用户名: 密码: 验证码:
坡地粮草带状间作模式的水土保持效果与作物的生理生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在宁夏南部旱区,农业生产主要依赖于天然降水,有效降水不足和降雨时空分布不均是制约作物生长的主要限制因素。大量坡耕地因受雨季暴雨的冲刷,造成众多农田土壤侵蚀和地表土壤养分流失,导致作物产量和比较效益不高。坡地种植植物篱或普通木草具有显著减少水土流失的效果。间作由于具有能充分利用光热资源和增产的特点,在我国各地得到了广泛应用。而有关坡地粮食作物与苜蓿带状间作的研究较少,尤其是有关粮(谷子或糜子)草(苜蓿)间作的适宜带比、群体产量性状及水土流失特征的研究鲜有报道。本文于2007~2008年在宁夏南部的彭阳县白阳镇陡坡村旱农基点(106°32′~106°58′E,35°4l′~36°17′N),通过田间试验,对不同坡度(5°和15°)上谷子/苜蓿和糜子/苜蓿的不同带比间作模式下的产量、群体性状指标、水土流失特征等进行了系统比较分析,获得以下主要结果:
     1、不同坡度粮草带状间作种植的水土流失特征状况
     1)坡耕地上采取粮(谷子或糜子)草(苜蓿)带状间作种植能够有效减少农田水土流失和土壤N、P、K养分流失,在5°坡地上,4:2带比间作模式和2:4带比间作模式的水土保持效果显著,地表径流量较单作处理减少30%以上,泥沙流失量较单作处理减少98%以上;在15°坡地上,4:4、4:6和6:4 3个带比间作模式的效果显著,较单作处理减少地表径流量50%以上,减少泥沙流失84%以上。
     2)不同降雨量比较,降雨强度越大,地表径流量越大,径流土壤中的N、P、K养分量增加,但间作处理的水土防治效果和对土壤N、P、K养分的流失减少幅度降低。从本试验粮草条带设置来看,坡底以苜蓿结尾的种植条带均能有效阻止泥沙流失。
     3)坡地土壤养分的流失途径为推移质(泥沙)流失和径流流失2种,单位体积比较,泥沙中的养分含量明显高于径流中的养分含量;总量比较,坡面径流流失的总养分明显大于泥沙流失中的总养分。在5°坡地上,4:2和2:4间作处理的养分流失防治效果最好, 14mm降雨量和21mm降雨量下的TN、AN、TP、AVP、TK和AVK流失量分别较单作减少62.3%~78.1%和30.89%~52.16%;在15°坡地上,4:4、4:6和6:4间作处理的养分流失防治效果最好,在14mm降雨量和21mm降雨量下的TN、AN、TP、AVP、TK和AVK流失量分别较单作处理减少46.0%~65.4%和32.44%~65.5%。
     2、不同坡度粮草带状间作种植对农田土壤水分和养分的影响
     1)在不同坡度耕地上,采取粮(谷子或糜子)草(苜蓿)条带间作模式可有效提高粮带的土壤水分含量,5°坡地以2:4带比间作模式效果最佳,15°坡地以4:4带比间作模式效果最佳,其粮食作物的土壤含水率分别较单作处理平均提高2.3个百分点和1.08个百分点。
     2)粮(谷子或糜子)草(苜蓿)条带间作模式可有效提高粮食作物的水分利用效率(WUE)和土壤有机质、全氮、碱解氮的含量,5°坡地上的2:4带比间作种植模式和15°坡地上的4:4带比间作模式的作物水分利用效率较单作平均增加了1.92kg·cm~(-3)和1.25~1.57 kg·cm~(-3),土壤有机质、全氮、碱解氮含量分别较单作处理增加32.41%、25.27%、48.09%和17.64%、32.08%、47.44%。且间作模式的粮作带土壤有机质、全氮、碱解氮含量随着间作年份的增加明显增加。
     4)与粮食单作相比,粮草间作模式下的粮作带土壤的全钾、速效钾和速效磷含量明显增加,不同坡度和间作模式比较,在5°坡地上的2:4带比间作模式和15°坡地上的4:4带比间作种植模式的效果最好,土壤全钾、速效磷和速效钾分别较单作提高75.61%、77.46%、25.39%和66.12%、88.29%和48.55%。
     3、不同坡度粮草带状间作种植对谷子、糜子产量及其生长发育的影响
     1)坡地粮(谷子或糜子)草(苜蓿)带状间作模式的作物产量明显高于单作处理。在5°坡地上,2:4带比间作种植模式的增产效果最佳,与粮食(谷子或糜子)单作相比,谷子和糜子分别增产23.88%和21.44%;在15°坡地上,4:4、4:6和6:4 3个粮草间作处理模式增产效果较佳,与粮食单作相比,谷子增产13.22~15.72%,糜子增产10.31~12.73%,尤其是4:4粮草间作处理的增产效果最为显著。
     2)粮(谷子或糜子)草(苜蓿)间作种植模式对粮食作物(谷子和糜子)的株高和拔节期叶面积没有明显影响,但显著提高了粮食作物抽穗期和成熟期的单株绿叶面积,促进了光合物质的积累。在5°坡地上, 2:4带比间作模式谷子和糜子抽穗期的单株叶面积较单作处理提高86.77cm~2/株和27.67cm~2/株,成熟期提高77.39cm~2/株和9.65cm~2/株;在15°坡地上,4:4间作模式谷子和糜子抽穗期的单株叶面积较单作处理分别提高84.74cm~2/株和27.41cm~2/株,成熟期分别提高78.64cm~2/株和12.21cm~2/株。
     3)粮(谷子或糜子)草(苜蓿)间作种植模式对粮食作物抽穗前的干物质积累影响不大,抽穗后间作模式下的单株干物质积累量明显增加,在5°坡地上,2:4处理模式谷子的单株质量较单作处理增加15.75%,糜子单株质量较单作处理增加10.10%。在15°坡地上,4:4、6:4和4:6三个处理谷子单株质量较单作处理增加25.47%、13.48%和10.79%,糜子单株质量较单作处理增加17.26%、13.69%和13.42%。
     4)粮草间作模式促进了谷子、糜子茎叶鞘中的干物质量积累,明显增加了穗子中的干物质分配比率。在5°坡地上,间作处理谷子和糜子穗子中的干物质积累量分别较单作处理增加0.43%~9.21%和9.55%~24.24%;在15°坡地上,谷子和糜子穗子中的干物质积累量分别较单作处理增加7.5%~40.1%和12.6%~23.6%。
     5)粮草间作种植模式谷子、糜子根系的数量和质量较粮食单作明显增加,5°坡地上, 2:4间作模式增加幅度最大,谷子和糜子的单株根数和质量分别较单作增加1.4条、0.71g和3.6条、0.32 g;在15°坡地上, 4:4间作模式增加幅度最大,谷子和糜子的单株根数和质量分别较单作处理增加5.3条、0.55 g和3.6条、0.32 g。
     4、不同坡度粮草带状间作种植对谷子、糜子主要生理生态指标的影响
     1)坡度耕地上,谷子和糜子的光合速率日变化均呈“M”型双峰曲线变化,在下午2:00点~4:00之间出现“午休”现象。蒸腾速率和气孔导度的日变化与光合速率日变化表现一致,而胞间CO_2浓度日变化则呈现由高到低的变化趋势。
     2)与单作相比,粮草间作处理能明显增加谷子和糜子的蒸腾速率和气孔导度、显著提高谷子和糜子叶片的净光合速率。在5°坡地上,2:4间作模式的增加幅度最大,谷子和糜子的叶片的净光合速率平均较单作处理提高1.46μmol·m~(-2)·s~(-1)和2.41μmol·m~(-2)·s~(-1);在15°坡地上,4:4粮草间作模式的增加幅度最大,谷子和糜子叶片的净光合速率平均较单作处理提高3.17μmol·m~(-2)·s~(-1)和1.68μmol·m~(-2)·s~(-1)。
     3)坡耕地上谷子和糜子全生育期的LAI呈低-高-低的变化趋势,抽穗期最大,CGR最高时期为拔节-抽穗期和抽穗至灌浆期,出苗到拔节期的CGR相对较低,干物质积累缓慢。谷子单位叶面积和时间获得的净同化物最高的时期为拔节-抽穗期和出苗-拔节期,抽穗后NAR开始下降,灌浆-成熟期NAR值最低;糜子在出苗-拔节、拔节-抽穗、抽穗-灌浆3个时期的NAR值均较高,灌浆-成熟期NAR值则明显降低。
     4)坡度耕地上粮草间作模式的谷子和糜子不同生育阶段的叶面积指数、作物生长率和净同化率与单作相比显著提高。在5°坡地上,2:4间作模式的增加幅度最为明显,抽穗期、灌浆期和成熟期,谷子的LAI值较单作平均增加20.05%、25.25%和50.22%,糜子的LAI值较单作平均增加30.51%、20.10%和33.69%;在拔节-抽穗和抽穗-灌浆期,谷子的CGR值较单作分别提高46.90%和54.81%,NAR较单作提高26.67%和50.0%;糜子CGR值较单作提高36.54%和16.05%,NAR较单作处理提高36.36%和20.0%。在15°坡地上,4:4间作模式的增加幅度最为明显,抽穗期、灌浆期和成熟期谷子的LAI分别较单作提高17.75%、25.24和45.46%,糜子的LAI分别较单作提高31.96%、31.07和46.29%。拔节-抽穗期和抽穗-灌浆期,谷子的CGR分别较单作提高46.90%和74.05%, NAR分别较单作提高25.0%和45.45%;糜子的CGR分别较单作提高36.54%和42.86%, NAR分别较单作提高36.36%和40.0%
Southern arid areas in Ningxia, agricultural production depends on natural rainfall, effective rainfall shortage and uneven distribution of rainfall in time and space is a major factor constraining crop growth. Most of the farmland due to the role of heavy rainfall during the rainy season, causing heavy soil erosion and surface soil nutrient loss and soil degradation. Slope or ordinary wood hedgerow planting grass to reduce soil erosion has a significant effect. The intercropping technique with full use of environmental resources and increase crop production characteristics is widely used all over the country.And the slope of food crops and intercropping of alfalfa few bands, especially suitable for intercropping with the forage ratio that yield traits and characteristics of soil erosion has been reported rarely.Field experiments were conducted in southern Ningxia, Pengyang white Township of steep village arid point (106°32 '~ 106°58' E, 35°4l '~ 36°17' N) during 2007-2008. In the passed the field test, different slope (5°and 15°) on the millet/alfalfa and pearl millet/alfalfa under different intercropping treatment of production target population characteristics, soil erosion, were distinguished comparative analysis of the main results. The main results showed as follows:
