The French PROMETHEE Program Status in 2000[C]. AIAA 2000-3341
    [36] Kanda T, Hitraiwa T, Mitani T, et al. Mach 6 Testing of a Scramjet Engine Model[J]. Journal of Propulsion and Power,1997,13(4):543~551
    [37] Mitani T, Hitraiwa T, Sato S, et al. Comparison of Scramjet Engine Performance in Mach 6 Vitiated and Storage-Heated Air[J]. Journal of Propulsion and Power,1997,13(5)
    [38]于守志,王绍卿.地空导弹对于冲压发动机的要求[J].推进技术,1986,6(2)
    [39]刘兴洲,刘敬华,王裕人.超音速燃烧实验研究(Ⅰ)[J].推进技术,1991,2:1~8
    [40]刘兴洲,刘敬华,王裕人等.超音速燃烧实验研究(Ⅱ)[J].推进技术,1993,4
    [41]刘陵,张榛.超音速燃烧冲压发动机最佳设计参数[J].推进技术,1988,9(1):73~78
    [42]刘陵,张榛,牛海发等.超音速燃烧室燃烧效率数学模型及气流状态参数的计算[J].推进技术,1989(02)
    [43]刘陵.超音速燃烧与超音速燃烧冲压发动机[M].西安:西北工业大学出版社,1993
    [44]乐嘉陵.CARDC高超声速技术进展与展望[C].2005年高超声速技术研讨会.北京,2005
    [37]Jialing Le, Weixiong Liu, Wei He, et al. Research Progress on Short Duration Test Techniques and Its Application[C]. AIAA 2003-281
    [45]刘兴洲.高超声速吸气式飞行器技术的研究进展[C]. 2005年高超声速技术研讨会.北京,2005
    [46]刘兴洲.中国超燃冲压发动机研究回顾[J].推进技术,2008,29(4):385~395
    [47]岳连捷,俞刚.超声速气流中横向煤油射流的数值模拟[J].推进技术,2004,25(1):11~14
    [48]顾洪斌,陈立红,张新宇等.超燃冲压模型发动机实验设备和实验技术[J].力学进展,2003,33(4):491~498
    [49]王振国.高超声速技术研究发展与发展设想[C]. 2005年高超声速技术研讨会.北京,2005
    [50] Holland S D, Internal Aerodynamics of a Generic Three-Dimensional Scramjet Inlet at Mach 10, NASA Technical Paper 3476, 1995
    [51]王健,李宏东,朱守梅等.冲压发动机用轴对称进气道设计和试验[J].推进技术,2009,30(6):682~686
    [52]谭慧俊,郭荣伟.高超声速混合模块冲压发动机亚燃模块进气道的告焓风洞试验研究[J].航空学报,2007,28(4):783~790
    [53]谭慧俊,郭荣伟,李光胜.双燃烧室冲压发动机亚燃模块进气道非设计点工作特性[J].航空学报,2008,29(1):20~27
    [54]孙姝,张红英,王成鹏等.高超声速轴对称流道冷流特性及气动力特性研究[J].航空动力学报, 2007,22(6):967~973
    [55]孙姝,张红英,程克明等.喷流反压模拟技术及在高超声速进气道实验中的应用[J].航空动力学报,2007,22(10):1667~1672
    [56] Xiaoqiang FAN, Shihe YI, Di JIA, et al. Forced Boundary-layer Transition of Axisymmetric Inlet in Mach 8 Gun Tunnel and its Numerical Verification[C]. AIAA 2005-3551
    [57] Lihong CHEN, Hongbin GU, Fong CHEN, et al. Comparison of External and Sidewall Compression Scramjet Inlet Models[J]. AIAA 2003-7043
    [58]徐旭,蔡国飙.超燃冲压发动机二维进气道优化设计方法研究[J].推进技术,2001,22(6):468~472
    [59]陈兵.空间推进算法及超燃冲压发动机部件优化设计研究[D].北京航天航空大学博士论文.2005年11月
    [60]金志光,张堃元.二维非常规压缩型面超/高超声速进气道的设计概念[J].推进技术,2004,25(3):226~229
    [61]罗世彬,罗文彩,丁猛等.超燃冲压发动机二维进气道多级多目标优化设计方法[J].国防科技大学学报,2004,26(3):1~6
    [62]黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究[J].航空动力学报,2004,19(4):459~465
    [63]宋道军,胥继斌.高超声速二维前体进气道一体化优化设计研究[J].空气动力学报,2004,22(3):371~375
    [64] Trexler C A. Performance of an Inlet for an Integrated Scramjet Concept[J]. Journal of Aircraft,1974,11(9):588~591
    [65] Holland S D. A Computational and Experimental Investigation of a Three-Dimensional Hypersonic Scramjet Inlet Flow Field[D]. Ph.D.Dissertation, North Carolins State University, March 1991
    [66]张堃元,萧旭东,徐辉.高超侧压式进气道参数分析及试验研究[J].推进技术,1995,16(6):20~25
