空气悬架大客车有限元建模方法及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车身骨架作为客车的主要承载结构,其结构安全性是客车被动安全性能的重要指标,也是保证客车可靠运行的关键因素。与此同时,车身骨架的质量在客车整备质量中占有较大的比重,对其进行轻量化设计既能减少客车的能源消耗,又能降低其碰撞能量,是提高客车的能源利用效率和结构安全性的重要措施。采用有限元技术对客车的车身骨架进行静、动态的结构校核和轻量化设计在提高客车的安全性、舒适性、降低能源消耗和减少排放等方面具有重要意义。
     目前,基于有限元技术的空气悬架客车结构特性分析在车身骨架的典型工况分析、拓扑优化设计和侧翻安全性仿真三方面尚存在以下不足:基于简化悬架法的典型工况建模方法难以准确模拟空气悬架的耦合承载特性,且忽略了高度阀组合控制方式的作用,与空气悬架的实际承载特性有一定差异。拓扑优化设计中,车身骨架有限元模型较为庞大,需要耗费大量的计算资源;且边界条件设置过于简化,拓扑优化结果的可靠性较低。进行全试验周期的客车侧翻安全性仿真,计算规模庞大,不利于缩短设计周期。
     针对以上不足,本课题开展了如下相关理论研究和工程运用工作:
     1、建立了基于载荷等效法和辅助约束法相结合的空气悬架客车典型工况有限元建模方法:通过力学分析与数值求解,建立了空气悬架系统耦合承载特性的分析计算方法;建立了基于载荷等效法和辅助约束法相结合的有限元建模方法。基于上述方法,课题进行了Corp612A、Corp612B两型空气悬架客车的典型工况结构校核和轻量化改进。Corp612A型客车实车减重170Kg,并已通过可靠性试验,Corp612B型全承载式客车设计减重250Kg。
     2、建立了基于子结构技术和载荷等效法的客车车身骨架拓扑优化方法:在拓扑优化分析中引入子结构技术,将非拓扑区域结构凝聚为超单元,达到节约计算资源的目的;同时,采用基于载荷等效法和辅助约束法相结合的建模方法,提高拓扑优化结果的可靠性。基于上述建模方法,课题进行了客车顶棚、侧围和底架格栅的单工况和综合工况拓扑优化分析,子结构技术的引入使拓扑优化分析效率提高了两个数量级以上
     3、建立了基于刚体预处理的客车侧翻安全性有限元建模方法:基于翻转、跌落阶段的刚体车身假设,进行了客车模型与地面碰撞的初始条件分析,获得碰撞瞬时客车模型参数;通过修改原始的客车侧翻安全性有限元模型生成了客车碰撞阶段的有限元模型。基于上述建模方法,课题进行了Corp612B型全承载式客车碰撞阶段的侧翻安全性仿真分析,验证了该建模方法的可行性,同时对客车的上部结构进行了改进设计,提高了其侧翻安全性。
As the main bearing structure of bus, structure security of the body frame, as an iMPortant index of passive safety performance, is a key factor for reliable operation. Meanwhile, the quality of body frame takes great part of the bus equipment quality. Therefore, lightweight design for body frame is an iMPortant measurement for developing energy-saving and safe bus. Processing static and dynamic structure safety analysis and lightweight design though finite element analysis has a vital significance in iMProving passive safety performance, traveling comfort, smooth operation, reducing energy consuMPtion and emissions, etal.
     At present, deficiencies of finite element analysis technique of air suspension bus in structure characteristic analysis under typical working conditions, topology optimization design and rollover crashworthiness simulation are as follows:Traditional modeling method of finite element analysis under typical working conditions can not accurately simulate the bearing characteristics of air suspension system, the altitude valve control mode of air spring has also been ignored, which means the bearing characteristics of FEA model have certain differences with actual bearing characteristics of the body frame. Topological optimization design take too much coMPuting resources because dimensions of FEA model is too large; and also boundary conditions are always too siMPlified, reliability of the analysis results is low. The FEA size it too large in rollover crashworthiness simulation of the whole test cycle, which is not conducive to shorten the design cycle.