     1. Characteristics of soil erosion of grain-grass strip intercropping planting in different slopes lands.
     1) Farmland to take food (millet or pearl millet) grass (alfalfa) strip intercropping planting can reduce soil erosion and agricultural soil N, P, K nutrient loss, in the 5°slopes, With a ratio of 4:2 and 2:4 intercropping patterns than with soil and water conservation effect is remarkable, compared with single-surface runoff by 30% ,to reduce surfacereduce sediment loss over 98%; in the 15°slopes, 4:4, 4:6 and 6:4 three intercropping treatment effect is remarkable, to deal with than a single 50% reduction of runoff, reduce sediment loss of 84%.
     2) Comparison of different rainfall, rainfall intensity greater the larger the surface runoff, runoff and soil N, P, K nutrient content increased, but the control effect of intercropping and soil treatment on soil N, P, K nutrient loss reduction rate is decreased . Forage test strip from the set point of view, its base to the end of the planting strip of alfalfa can effectively prevent sediment loss.
     3) Loss of soil nutrients prime means for the sediment loss and runoff loss, Comparison of per unit volume of sediment in the runoff of nutrients were significantly higher than the nutrient content in; total quantity, the total loss of nutrient runoff sediment loss was significantly greater than the total nutrients. In 14mm and 21mm rainfall, 4:2 and 2:4 intercrop intercropping treatment of 5°slopes than single treatments to reduce TN, AN, TP, AVP, TK and AVK loss of 62.3% ~ 78.1% and 30.89% ~ 52.16%; 4:4,4:6 and 6:4 intercrop treatment of 15°slopes less than TN, AN, TP, AVP, TK and AVK loss of 46.0% ~ 65.4%. and 32.44% ~ 65.5%.
     2. Effects of grain-grass strip intercropping planting on soil moisture and nutrients of field in different slopes lands.
     1) At the different slopes arid land, taking grain (millet or pearl millet) grass (alfalfa) strip intercropping system can improve the soil moisture content of food field, 5°slope farmland, the 2:4 intercropping cropping patterns is the most effective, 15°slopes field, the 4:4 ratio of arable is the best intercropping cropping patterns, soil moisture content of crops is higher 2.3 points and 1.08 percentage points than the control of an average single.
     2) Grain (millet or pearl millet) grass (alfalfa) of food crops with intercropping can increase water use efficiency (WUE), the 2:4 intercrop planting patterns of 5°slopes land crop water use efficiency increased to 1.92 kg/cm3 than single-disposed.The 4:4 intercropping of 15°slopes land crop water use efficiency increased 1.25 ~ 1.57 kg/m3 than single. 3) Grain grass strip intercropping cropping can increase the cultivation of food crops with the soil organic matter content and soil nitrogen and nitrogen content, 5°slopes with a 2:4 ratio of arable land to intercropping cultivation model best, 15°slopes farmland to 4:4 ratio of intercropping cropping patterns with the best of its food crops with soil organic matter, total nitrogen, nitrogen content increased with improved intercropping years.
     4) As compared with the single grain, grain grass strip intercropping plant model soil total K, available potassium and available phosphorus content was significantly increased . in the 5°slope farmland ,the 2:4 and 4:2 intercrop planting patterns is the best. in the 15°sloping land, the 4:4 ratio of intercropping on the plant model is the best.
     3. Effects of grain-grass strip intercropping planting on production and the growth and development of millet and panicum miliaceum in different slope lands.
     1) The grain yield of arid slope to grain (millet or pearl millet) grass (alfalfa) intercropping cropping pattern was significantly higher than food alone. In the 5°slopes, 2:4 intercropping forage yield optimal , compared with grain (millet or pearl millet) single planting, the yields of millet and pearl millet yield increased 23.88% and 21.44%; in the 15°slopes, 4:4,4:6 and 6:4 the three forage intercropping yield is better, yield millet and pearl millet high 13.22 ~ 15.72% and 10.31% ~ 12.73% than food alone treatment, especially yield of 4:4 forage intercropping treatment is the most significant.
     2) Leaf area of grain grass intercropping planting patterns on food crops (millet and pearl millet) in height and growth period did not significantly affect, but significantly increased the crop green leaf area during growth period (heading-Mature ), promoting the accumulation of photosynthetic material. In the 5°slopes, 2:4 treatment of leaf area per plant increased 86.77 cm~2/plant and 27.67 cm~2 /plant than the single treatment, and increased 77.39cm~2 /plant and 9.65 cm~2 /plant during maturity; in the 15°slopes, 4:4 intercropping millet and pearl millet processing single-leaf area increased 84.74 cm~2/plant and 27.41cm~2 /plant than the singel planting , during maturity respectively increased 78.64cm~2/plant and 12.21cm~2 /plant.
     3) Dry matter accumulation of grain grass intercropping cropping is not difference before ear stage ,but after ear, millet and pearl millet dry matter accumulation per plant of intercropping forage increased significantly. In the 5°slopes, 2:4 processing mode of the crop dry matter accumulation was significantly higher than the one for food processing, millet plant quality increase 15.75%, pearl millet plant quality for processing to increase 10.10%. In the 15°slopes, 4:4, 6:4 and 4:6 three treatments significantly increased the amount of dry matter accumulation than single plant , millet increased 25.47%, 13.48% and 10.79% and pearl millet increase 17.26%, 13.69% and 13.42% during maturity.
     4) Intercropping forage crops can be increased in stem and leaf sheath dry matter accumulation, and promote the heads of grain crops in the dry matter distribution. In the 5°slopes, millet and pearl millet dry matter accumulation of the intercropping treatment increased 0.43%~9.21% and 9.55% ~ 24.24% than single-handle; in 15°slopes, its separately increasing 7.5% ~ 40.1% and 12.6% to 23.6%.