    [67]张堃元,萧旭东,徐辉.非均匀流等溢流角设计高超侧压式进气道[J].推进技术,1998,19(1):20~24
    [68]张堃元,马燕荣,徐辉.非均匀流等压比变后掠角高超侧压式进气道研究[J].推进技术,1999,20(3):40~44
    [69]金志光.超燃冲压发动机高超侧压式进气道设计方法研究[D].南京航空航天大学博士论文,2006年3月
    [70]金志光,张堃元.高超声速侧压式进气道高焓脉冲风洞试验[J].推进技术,2005,26(4):319~323
    [71]范晓樯,李桦,易仕和等.侧压式进气道与飞行器机体气动一体化设计及实验[J].推进技术,2004,25(6):499~502
    [72]梁剑寒,刘卫东,王振国.高超声速侧压式进气道试验研究[C]. 2005年高超声速进气道技术交流(研讨)会.南京,2005
    [73]丁猛,梁剑寒,刘卫东等.碳氢燃料超燃冲压发动机进气道与燃烧室匹配性能试验研究[J].航空学报,2005,26(1):27~31
    [74]李大进,邢君波,李欣.高超声速三维侧压式进气道数值计算及试验研究[C]. 2005年高超声速进气道技术交流(研讨)会.南京,2005
    [75]顾洪斌,岳连捷,向安宇等.侧压进气道研究[C]. 2005年高超声速进气道技术交流(研讨)会.南京,2005
    [76] Chen F, Chen L and Chang X. Three-Dimensional Sidewall-Compression Scramjet Inlet CFD Simulation and Experimental Comparision[C]. AIAA 2003-4741
    [77] Kothari A P, Tarpley C, Mclaughlin T A, et al. Hypersonic Vehicle Design Using Inward Turning Flow Fields[C].AIAA 1996-2552
    [78] Matthews A J and Jones T V. Design and Test of a Modular Waverider Hypersonic Intake[C]. AIAA 2005-3379
    [79] Daniel E F Barkmeyer, Starkey R P, Lewis M J. Inverse Waverider Design for Inward Turning Inlets[C].AIAA 2005-3915
    [80] O’rien T F, Colville J R. Analysis Computation of Leading Edge Truncation Effects on Inviscid Busemann Inlet Performance[C]. AIAA 2007-0026
    [81] Molder S, Szpiro J. Busemann Inlet for Hypersonic Speeds[J]. Journal of Spacecraft and Rockets, 1966,3(8):1303~1304
    [82] Molder S, McGregor R, Paisley T. Investigations in the Fluid Mechanics of Scramjet Inlets[R]. ADA 1992-2692754
    [83] Molder S, Timofeev E and Tahir R. Flow Starting in High Compression Hypersonic Air Inlet by Mass Spillage[C]. AIAA 2004-4130
    [84] Tahir R, Molder S and Timofeev E. Unsteady Starting of High Mach Number Air Inlets– A CFD Study[C]. AIAA 2003-5191
    [85] Billig F S. SCRAM– A Supersonic Combustion Ramjet Missile[C]. AIAA 1993-2329
    [86] Travis W, Ioannis N and Graham V. Hypersonic Inward Turning Inlets Design and Optimization[C]. AIAA 2006-297
    [87] Billig F S, Baurle R, Tam C, et al. Design and Analysis of Streamline TracedHypersonic Inlets[C]. AIAA 1999-4974
    [88] Vinogradov V, Ogorodnikov D and Stepanov V. Experimental and Computational Researches of the Spatial(3D) Scheme Hypersonic Inlets[C]. AIAA 1998-1527
    [89] Jacobsen L, Tam c, Robert B. Staring and Operation of a Streamline-Traced Busemann Inlet at Mach 4[C]. AIAA 2006-4508
    [90]孙波,张堃元,王成鹏等. Busemann进气道无粘流场数值分析[J].推进技术,2005,26(3):242~247
    [91]孙波,张堃元. Busemann进气道起动问题初步研究[J].推进技术,2006,27(2):128~131
    [92]孙波,张堃元. Busemann进气道风洞实验及数值研究[J].推进技术,2006,27(1):58~61
    [93] Smart M K. Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition[C]. AIAA 1998-0960
    [94] Smart M K. Experimental Testing of a Hypersonic Inlet with Rectangular-to- Elliptical Shape Transition[C]. AIAA 1999-0085