     For the shortages above, this topic proceeded the following theoretical research and engineering application work:
     Based on equivalent load method and assistant constraint method, modeling method of air suspension bus FEA analysis under typiacl working conditions has been established. Combing theoretical analysis and numerical calculation method, analysis and calculation method of bearing properties of the air suspension system has been established; based on equivalent load method and assistant constraint method, FEA modeling method of air suspension bus has been established. Based on method above, finite element analysis and lightweight design of Corp612A, Corp612B air suspension bus has conducted. The quality of Corp612A bus reduced170kg and passed through the reliability test. After lightweight design Corp612B bus reduced250kg.
     Topology optimization modeling method based on substructure and equivalent load method has been established, substructure method has been introduced in the topological optimization analysis which greatly saves analysis time. Meanwhile, boundary conditions based on equivalent load method and assistant constraint method are set to accurately simulate the actual stress state of the body frame which iMProves the reliability of topology optimization analysis. Based on method above single and multiple conditions topology optimization of ceiling、side panel and chassis grid of bus has been conducted, validity of the modeling method is verified.
     A new rollover crashworthiness modeling method has been established. Take the bus model of rollover crashworthiness in the flip and falling phase as a rigid body, crash initial conditions of the bus model were obtained though theoretical calculation. A new bus rollover crashworthiness model of crash phase was generated though modifying the original key file. Based on method above, rollover crashworthiness simulation of Corp612B bus was carried out which verified the feasibility and efficiency of the modeling method. The upper structure of the bus was modified according to the simulation result which iMProved the crashworthiness of the bus.
引文
[1]中华人民共和国交通运输部.道路运输业“十二五”发展规划纲要[M].2011.
    [2]高水德,张绍理,姚常青.国外客车被动安全研究[J].客车技术与研究,2006(3):7-10.
    [3]徐安,乔向明.公路客运安全分析与车辆制动性建模[J].交通运输工程学报,2009,9(6):87-91.
    [4]朱凌.应用MSC-DYTRAN软件进行汽车被动安全性的研究[D].浙江:浙江大学,2004.
    [5]何汉桥,张维刚.我国客车安全综述[J].客车技术与研究.2007(2):1-4.
    [6]Day T D, Garvey J T. Applications and Limitations of 3-Dimensional Vehicle Rollover Simulation [R]. SAE 2000-01-0852,2000.
    [7]Whitehead R. Travis W. Eevly D M, et al. A Study of the Effect of Various Vehicle Properties on Rollover Propensity [R]. SAE2004-01-2094,2004.
    [8]宋小文,李杰,王耘等.一种改进的汽车侧翻模型及其应用研究[J].汽车工程,2009,31(10):971-975.
    [9]公安部交通管理局.全国道路交通事故统计资料汇编[R].2007.
    [10]欧阳明高.全国政协十一届二次会议:抓住新能源汽车战略机遇促进我国交通能源转型与汽车产业振兴[R].北京:北京人民大会堂,2009.
    [11]陈青松.环保压力倒逼新能源汽车破冰[EB/OL].[2011-11-25].http://www.china5e.com/show.php?contentid=200473.
    [12]高伟,邓召文,方超.EQ6110PF客车车身骨架静动态分析与轻量化设计[J].重庆交通大学学报(自然科学版),2011,30(1):136-140.
    [13]余志生.汽车理论[M].北京:机械工业出版社,2009.
    [14]殷召平.XQ6125型城市客车有限元分析与试验研究[D].上海:上海交通大学[D].2007.
    [15]蔡斌.BJ6830型客车结构有限元分析与轻盘化设计计算[D].吉林:吉林大学,2005.
    [16]刘明辉.大客车骨架结构静动态特性分祈[D].辽宁:大连理工大学[D].2005.
    [17]王海亮,金先龙,林忠钦.低地板城市客车车身结构有限元分析[J].汽车工程,2002,24(2):141-144.
    [18]张雁冰,余跃,童水光.基于NX的全承载式客车参数化有限元分析[J].现代机械,2008(5):22-25.
    [19]张雁冰.全承载式客车车身设计分析与研究[D].浙江:浙江大学[D].2008.