     5) Quality of root of forage intercropping cropping patterns effectively improved than food alone treatment. In the 5°slopes, millet of 2:4 forage intercropping processing mode number of roots per plant and quality were increased 1.4 twigs and 0.71g, pearl millet number of roots per plant and quality were increased 3.6 twigs and 0.32 g; in the 15°slopes, 4:4 intercrop treatment millet number of roots per plant and quality were increased 5.3 twigs and 0.55 g, pearl millet were increased 3.6 twigs and 0.32 g.
     4. Effects of grain-grass strip intercropping planting on index of the physiological ecology of millet and panicum miliaceum in different slopes lands.
     1) In the arid slopes of different slope, the millet and pearl millet in the photosynthetic rate of change was "M"-type bimodal curve, in the afternoon between 2:00 -4:00 "midday depression". Transpiration rate and stomatal conductance and photosynthetic rate on changes in the performance of the same changes, changes in intercellular CO_2 concentration of the photosynthetic rate changes and not related, present trend of high to low.
     2) Compared with the monoculture of grain, forage crop intercropping treatment can significantly increase the transpiration rate and stomatal conductance and net photosynthetic rate. In 5°slopes, 2:4 intercropping millet average net photosynthetic rate was increased 1.46μmol·m~(-2)·s~(-1) than the one for handling, pearl millet leaf net photosynthetic rate than the one for the average treatment increased 2.41μmol·m~(-2)·s~(-1); 15°slopes, 4:4 forage most obvious effect of intercropping millet average net photosynthetic rate than the food alone for treatment increased 3.17μmol·m-2·s -1 and pearl millet increase 1.68μmol·m~(-2)·s~(-1).
     3) Millet and pearl millet in the LAI from the beginning of jointing was low - high - low trend, the maximum in ear stage; the CGR is bigger during the jointing-heading and heading to filling stage and the CGR of emergence is low and dry matter accumulation slow. Millet leaf area and time to obtain the highest net assimilation time is jointing-booting and emergence- jointing stage, NAR began to decline after the booting and the lowest in filling- maturity. NAR values of pearl millet were higher in three stage of the emergence-jointing and jointing-heading and heading-filling, during the filling-maturity was significantly lower.
     4) The forage intercropping millet and panicum miliaceum population characteristics indicators were increased. Leaf area index, crop growth rate and net assimilation rate improved significantly during different growth stages. In the 5°slopes, 2:4 forage intercropping patterns was most obvious, millet LAI values was larger than the monoculture of 20.05%, 25.25% and 50.22%, pearl millet increased 30.51%, 20.10% and 33.69% during in grain filling and maturity. During the jointing-heading and heading-filling stage, millet CGR values were increased 46.90% and 54.81% and NAR were increased 26.67% and 50.0% than single planting, pearl millet of the CGR values were dealing with 36.54% respectively and 16.05%, NAR were increased 36.36% and 20.0% than handling. In the 15°slopes, 4:4 forage intercropping patterns was most obvious. During grain filling and maturity, millet LAI values was larger 17.75%, 25.24% and 45.46% than the monoculture, pearl millet increased 31.96%, 31.07% and 46.29%. During the jointing-heading and heading-filling stage, millet CGR values were increased 46.90% and 74.05% than sigle planting, NAR were increased 36.54% and 42.86% than single; pearl millet of the CGR values were more 25.0% and 45.45%, NAR were increased more 36.36% and 40.0% than single planting.
引文
安瞳昕,李彩虹,吴伯志,胡昌应,郑爱萍.玉米不同间作方式对坡耕地水土流失的影响[J].水土保持学报, 2007, 21(5):18~24.
    安瞳昕,李彩虹,吴伯志,胡昌应,郑爱萍.坡耕地玉米不同间作模式效益研究[J].作物杂志.2009,(5):92~94
    Aase J K, Pikul J L.高麦草种植带形成梯田的试验研究[J].水土保持科技情报, 1995,(4):42~43.
    程序,曾晓光,王尔大.可持续农业导论.北京:中国农业出版社,1997:5~9
    陈亚新.史海滨.魏占民.高效节水灌溉的理论基础和研究进展[J].灌溉排水,1999(增刊):20~23
    陈亚新.魏占民.崔远来.作物水分生产函数[M].李远华主编.节水灌溉理论与技术第四章.武汉水利电力大学出版社,1999:78~105
    陈国良,巨仁,山仑.上黄村试区农业生态系统优化结构的建造与调控技术[M]..见:黄土高原小流域综
    合治理与发展(中国科学院资源环境科学局主编).北京:科学技术文献出版社,1992:90~104
    陈国良,党增春.宁南山区士地利用规划模式及效益监测[J].水土保持通报,1996,16(l):60~67
    柴良植,刘世铎,李得举.大力发展间作套种提高灌区综合效益[J].干旱地区农业研究,1997,15(2):37~43
    蔡强国,卜崇峰.植物篱复合农林业技术措施效益分析[J].资源科学,2004,6(增刊):7~12.
    陈俊华,杨兴礼,岳云华.以色列种植业结构的演变及原因探析[J].干旱地区农业研究, 2000, 18 (1) : 129~ 134.
    迟凤琴,宿庆瑞,王英,王鹤桥.松嫩平原西部粮草轮作技术途径与效应的研究[J].草业科学,1993, 10(6): 23~26.
    崔俊明,宋长江,卢道文,杨海燕,郭素英,裴振群,刘智萍,芦连勇,孙海潮,牛永锋,郑丽敏.不
    同类型玉米杂交种高矮立体间作种植技术研究[J].杂粮作物.2005,25(4):253~257
    陈玉香,周道玮.玉米-苜蓿间作的生态效应[J].生态环境,2003,12(4):467~468
    陈国立,宋多义,祁丽敏,刘建娜,李元力,李清峰.不同玉米品种间作对抗性及产量性状的影响[J]. 山东农业科学. 2009, 6: 46~47
    楚轶欧,郑毅,卢国理,张朝春,汤利,朱有勇,张福锁,李少明.间作对水稻根系分布特征的影响[J].云南农业大学学报, 2007, 22(6): 887~892
    陈宝书.牧草饲料作物栽培学[M] .北京:中国农业出版社,2001. 142~ 145.
    陈举林,苏波,邹仁峰,王玉新.紧凑型玉米品种与超高产栽培[J ].玉米科学, 2000, 8 (2):46~ 48.
    佟屏亚.我国耕作栽培技术成就和发展趋势.耕作与栽培[J]. 1994,65(4):1~7
    杜守宇,田恩平,温敏著.宁夏旱作农业[M].宁夏人民出版社.2004,60
    丁昆仑,M. J. Hann,耕作措施对土壤特性及作物产量的影响.农业工程学报, 2000,16(3):28~31
    佟屏亚.论高产高效吨粮田开发的理论与实践[J].农牧情报研究, 1992, (5): 1-10.
    丁瑞霞.宁南旱区农田微集水种植技术与应用研究[D].博士学位论文.西北农林科技大学.2006.
    董宁,于长英,李永禄.玉米不同品种间作增产机理及栽培技术[J].农业科技通讯. 2002,(8):10
    董合忠,李维江,唐薇,李振怀,张冬梅.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003,23(10): 1695~1699.
    樊廷录.黄土高原旱作地区径流农业的研究[D].西北农林科技大学博士论文,2002.
    付国占,李潮海,王俊忠,王振林,曹鸿鸣,焦念元,王小东.残茬覆盖与耕作方式对夏玉米叶片衰老代谢和籽粒产量的影响[J ] .西北植物学报,2005 , 25 (1) : 155~160
    付士磊,周永斌,何兴元,陈玮.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报, 2006, 17(11):2016~2019.
    高世铭.早地作物水分亏缺补偿效应研究[D].兰州大学博士论文,1995
    高世铭,杨封科、集水农业一旱地农业的革新创举[M]..甘肃农业科技,1999年专辑
    高世铭,张绪成,王亚宏.旱地不同覆盖沟垄种植方式对马铃薯土壤水分和产量的影响[J].水土保持学报,2010,24(1):249~256
    高椿翔,高杰,邓国胜.林粮间作生态效果分析[J].防护林科技,2009,(3):97~98
    甘肃省农业科学院土肥研究所.河西走廊东部川水地区耕作改制.耕作改制的科学技术[M].农业出版社,1979
    顾宏辉,朱金庆,陈润兴,徐玉华.旱地多熟制春玉米+棉花间作技术研究[J].浙江农业学报,2001,13(1):8~12
    高阳,段爱旺,刘祖贵,孙景生,陈金平,王和洲.间作种植模式对玉米和大豆干物质积累与产量组成的影响[J].中国农学通报, 2009, 25(2): 214~ 221
    黄高宝.禾本科、豆科作物间套种植对根系活力影响的研究[J].作物学报, 1999,25(1): 16~24.