    [95] Smart M K and White J A. Computational Investigation of the Performance and Back-Pressure Limits of a Hypersonic Inlets[C]. AIAA 2002-0508
    [96] Smart M K and Trexler C A. Mach 4 Performance of a Fixed-Geometry Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition[C]. AIAA 2003-0012
    [97] Matthew A J, Jones T V and Cain T M. Design and Test of a Hypersonic Isentropic-Spike Intake with Aligned Cowl[C]. AIAA 2003-7045
    [98] Matthew A J and Jones T V. Design and Test of a Modular Waverider Hypersonic Inlets[C]. AIAA 2005-3379
    [99]尤延铖,梁德旺,黄国平.一种新型内乘波式进气道初步研究[J].推进技术,2006,27(3):252~256
    [100]尤延铖,梁德旺.内乘波式进气道内收缩基本流场研究[C].中国航空学会推进系统气体热力学专业第十届学术交流会议.太原,2006
    [101]尤延铖,梁德旺,黄国平.内乘波式进气道基本流场研究[J].空气动力学报,2008,26(2):203~207
    [102] You Y, Liang D and Huang G. Design and Experimental Research of Three Dimensional Internal Waverider Hypersonic Inlet[C]. AIAA 2008-4708
    [103]尤延铖,梁德旺.基于内乘波概念的三维变截面高超声速进气道[J].中国科学E辑,2009,39(8):1483~1494
    [104] Walker S H, Rodgers F and Esposita A L. Hypersonic Collaborative Australia/United States Experiment (HYCAUSE)[C]. AIAA 2005-3254
    [105] Dissel A, Kothari A, Raghavan V, et al. Comparison of HTHL and VTHL Air-Breathing and Rocket Systems for Access to Space[C]. AIAA 2004-3988
    [106] Walker S H, Rodgers F. Falcon Hypersonic Techology Overview[C]. AIAA 2005-3253
    [107] Malo-Molina F J, Gaitonde D V and Kutschenreuter P H. Numerical Investigation of an Innovative Inward Turning Inlet[C]. AIAA 2005-1435
    [108] Malo-Molina F J and Gaitonde D V. Analysis of an Innovative Inward Turning Inlet Using an Air-JP8 Combustion Mixture at Mach 7[C]. AIAA 2006-3041
    [109] Malo-Molina F J and Ebrahimi H B. Numerical Investigation of a 3-D Chemically Reacting Scramjet Engine at High Altitudes Using JP8-Air Mixtures[C]. AIAA 2005-3988
    [110] Ebrahimi H B, Gaitonde D V and Malo-Molina F J. Simulations of Hydrocarbon- Based Scramjet Combustors with Integrated Inward-Turning Inlets[C]. AIAA 2008-1063
    [111] Malo-Molina F J, Gaitonde D V and Ebrahimi H B, et al. High Fidelity Flowpath Analysis of a Supersonic Combustor Coupled to Innovative Inward-Turning Inlets. AIAA 2009-131
    [112] Ungewitter R J, Ott J D and Dash S M. Advanced Modeling Methods for Hypersonic Scramjet Evaluation[C]. AIAA 2006-4578
    [113]孙波,张堃元,金志光等.流线追踪Busemann进气道设计参数的选择[J].推进技术,2007,28(1):55~59
    [114] Bulman M J and Siebenhaar A. The Rebirth of Round Hypersonic Propulsion[C]. AIAA 2006-5035
    [115]蔡巧言,谭慧俊.前体边界层状态对高超声速进气道流动结构及性能的影响[J].航空动力学报,2008,23(4):699~705
    [116] Curran E T,Murthy S N B. Scramjet Propulsion,Vol.189,Progress in astronautics and aeronautics [Ml. American Institute of Aeronautics and Astronautics,Inc,2001.