    管延安.夏谷群体光合速率及不同冠层器官的光合贡献[J] .华北农学报, 1997, 12(1): 51~55
    黄占斌.黄土高原农业雨水利用模式.见:全国雨水利用学术讨论会及国际会论文集[C].2001,212-215.
    黄占斌、山仑,肖玲.黄土高原雨水利用与农业的可持续发展[M]..第一届全国雨水利用暨东亚国际研讨会论文集.1996
    胡恒觉,黄高宝主编..新型多熟种植研究.甘肃科学技术出版社,1999,18~204
    黄平娜,秦道珠,龙怀玉,刘淑军,黄晶.绿肥-烟-稻轮作与烟叶产量品质及后茬晚稻产量效应[J].中国农学通报2010,26(01):103~108
    黄占斌,山仑.论我国旱地农业建设的技术路线与途径[J].干旱地区农业研究,2000, 18(2):1~6.
    逢焕成,陈阜,张明亮.玉米大豆间作复合群体光效应特征研究[J].耕作与栽培,1995,(4):4~7
    黄云凤,张珞平,洪华生,陈能汪,黄金良,曾悦.不同土地利用对流域土壤侵蚀和氮、磷流失的影响[J].农业环境科学学报. 2004,23(4):735~739
    胡希远.宁南旱平地沟垄径流种植技术研究[D].硕士学位论文,西北农业大学.1997.
    胡希远,陶士珩,王立祥.半干旱偏旱区糜子沟垄径流栽培研究初报[J].干旱地区农业研究, 1997,15(1):44~49.
    胡宏祥,洪天求,刘路.水土流失量和养分流失量的预测[J].环境科学研究. 2009,22(3):356~361.
    户茨义次(薛德荣译).从光合作用和物质生产看栽培理论和高产品种作物的光合作用和物质生产[M].北京,科学出版社,1979,365~406
    侯贤清,韩清芳,贾志宽,张罗生.宁南旱区坡地等高条带轮种对谷子产量及光合特性的影响[J] .西北农业学报2009 ,18 (5) :181~185
    黄勇,黄文林,成玛丽,蒋燕.不同耕作栽培方式对地膜玉米及其前作产量的影响[J] .玉米科学,2001,9(3):62~63,68
    贾永莹.亚太地区的雨养农业[J].干旱地区农业研究, 1990,(2) : 72~ 78.
    蒋定生等编著.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997:367~377
    冀宏,黄雄,郑健,樊新建,张卫勇.不同覆盖条件对土壤水分蒸发的影响[J].节水灌溉,2010(4):29~32
    金胜利,周丽敏,李凤民,张光全.黄土高原地区玉米双垄全膜覆盖沟播栽培技术土壤水温条件及其产量效应[J].干旱地区农业研究,2010,28(2):28~33
    蒋佩兰,刘龙旺,章志英,朱杏芬.不同种植方式玉米田玉米害虫及其天敌与产量的研究[J].江西农业大学学报,1995,17(1):25~27
    焦念元,宁堂原,赵春,侯连涛,李增嘉,李友军,付国占,韩宾.施氮量和玉米-花生间作模式对氮磷吸收与利用的影响[J].作物学报, 2008, 34(4): 706~712
    焦念元,陈明灿,宁堂原,李增嘉.玉米花生间作对玉米干物质积累与分配的影响[J].安徽农业科学, 2007, 35(36): 11782~11783
    孔四新著.集水高效农林技术[M].,河南科技出版社.1998
    康国章,王永华,郭天财,朱云集.氮素施用对超高产小麦生育后期光合特性及产量的影响[J] .作物学报, 2003, 29(1): 82~86
    李玉山.黄土高原治理开发之基本经验[M]..西安黄土会议论文集.1998
    卢增澜、徐志英.再造一个山川秀美的黄土高原[M]..黄土高原综合治理与农业可持续发展讨论会陕西论文集.1998
    刘升林.西海固地区走革地农业道路的可能性[J].干早地区农业研究,1986,(4):71~79
    刘粪浩90年代我国耕作制度发展展望[J].耕作与栽培,1992,63(2):1~9
    李守谦.关于甘肃省“吨粮田’,建设的几点看法[J].甘肃农业科技,1992,(1):1~3
    李进一.宁夏引黄灌区麦套玉米一年两熟增产显著.中国农作制度研究进展.中国农业科技出版社,1997,288~292
    廖桂平,官春云.不同播期对不同基因型油菜产量特性的影响[J].应用生态学报, 2001,12(6): 853 ~858
    李隆.间作作物种间促进与竞争作用的研究[D ].中国农业大学博十学位论文,1999
    罗志成.北方旱地农业研究的进展与思考[J].干旱地区农业研究, 1994, 12 (1) : 4~ 13.
    李小坤,鲁剑巍,陈防,李文西,赵慧星.苏丹草-黑麦草轮作中不同施肥措施对饲草产量及土壤性质的影响[J].植物营养与肥料学报, 2008, 14(3): 581~586.
    雒淑珍;马忠明;赵继荣.绿洲灌区固定道垄作春小麦土壤水分变化和产量的影响[J].华北农学报,2009,24(增刊):292~295
    刘世平.长期少免耕土壤供肥特征及水稻吸肥规律的研究[J] .江苏农学院学报, 1995 , 16 (02) : 77~80
    吕雯,汪有科.不同秸秆还田模式冬麦田土壤水分特征比较[J] .干旱地区农业研究, 2006 , 24 (3) : 68~71
    栗铁申,彭世琪.埃及的旱作节水农业[J].世界农业,2003,4(228):40~42
    梁银丽,康绍忠.坡地施肥水平对谷子根系生长和生产力的作用[J].干旱地区农业研究, 1998, 16(2):53~57
    刘兰育.现代化节水灌溉技术在新疆的应用和发展前景[J].水利水电技术,2006,37(1):40~42
    廖允成,温晓霞,韩思明,贾志宽.黄土台原旱地小麦覆盖保水技术效果研究[J].中国农业科学, 2003, 36(5):548~552.
    廖建雄,王根轩.谷子叶片光合速率日变化及水分利用效率[J].植物生理学报, 1999 , 25 ( 4) : 362~368
    李海亮.专家称东非地区通过间作可以使产量翻番[J].世界热带农业信息,2010,(1):26-27
    李晓锋,陈明新,陈仕耀,邹维周,杨顺成,张年,索效军.三峡库区林草间作及肉羊高效养殖模式探讨[J].湖北农业科学. 2006,45(2):226~228
    刘天学,李潮海,付景,闫成辉.不同基因型玉米间作的群体质量[J].生态学报.2009,29(11):6302~6309
    李凤超,李增嘉.种植制度的理论与实践[M].北京:中国农业出版社,1995,139~192.
    李潮海,苏新宏,孙敦立.不同基因型玉米间作复合群体生态生理效应[J].生态学报,2002,22(12):1096~2013
    刘天学,李潮海,马新明,赵霞,刘士英.不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响[J].植物生态学报. 2008, 32 (4) 914~921
    刘昌明,王会肖著.土壤-作物-大气界面水分过程与节水调控[M].科学出版社,1999,1~37
    李文学.小麦/玉米/蚕豆间作系统中氮、磷吸收利用及其环境效应[D].中国农业大学博士论文. 2001.
    李妍妍,丰光,齐华,黄长玲.中单808和丹豆14间作系统生理生态指标及产量的比较分析[J].作物杂志. 2010,(2):44~49
    李玉英,孙建好,李春杰,李隆,程序,张福锁.施氮对蚕豆/玉米间作系统蚕豆农艺性状及结瘤特性的影响[J].中国农业科学2009,42(10):3467~3474
    刘景辉,曾昭海,焦立新,胡跃高,王莹,李海.不同青贮玉米品种与紫花苜蓿的间作效应[J].作物学报,2006,32(1): 125~130.
    李锋瑞编著.干旱农业生态系统研究[M].西安:陕西科学技术出版社,1998
    刘元保,唐克丽.坡耕地不同覆盖的水土流失试验研究[J].水土保持学报, 1990,4 (1):26~ 29.
    林超文,涂仕华,黄晶晶,陈一兵.植物篱对紫色土区坡耕地水土流失及土壤肥力的影响[J].生态学报, 2007, 27 (6):2191~2198.
    林和平.水平沟耕作在不同坡度上的水土保持效应[J].水土保持学报, 1993, 7 (2) : 63~69.
    刘自红,苏海鹏,汤利.间作环境中小麦氮钾养分吸收利用与干物质累积的动态变化特征[J].云南农业大学学报, 2007, 22(6): 893~897
    李洪勋.草带在防治坡耕地土壤侵蚀中的作用[J].草业科学,2005,22 (1):94~97.
    刘巽浩,韩湘玲,赵明斋,孔扬庄.华北平原地区麦田两熟的光能利用、作物竞争与产量分析[J].作物学报,1981,7(1): 63~71.
    李新平,黄进勇.黄淮海平原麦玉玉三熟高效种植模式复合群体生态效应研究[J].植物生态学报, 2001,25(4): 476-482
    李增嘉,李风超,赵秉强.小麦玉米玉米间套作的产量效应与光热资源利用率的研究[J].山东农业大学学报, 1998,29(4): 419~426.
    林金科,赖志明.影响茶树叶片净光合速率的生态生理因子的初步分析[J].作物学报,2000, 26(1):45~50.
    路海东,薛吉全,赵明,马国胜.玉米高产栽培群体密度与性状指标研究[J] .玉米科学2006, 14(5): 111~114
    梁亚超,于桂霞,杨殿荣,刘庆江.玉米地膜覆盖蓄水保墒高产机理的研究[J] .干旱地区农业研究, 1990, 8 (1):27~32
    马天恩,高世铭编著.集水高效农业[M].兰州:甘肃科学技术出版社,1997.
    马艳梅.长期轮作连作对不同作物土壤磷组分的影响[J].中国农学通报, 2007, 22(7): 355~358.
    毛云玲,邓佳,陆斌,宁德鲁.不同覆盖方式对云南干热河谷油橄榄园土壤温度、水分和容重的影响[J].西北农业学报,2010 ,19 (2) :150~154
    孟军江,唐成斌,钱晓刚,莫本田,龙忠富,赵明坤.喀斯特山区退耕坡地紫花苜蓿引种栽培试验[J].贵州农业科学, 2005, 33(6):51~53.
    马长明,翟明普,刘春鹏.单作与间作条件下核桃根系分布特征研究[J].北京林业大学学报. 2009,31(6):181~186
    马春梅,刘侃,唐远征.轮连作对土壤微生物数量的影响[J].东北农业大学学报,2005,36(2): 147~152
    米艳华,潘艳华,沙凌杰,郭玉蓉,李金城,张晓林.云南红壤坡耕地的水土流失及其综合治理[J].水土保持学报,2006, 20(2): 17~21.
    马仲武,王辉,孙栋元.林草间作地土壤低吸力段持水性能的初步研究[J].土壤通报,2008 ,39 (1) :29~32.
    马世均,钮溥.旱农学[M ].北京:农业出版社,1991:56~78
    潘启明.存小麦带状套种玉米黄显亩产吨粮初步示范[J].宁夏农林科技,1990,6:2~5
    彭致功,杨培岭,王勇,任树梅.再生水灌溉对草坪土壤速效养分及盐碱化的效应[J].水土保持学报.2006,20 (6):84~88.
    强秦,曹卫贤,刘文国.不同栽培模式土壤水分动态变化研究初报.杨凌职业技术学院学报,2004,3(4):14~17
    阮维斌,王敬国,张福锁.长期连作对大豆苗期生长及生物固氮作用的影响[J].生态学报, 2003, 23 (1): 22~29.
    任继周,林慧龙,朱丽.草地农业是甘肃农业可持续发展的重要途径[J].草地学报,2009,17(4):405~412
    饶春富.春玉米大面积亩产吨粮的产量构成因素浅析[J].玉米科学,1993 , (1) :13~16
    宋尚有.旱地农田水分利用的理论和技术研究[D].甘肃农业大学博士学位论文,1998
    上官周平、彭可珊.黄土高原粮食生产与持续发展研究[M]..陕西人民出版社.1999
    山仑,苏佩.我国北方主要秋粮作物的抗旱特性[A ].山仑,陈培元.旱地农业生理生态基础[C ].北京: 科学出版社, 1998. 280~ 298.
    孙秀山,封海胜,万书波,左学青.连续种植花生对土壤中的主要微生物链的酶活性的变化及相互间的影[J].作物学报,2001,27(5):617~621.
    孙建,刘苗,李立军,刘景辉.不同耕作方式对内蒙古旱作农田土壤侵蚀的影响[J].生态学杂志,2010,29(3):485~490
    孙惠民,程满金,郑大玮,张建新.北方半干旱集雨补灌旱作区节水农业发展模式[J].应用生态学报,2005,16(6):1072~1076
    宋西德,刘粉莲,张永.黄土丘陵沟壑区林农复合生态系统立体经营模式研究[J].西北林学院学报, 2004,19(4):43-46
    沈学年,刘巽浩.多熟种植[M].农业出版社,1983,40~41
    孙秋良.农田立体多熟高效益栽培技术[M].科学技术文献出版社,1991
    沈阳农学院农学专业:作物种间的研究[J].沈阳农学院学报,1971,25~36
    史振声,朱敏,李凤海,王志斌.玉米不同品种间作增产机制[J].种子.2008,27(12):1~4
    宿庆瑞.东北玉米主产区玉米/草木樨间种轮作农牧结合综合效益的研究[J] .中国草地, 1998 ,(4 ):17~20
    孙辉,唐亚,陈克明,张炎周.等高固氮植物篱控制坡耕地地表径流的效果[J].水土保持通报, 2001: 21(1):48~51.
    苏广实,陈健飞.我国坡地资源利用生态环境效应的研究现状综述[J].热带地理, 2007, 27 (4): 306~310.
    田慧梅,季尚宁.玉米草木樨间作效应分析[J] .东北农业大学学报,1997 , (28) :15~22
    王立祥,王留芳,范芳强,李顺昌,李永平.西北黄土高原半干旱一半湿润地区旱作农田降水生产潜力开发途径[J].自然资源学报,1989,4(l):19~25
    王龙昌,王立祥,谢小玉.论黄土高原种植制度优化与农业可持续发展[J].农业系统科学与综合研究,1998,14(2):81~85
    王百田.径流农业-发展干旱农业的重要途径.全国首届雨水利用学术会议暨东亚地区国际研讨会论文集[C].甘肃水利水田技术,1998(增刊):15~21.
    王晓凌.半干旱农田生态系统马铃薯田间微域集水的理论与实践[D].西北农林科技大学硕士论文,2002.
    王百田.径流农业—发展干旱农业的重要途径[M]..第一届全国雨水利用暨东亚国际研讨会论文集.1996
    王立样,王留芳,李顺昌,阎采苓.宁夏固原半千早早作农区农业结构改革及效益研究[J].西北农业大学学报,1987,15(3):9~18
    王龙昌,王立祥,谢晓玉.论黄土高原种植制度优化与农业可持续发展[J].农业系统科学与综合研究, 1998, 14 (2) : 81~85.
    万素梅,王立祥.发挥区域资源优势促进新疆棉花可持续发展[J].塔里木大学学报,2006,18(1): 98~101
    张思苏,封海胜,万书波,隋清卫,左学青.花生不同连作年限对植株生育的影响[J].花生学报, 1992,(2):21~23
    万越,操张洪,朱三荣.旱地烤烟轮作制度初步研究[J].作物研究,2009,23(4):259~264
    吴成银,朱云霞,王俊.油菜菌核病的发生原因及防治对策[J].安徽农学通报, 2007, 13 (6) : 172
    王健,吴发启,孟秦倩.农业耕作措施减沙的能量分析[J].灌溉排水学报,2007,26(3):89~92
    王智功,李立军,刘景辉;旱作坡耕地保护性耕作土壤酶活性研究[J].内蒙古农业大学学报(自然科学版),2009,30(30):79~82
    吴家兵,裴铁璠.长江上游、黄河上中游坡改梯对其径流及生态环境的影响[J].国土与自然资源研究, 2002,(1) : 59~61.