    [117]范晓樯.高超声速进气道的设计、计算与实验研究[D].国防科学技术大学博士论文, 2006.04
    [118]王成鹏,程克明.高超进气道临界启动特征[J].航空动力学报, 2008,23(6):997~1002
    [119]瞿章华,刘伟,曾明等.高超声速空气动力学[M].国防科技大学出版社,2001.05
    [120]董昊,王成鹏,程克明.“咽”式高超进气道流动特性及性能分析[J].航空动力学报,2009,24(11),2429~2435
    [121] Van Wie D M, Kwok F T and Walsh R F. Starting Characteristics of Supersonic Inlets[C]. AIAA 1996-2914
    [122] Kantrowitz A and Donaldson C. Preliminary Investigation of Supersonic Diffuser[R]. NACA WRL-713, 1945
    [123] Donde P, Marathe A and Sudhakar K. Staring in Hypersonic Intake[C]. AIAA 2006-4510
    [124] Wagner J, Valdivia A, Yuceil K, et al. An Experimental Investigation of Supersonic Inlet Unstart[C]. AIAA 2007-4352
    [125] Jameson A and Yoon S. Lower–Upper Implicit Schemes with Multiple Grids for the Euler Equations[J]. AIAA Journal, Vol.25, No.7, July 1987:929–935
    [126] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamics flows[C]. AIAA 1992-0439
    [127] Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, Vol.32, No.8, August 1994:1598-1605
    [128] Schulte D, Henckels A and Wepler U. Reduction of shock induced boundary layer separation in hypersonic inlets using bleed[J].Aerospace Science and Technology,1998,(4):231.
    [129] Murakami A, Yanagi R, Shindo S,et al. Mach 3 Wind Tunnel Test of Mixed Compression Supersonic Inlet[C」.AIAA 1992-3625
    [130] Schulte D, Henckels A and Neubacher R. Manipulation of Shock/Boundary-Layer Interactions in Hypersonic Inlets[J]. Journal of Propulsion and Power , 2001 ,l7(3):585-590.
    [131] Auneau1. Design and Optimazation Methods for Scramjet Inlets[C」.AIAA Paper 1995-6017
    [132] Walsh P C, Tahir R B and Molder S. Boundary-layer Correction for the Busemann Hypersonic Air Inlet[J]. Canadian Aeronautics and Space Journal, Vol.49, No.1, March 2003:11-17
    [133] Cebeci T, Bradshaw P. Physical and Computational Aspects of Convective Heat Transfer[M]. Sping-Verlag, New York, 1994
    [134] Keller H B. A New Difference Scheme for Parabolic Problems[J]. Numerical Solution of Partial Differential Equations, Vol. II, Academic, New York, 1970
    [135]卢卡西维茨.高超声速实验方法[M].董兴德译.北京:国防工业出版社,1980
    [136]徐翔,王志坚.南航高超声速风洞技术及建设总结[R].中国空气动力研究与发展中心超高速空气动力研究所,2006.2
    [137]恽起麟.实验空气动力学[M].北京:国防工业出版社,1994
    [138] Kevin G B. A Perspective on the Future of Aerospace Vehicle Design[C]. AIAA 2003-6957
    [139] Johnston P J, Cubbage J M and Weidner J P. Studies of Engine-Airframe Integration on Hypersonic Aircraft[J]. Journal of Aircraft,1971,8(7):495-501
    [140] O’Neill M K and Lewis M J. Design Tradeoffs on Scramjet Engine Integrated Hypersonic Waverider Vehicles[J]. Journal of Aircraft,1993,30(6):943-952
    [141] Takashima N and Lewis M J. Engine-Airframe Integration on Osculating Cone Waveride-Based Vehicle Design[C]. AIAA 1996-2551
    [142] Starkey R P and Lewis M J. Design of an Engine-Airframe Integrated Hypersonic Missile Within Fixed Box Constraints[C]. AIAA 1999-0509
    [143]王发民,耿永兵,姚文秀等.高超声速一体化飞行器气动特性实验[C]. 2005年高超声速进气道技术交流会,南京,2005
    [144] Launius R D. Hypersonic Flight: Evolution from X-15 to Space Shuttle[C]. AIAA/ICAS International Air and Space Symposium and Exposition. 14-17 July 2003
    [145] Tohru Mitani, Nobuo Chinzei and Takeshi Kanda. Reaction and Mixing-Controlled Combustion in Scramjet Engines[J]. Journal of Propulsion and Power, 2001,17(2): 308-314
    [146] Edwards C L Q, Small W J, Weidner J P. Studies of Scramjet/Airframe Integration Techniques for Hypersonic Aircraft[C]. AIAA 1975-0058
    [147] Baysal O, Eleshaky M, Burgreen G. Aerodynamic Shape Optimization Using Sensitivity Analysis on Third-Order Euler Equations[J]. Journal of Aircraft,1993,30(6):953-961
    [148]陈兵,徐旭,蔡国飙.二维超燃冲压发动机尾喷管优化设计[J].推进技术,2002,23(5):433-437
    [149]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D].国防科学技术大学博士论文.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700