    汪德水.旱地农田肥水关系原理与调控技术[M].北京:中国农业出版社, 1995,246~254.
    吴普特.人工汇集雨水利用技术研究[M].郑州:黄河水利出版社,2002.
    王致萍,周文涛,张晓霞.黄土丘陵沟壑区林草间作种植效益评估[J].草原与草坪,2009(6):62~68
    王焕龙.对林草间作几种模式的初探[J].现代农业科技(下半月刊),2005,(9):53
    汪立刚,梁永超.坡耕地粮草间作的培肥保土效果及生态环境经济效益[J].生态农业科学, 2008, 34(10):482~486.
    王旭,曾昭海,朱波,胡跃高,林叶春,陈恭,芦金生,袁喜兰.燕麦间作箭筈豌豆效应对后作产量的影响[J].草地学报.2009,17(1):63~67
    吴振云,林松山,吴万波.旱泉沟流域林草植被的恢复[J].中国林业. 2009,(7):54~55
    王建湘,周杰良,李树战,张雄.南方丘陵山地梨园间作旱稻对土壤理化性质的影响[J].中国水土保持.2007,(5):33~34
    王庆祥.玉米的增产潜力及其限制因素[J ].黑龙江农业科学,1988 , (4) :41~44
    翁晓燕,将德安,陆庆,饶立华.影响水稻叶片光合日变化因素的分析[J].中国水稻科学1998, 12 (2):105~108.
    翁晓燕,将德安.生态因子对水稻Rubisco和光合日变化的调节[J] .浙江大学学报, 2002, 28(4): 349~387 .
    王永锐.作物高产群体生理[M].北京:科学技术文献出版社,1991,176~198
    武志海,张治安,陈展宇,徐克章.大垄双行种植玉米群体冠层结构及光合特性的解析[J] .玉米科学, 2005, 13(4):62~65
    魏建军,罗赓彤,张力,张占琴.高产大豆主要群体生理参数的变化及其对产量的影响[J] .大豆科学,2009,28(3):472~476
    吴盛黎,杨宏敏,顾明.地膜玉米高产群体生理指标的研究[M].贵州农学院丛刊, 1994,(2): 108~112
    西北农学院农业生态系统及控制研究课题组.西北黄土高原农业生产结构改革及效益[J].西北农学院学报,1984,(3)75~86
    信乃诠,侯向阳,张燕卿.我国北方旱地农业研究开发进展及对策[J].中国生态农业学报,2001, 9(4):58~60
    夏锦慧,邓英,陈明华,肖厚军,蒋太明.黔中地区坡耕地水土流失及坡面防护技术研究[J].贵州农业科学, 2004,32(1): 39~40.
    夏玉龙.论农区种草养畜:玉米、草木樨二比一间作之我见[J].饲料博览. 1989,(1):43~45
    信乃诠,王立祥主编.中国北方旱区农业[M].南京:江苏科学技术出版社,1998.
    綦伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报, 2006,17(5):835~838.
    许大全.光合作用效率[M].上海:上海科学技术出版社, 2002.
    薛吉全.玉米高产理论和技术途径之概述与展望[J] .作物研究,1993, 7(1):46~49
    徐英,周明耀,薛亚锋.水稻叶面积指数和产量的空间变异性及关系研究[J] .农业工程学报,2006,22(5):10~14
    杨封科.黄土高原半干旱区雨水的优化利用[M]..甘肃农业科技.1998专辑
    杨春蜂主编.西北农作制度[M]. 1996,中国农业出版社. 42~43
    叶瑞卿,黄必志,袁希平,龙绍武,陈庆敏,樊心逵.坡地草带间距与水土保持效应研究[J].家畜生态学报,2008,29(3):80~85
    姚建民,殷海善.降水资源有效化与旱地农业[J].资源科学,1999,21(4):47~50.
    杨勤科.半干旱黄土丘陵区梯田集水增产效应研究[J].水土保持学报, 2006, 20 (5) : 130~133.
    叶莉,裘立斌,刘春静,惠勃芹,董卫民.玉米与草木樨间作的推广试验研究[J].草原与草坪,2004,(3):60~62.
    于中国,于晓丽,王猛.浅谈米稻间作增产增收的前景[J].辽宁农业科学,2006,(6) :59
    袁东海,王兆骞,郭新波,陈欣,张如良.不同农作方式红壤坡耕地土壤氮素流失特征[J].应用生态学报, 2002, 13 (7):863~866.
    袁东海,王兆骞,陈欣,郭新波,张如良.不同农作措施下红壤坡耕地土壤钾素流失特征[J] .应用生态学报, 2003, 14 (8):1257~1260.
    袁东海,王兆骞,陈欣,郭新波,张如良.不同农作方式红壤坡耕地土壤氮素流失特征[J] .应用生态学报, 2003, 14 (10):1661~1664.
    姚新春,师尚礼.寒区旱区间歇性干旱对接种根瘤菌苜蓿草地土壤养分动态的影响[J].土壤通报.2007, 38(3):457~462.
    朱兴平.干早半干旱区雨水利用与农业可持续发展[M]..第一届全国雨水利用暨东亚国际研讨会论文集.1996
    赵松岭.集水农业引论[M],西安:陕西科学技术出版社,1996.228~232
    张志强,孙成权,王学定,高峰,吴新年.陇中黄土高原丘陵区生态建设与可持续发展[J].水土保持通报.1999,19(5):54~58
    中国科学院黄土高原综合科学考察队.黄土高原地区农林牧业综合发展与合理布局[M].北京:科学出版社,1991
    章健,金旺枝,承河元.稀土积累与油菜菌核病发生的关系研究[J].应用生态学报, 2002,13 (5): 589~592
    周可金,邢君,博毓红,桑亚松,吴社兰,宋国良.油菜与紫云英间混作系统的生理生态效应[J].应用生态学报, 2005,16(8): 1477~1471
    张福锁.养分资源利用的问题及其研究重点.土壤与植物营养研究新动态(第4卷) [M ],李春检主编,中国农业大学出版社,2001,12~23
    中国农业科学院.当代世界农业[M ].成都:四川科学技术出版社, 1991. 387~ 397.
    张淑香,高子勤,刘海玲.连作障碍与根际微生态[J].应用生态学报,2002,11(5):741~744.
    张玉先,王孟雪.麦-玉-豆轮作制度下施肥措施对土壤养分的影响[J].中国油料作物学报,2009,31(3):339~34
    曾河水.长汀县河田的水土保持坡面工程效益研究[J]中国水土保持,1989 , (3) :37~41
    张镜清.冬小麦耗水强度与施肥灌水的关系[A].汪德水.旱地农田肥水关系原理与调控技术研究[C].北京:中国农业科学技术出版社,1995.229~232
    翟治芬,赵元忠,景明,张建华,卢艳敏.秸秆和地膜覆盖下春玉米农田腾发特征研究[J].中国生态农业学报,2010, 18(1): 62~66
    赵举,郑大玮,潘志华,程玉臣.农牧交错带粮草带状间作防风蚀保土效应的研究[J].华北农学报,2005, 20:5~9.
    朱金庆,徐明时,褚田芬.玉米间套作群体的研究[J].浙江农业学报,1992,4(4):195~163
    张训忠,李伯航.高肥力条件下夏玉米大豆间混作互补与竞争效应研究[J] .中国农业科学,1987 ,(2) :65~71
    张孝纯,刘艳荣.防止坡耕地水土流失的生物措施及效益分析[J].科技创新导报.2008,(17):93~94
    张丽娟,毕淑芹,袁丽金,薛宝民,张金柱.不同土地利用方式土壤侵蚀与养分流失的模拟试验[J].林业科学. 2007,43(增刊):17~21
    左元梅,王贺,李晓林,张福锁,曹一平.石灰性土壤上玉米花生间作对花生根系形态变化生理反应的影响[J].作物学报,1998,24(5):558~563
    尹迪信,唐华彬,朱青,李裕荣,李登美,梁大超.坡耕地不同水土保持措施下的养分平衡和土壤肥力变化[J].水土保持学报, 2002, 16 (1) : 72~75.
    中国科学院南京土壤研究所编.土壤理化分析[M].上海:上海科学技术出版社,1980
    郑国生,邹琦.不同天气条件下田间大豆光合作用日变化的研究[J].中国农业科学,1993, 26 (1):45~50.
    钟岩,周吉锋,祁宏英,牟金明.灌浆期谷子净光合速率日变化及相关影响因子的研究[J] .吉林农业科学2008,33(2): 5~7
    Awal M A, Koshi H, Ikeda T. Radiation interception and use bymaize/peanut intercrop canopy[J]. Agricultural and Forest Meteorology, 2006,139: 74~8
    AnilL, Park R H P, Miller F A. Temperate intercropping of cereals for forage: A review of the potential forgrowth and utilizationwith particular reference to theUK[J].Grass Forage Science, 1998,53: 301~317
    Alegre J C, Rao M R. Soil and water conservation by contour hedging in the humid tropics of Peru [J]. Agric. Ecosyst. Environ, 1996, 57,17~25.
    Bhadoria P B, PrakashY S. Relative influence of organic manures in combination with chemical fertilizer in improving rice productivity of lateritic soil[ J]. J Sust Agric,2003, 23(1): 77~87.
    Blankenau K, Olfs HW, Kuhlmann H. Strategies to improve the use efficiency of mineral fertilizer nitrogen applied to winter wheat[J]. Agron Crop Sci ,2002, 188:146~154.
    Baker, E. F. I. Research on mixed cropping with cereals in Nigerian farming systems. (In) International workshop on farming (Proceeding).I. C.R.S.A.T. Hyderabad 1974
    Biscoe P. V., Gallagher J. N. Weather, dry matter production and yield[M].Landsberg J. J., Cutting C. V. Environmental Effects on Crop Physiology. London: Academic Press, 1977
    Black C., Ong C. Utilization of light and water in tropical agriculture[J]. Agric. For. Meteorol., 2000, 104: 25~47
    B loodworth H, Lane M. Covers and conservation tillage for sweet-potato [J]. J. Soil and Water Conservation, 1996, 51 (6) :365~ 371.
    Bruce W B, Edmeades G O, Barker T C. Molecular and physiological app roaches to maize improvement for draught to lerance [J]. J Exp Bot, 2002, 53 (366):13~25.
    B loodworth H, Lane M. Covers and conservation tillage for sweet-potato[J]. Soil and Water Conservation, 1996,51 (6):365~ 371.
    Brengle K.G. Pribciple and practises of dryland farming. Colorado Assoxiated University Press,1982
    Cluff,C.B.Engineering aspects of water harvesting at the university of Arizona. In:Frasier,G.W.(ed), Proceedings of the water harvesting symposium, march 26-28,1974:27~39,Phoenix,Arizona.
    Chaves M M, Maroco J P and Pereira J S. Understanding plant responses to drought-from genes to the whole plant [J]. Functional Plant Biology , 2003, 30:239~264.
    Cooper P. J. M. Crop management in rainfed agriculture with special reference to water use effieiency[M]. In:Proceedings of the 17th Colloquium of the International Potash Institute Rabat , 1983 ,Morocco:19~35.
    Dutt,G.R.&McCreary, T.W. Multipurpose salt treated water harvesting system. In:Frasier, G.W.(ed), Proceedings of the water harvesting symposium,march 26-28,1974:310~314,Phoenix,Arizona.
    Doral,Kemper. Hedging against erosion [J]. Journal of Soil and Water Conservation, 1992, 7: 284~288.
    Davies W J , Wilkinson S and Loveys B. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture[J]. New Phytologist, 2002, 153:449~460.
    Evenari M,Shanan L,Tadmor. N.“Runoff Farming”in the Desert I.Experimental Layout[J].Agronomy Journal, 1968,60:29~32.
    Edwards W M. Role of lumbriens terrest rials burrowson quality of infiltration water [J] . Soil Biol Biochem , 1992 , 24(02) : 1555~1561
    Endrix P F. A bundance and dist ribution of earthwormin relation to landscape factors on the Georgia Piedmont [J] .Soil Boil Biochem , 1992 , 24 (12) : 1357~1361
    Evenari M,Shanan L,Tadmor N H. The Negev: The Chal-lenges of a Desert[M]. Cambridge: 1971,Harvard University Press.
    Elomre R.W. and J.A. Jaekobs. Yield and nitrogen yield of sorghum intereropped wlleat and clover[J]. Tropical Agriculture,1986,72(2):170~172
    Evenari M, Shanan L,Tadmor, N.Ancient agriculture in the Negev[J]. Science, 1961,133 (3457): 979~996.
    Frasier,G.W.Water quality from water-harvesting systems[J].J.Environ.Qual, 1983,12: 225~231.
    Frasier,G.W.Water harvesting:a source of livestock water[J]. J.Range Manange.1975,28:429~434.
    Frasier,G.W.,Cooley,K.R.and Griggs, J.R. Performance evaluation of water harvesting canchments[J]. J.Range Mange.1979,36:453~456.
    Franeis C.A.1986 Multiple cropping system,New York:Macmillan Publishing compaly Inc.86~99
    Fu B, Wang J, Chen L, Qiu Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau[J]. China Catena, 2003,54:197~213.
    Fernandez J E, Monero F, Murillo J M. Evaluating the effectives of a hytrophobic polymer for conserving water and reducing weed infection in a sandy loam soil[J] .Agricultural Water Management, 2001, 51(1): 29~51
    Grema A. K and T. M. Hess. Water balance and water use of millet-cowpea intercrops in northeast Nigeria[J]. Agricultural Water Management,1994, 26:169~185
    Hauggaard-NielsenH, Ambus P, Jensen E S. Interspe-cific competition, N use and interference with weeds inpea-barley intercropping[J].Field Crops Research, 2001,70: 101~109
    Hoekstra G J, Kannenberg L W, Christie B R. Grain yield comparison of pure stands and equal proportion mixtures for seven hybrids of maize[J]. Canadian Journal of Plant Science, 1985,65:471~479.
    Harris D., Natarajan M., Willey R. W. Physiological basis for yield advantage in a sorghum– groundnut intercrop exposed to drought. I. Dry-matter production, yield, and light interception[J]. Field Crops Res., 1987, 17: 259~272
    Hulugalle N. R and Willart. Seasonal variation in the water uptake and leaf water potential of intereropped and monocropped chillies[J].Experimental Agrieulture,1987, 23: 273~282
    Hulugalle N. R and R. Lal. Soil water balance of intereropped maize and cowpea grown in a tropic hydromorphic soil in western Nigeria[J]. Agronomy Journal,1986,78:86~90
    Herridge D F , Marcellos H , Felton W L. Chickpea increases soil N fertility in cereal system through nitrate sparing and N2 fixation[J]. Soil Biology Biochemist ry, 1995 , 27 : 545~551
    Jarvis, P.G. Morison.J .I. L. The control of transpiration and photosynthesis by the stomatal In Jarvis P.J. , Manfield, T.A. Stomatal physiology[M]. Cambridge Univ.Press, 1981, 247~ 279 .
    Kemper,W.D.and Noonan, L. Runoff as affected by salt treatment and soil texture[J]. Soil Sci. Soc. Amer .Proc.,1970,34:120~130.
    Kemper,W.D.,Nicks,A.D.and Corey,A.T. Accumulation of water in soils under gravel and sand mulches[J]. Soil Sci.Soc.Am.J.,1994,58:56~63.
    Kwong K, Bholah A,Volcy L. Nitrogen and phos-phorus transport by surface runoff from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius[J]. Agriculture, Ecosystems and Environment, 2002, 91: 147~157.
    Keating B. A., Carberry P. S. Resource capture and use in intercropping: solar radiation[J]. Field Crops Res., 1993, 34:273~301
    Karpenstein-Maehan.M.and R Stuel Pnagel. Biomass yield nitrogen fixation of legumes monocropped and intercropped with rye and rotation effeets on a subsequent maize crop[J]. Plant and Soil,2000, 218: 215~232.
    Li F, Zhao Y. Development of a GIS-based decision support system of forest resource management[J]. Science in China, Series E: Technological Sciences, 2006,49(Supp. 1): 76~85.
    Loomis,R.S and W. A. Williams. Maxium crop productivity: a astimate[J]. Crop Science. 1963, 3: 69~72
    Liang B M, Sharp R E, and Baskin T I. Regulation of growth anisotropy in well-watered and water-stressed maize roots.Ⅰ. Spatial distribution of longitudinal, radial, and tangential expansion rates [J]. Plant Physiol, 1997, 115:101~111.
    Lynch J. Root architecture and plant productivity [J]. Plant Physiology , 1995, 109:7~13.
    Mysers,L.E.,Frasier,G.W.and Griggs,J.R. Sprayed asphalt pavements for water harvesting[J]. Proc. ASCE, J.Irrig.And Drain.Div.1967,93.No.IR3:79~97.
    Mandal B. K,D Das ,A. Sahaand Mohasin. Yield advantage of wheat (tritieumaestivum) and ehiekPea(Cieerarietinum) under differents Patial arrangements in intereropping[J]. India Jouranl of Agronomy,1996, 41(l):17~21
    Moynihan J.M. S.R.Simmons and C.C.Sheaffer. Intereropping annual medic with conventional height and semidarf barley grown for grain[J].Agronomy Joumal,l996, 88:823~828
    M alinda D K. Factors in conservation farming that reduce erosion[J]. Australian Journal of Experimental Agriculture, 1995,35:969~ 978.
    Moustakasa N K, Ntzanisb H. Dry matter accumulation and nutrient uptake in flue-cured tobacco (NicotianatabacumL. ) [J].Field Crops Res, 2005, 94: 1~13.
    Marshall B., Willey R. W. Radiation interception and growth in an intercrop of pearl millet– groundnut [J]. Field Crops Res.,1983, 7: 141~160
    Morris R A and D R Garrity. Resource capture and utilization in intercropping: water[J].Field Crop Research,1993,34:303~317
    Morris R.A,A.N.Villegas,A. Polthaneeand and H. S Centeno. Water use by monoeropped and intercropped cowpea and sorghum grown after rice[J].Agronomy Journal,1990, 82:664~668
    Misra C. Performance of short duration rice varieties in mono and intercropping system under upland rainfed situation Oryza[J]. Agronomy Journal,1984, 21:38~45.
    Mc Donald M A, Healey J R, Stevens P A. The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agriculture [J]. Ecosystems and Environment, 2002, 92:1~19.
    M alinda D K. Factors in conservation farm ing that reduce erosion [J]. Australian Journal of Experimental Agriculture, 1995,35: 969~978.
    Maone S D, Herbert A J,David L H. Evaluation of the LAI2000 plant analyzer to estimate leaf area in manually defoliated soybean [J]. Agronomoy Journal, 2002, 94: 1012~1019.
    Ofori F., Stern W. R. Cereal-legume intercropping systems[J].Adv. Agron., 1987, 41: 41~90
    Olesantan F O.The effect of soil temperature and moisture content and crop growth and yield of intereropping maize with melon(Colocynthis vulgaris) [J].Experimental agriculture,1988,24:67~74
    Prasad S N , R Singh and A.K.Singhal. Grain yield, competitive indices and Water use and soybean(Glyeinmax)-based intercropping systems in south-eastern Rajasthan[J]. Indian Journal of Agrieultural Seienees,1997,67(4):150~152.
    Payne W.A,C.W Wendt and R. J. Lascano. Root zone water balance of three low-input millet fields in Niger,West afriea[J]. Agronomy Joumal.1990, 82:813~819
    Prasad Rand Blaise.1996. Soil Nitrogen dynamics in cropping systems. Root sand nitrogen in cropping systems of the semi-arid tropics. Edited by Osamu Ito,Chris Johansen,Joseph J,Adu-Gyamfi,
    Katsuyuki Katayama,Jangala V D. Kumar Rao and Thomas J.Rego[M]. Published by Japan International Research Center for Agricultural Science,l-2,Ohwashi,Tsukuba. Ibaraki . 305,Japan: 429~440
    Prinz D.1996. Water harvesting-history, techniques and trends[J].J Appl Irrig Sci,31:64~105
    Reddy M.S and R. W Willey. Growth and resouce use studies in an intercrop of Peanut millet/groundnut[J]. Field crops Research,1981, 4:13~24
    Ramalho Maguo A P, Jost Carlos Crus, Weed Competition in a maize- bean intercropping system[J]. Telma P Assini, 1989,24(5):543~552
    SinclairT R, Muchow R C. Radiation use efficiency. Advances in Agronomy, 1999,65: 215~265
    Steward,B.A. Dry-land farming: the north Ameriean experience. In:Proceedings on lnternational Confernce of dry-land Farming.Bushland,Texas,1988:54~59
    Shrivastna NC,Verma G P. Water harvesting for supplemental irrigation under conditions of Malwa region[J].J Agric Eng, 1975,12:24~27
    Sivakumar M. V. K., Virmani S. M. Crop productivity in relation to interception of photosynthetically active radiation[J].Agric. For. Meteorol., 1984, 31: 131~141
    Snaydon R W. and P M Harris. Interactions belowground-The use of nutrients and water proeeeding of international workshop on intereroppng,Hyderabad,India.10~13,Junary 1981, ICRISAT:188~201
    Singh S P and D.J ha.Sorghum-based intereropping system under rainfed condition[J]. Indian Journal of Agronomy,1984, 29:101~106
    Shaekel K A and Hall. A. E. Effeets of intercropping on the water relations of sorghum and cowpea[J]. Field Crops Researeh,1984,8:341~347
    Sch reiker J D. Sediment, nitrogen, and phosphorus runoff with conventional and conservation tillage cotton in a smallwa-tershed[J]. J. Soil and Water Conservation, 1994, 49 (1) : 82~89.
    Stuelpnagel R.1992. Intercropping of faba bean with oats or spring wheat[J].Proceedings of International Crop Science Congress,14~22. July, 1992,Iowa State University, Ames,Iowa
    Trenbath B. R. 1986. Resource use by intercrops. In Multiple Cropping Systems,Ed. CA. Francis. NewYork: Maemillan Publishing Co:57~81
    Tsubo M, Walker S, Mukhala E. Comparisons of radiation use efficiency of monointer- cropping systems with different row orientations[J]. Field Crops Research, 2001,71:17~29
    Tsubo M, WalkerS, Ogindo H O. A simulationmodel of cereal-legume intercropping systems for semi-arid re-gions.Ⅰ. Model development[J].Field Crops Research,2005,93: 10~22
    Tsubo M, Walker S. A model of radiation interception and use by a maize-bean intercrop canopy[J]. Agric. For. Meteorol. 2002, 110: 203~205
    Unger. P.W. Tilllage systems for soil and water conservation[M]. FAO Soil Bulletin No.54. FAO,Rom, 1984
    Viets F G. Water deficits and nutrient availability [A].Kozlowski T T. water deficitsand plant growth [C]. USA:Acad Press,1972, 217~247.
    Verma H N. 1981. Water harvesting for life-saving irrigation of rained crops in the sub-montane region of Punjab[J].J Agric Eng,18:64~72
    Wang Longchang,Wang Lixiang,Xie Xiaoyu. Optimization of cropping system and agricultural sustainable development in Loess Plateau. In:Eeonomie and Environmental Sustainable Developmentin Middle and Westem Region of China in 21st Centurly. Inner Mongolia People’s Publishing House. 1999:323~328
    Watson C A, Atkinson D, Gosling P. Managing soil fertility in organic farming systems[J].Soil Use and Management, 2002,18: 239~247
    West T. D and D R. Griffith. Effeet of strip-intereropping corn and soybean on yield and Profit[J]. Journal of Produetion Agrieulture, 1992, 5:107~110
    Willey R W. Resource use in intereropping systems[J]. Agricultural Water management,1990, 17:215~231.
    Wilkinson S, Davies W J. ABA-based chemical signaling:the coordination of responses to stress in plants. Plant[J], Cell and Environment, 2002, 25: 195~210.
    Yair A. Hill slope hydrology water harvesting and areal distribution of some ancient agriculture system in the northern Negev desert[J]. Journal of Arid Environments,1983,6: 283~301.
    Zhang Baowen,Jia zhikuan. The productive potential of the dryland and the ways and strategies for development of dryland farming in China. Proceedings of the International Symposium on Sustainable Faring Systems for Dryland Agricultural in China (ed.by wei yimin).yangling,China.1997:7~12
    Zhang F S and L Li. Using competitive and facilitative interactions in intereropping systems enhance crop produetivity and nutrients-use effieiency[J]. Plant and Soil,2003, 248: 305~312.
    Zhou X L,F.Angus,C Maekenzie. Management Praetices to conserve soil nitrate in maize Production system[J]. Journal of Environment Quality. 1997,26: 1369~137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700