    [20]张林涛.客车车身骨架静态特性分析研究[D].安徽:合肥工业大学[D].2007.
    [21]刚宪约,张帆.基于载荷等效法的空气悬架客车有限元建模方法[J].山东理工大学学报,2011,25(5):1-4.
    [22]吴诰珪,吴湘燕.客车车身有限元强度分析载荷条件的确定[J].机械工程学报,1997,33(5):83-87.
    [23]苏瑞意,桂良进,吴章斌,等.大客车车身骨架多学科协同优化设计[J].机械工程学报,2010,46(18):128-133.
    [24]LAN F, CFIEN J, LIN J. Comparative analysis for bus side structures and lightweight optimization [J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,2004,218(D10):1067-1075.
    [25]Hassani B, Hinton E. Homogenization and Structural Topology Optimization Theory, Practice and Software [M]. London Springer,1999.
    [26]隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化[J].力学学报,2000,32(2):171-178.
    [27]杨志军,吴晓明,陈塑寰,等.多工况约束下客车顶棚拓扑优化[J].吉林大学学报(工学版),200636:12-15.
    [28]李兆坤,张宪民.多输入多输出柔顺机构几何非线性拓扑优化[J].机械工程学报,2009年,45(1):180-188.
    [29]欧阳高飞,张宪民.基于水平集方法的结构可靠性拓扑优化[J].机械工程学报,2008年,44(10):60-65.
    [30]Matt Ramackers. Development and Applications of Gaseous Fuel Systems for Urban Buses.Presentation for International Symposium on Fuel Gas Vehicles. March 30th-April 1st, 2000.
    [31]Volvo Car Cpopration. Industrial Case Studies [Z].IVS Activites,2002.
    [32]Thomas H, Zhou M, Schramm U. Issues of Commercial Optimization Software Development [J]. Struct Multidisc Optim,2002,(23):97-110.
    [33]王健,张鲁邹,程耿东,等.应力约束下车架的结构拓扑优化设计[J].汽车工程,1997,19(1):15-19.
    [34]李红建,邱少波,林逸,等.汽车车身复杂饭金件的拓扑优化设计[J].汽车工程,2003年,25(3):302-306.
    [35]范文杰,范子杰,苏瑞意.汽车车架结构多目标拓扑优化方法研究[J].中国机械工程,2008,19(12):1505-1508.
    [36]范文杰,范子杰,桂良进,等.多工况下客车车架结构多刚度拓扑优化设计研究[J].汽车工程,2008,30(6):531-533.
    [37]张桥,张卫红,朱继宏.动力响应约束下的结构拓扑优化设计[J].机械工程学报,2010,46(15):45-51.
    [38]Hee-Young Ko, Kwang-Bok Shin, Kwang-Woo Jeon, et al. A study on the crashworthiness and rollover characteristics of low-floor bus made of sandwich composites [J]. Mechanical Science and Technology,2009,23:2686-2693.
    [39]D. Kosloff, G. A. Frazier. Treatment of Hourglass Pattrns in Low Order Finite Element Codes [J]. Int. J. Num. Anal. Meth. Geomech.1978,2:57-72.
    [40]Leslaw Kwasniewski, Cezary Bojanowski, Jeff Siervogel, et al. Crash and safety assessment program for paratransit buses [J]. Impact Engineering,2009,36:235-242.
    [41]MARTINEZ L, APARICIO F, GARCIA A, etal. Improving occupant safety in coach rollover [J]. International Journal of Crashworthiness,2003,8(2):121-132.
    [42]GULER M A, ELITOK K, BAYRAM B, etal. The influence of seat structure and passenger weight on the rollover crashworthiness of an intercity coach [J]. International Journal of Crashworthiness,2007,12(6):567-580.
    [43]何汉桥,张维刚.高床大客车侧翻结构安全性仿真研究[J].机械科学与技术,2007,26(7):922-925.
    [44]李臣,周炜,司景萍,等.客车侧翻的上部结构安全性仿真研究[J].机械设计与制造,2009(8):216-218.
    [45]亓文果.基于ECE R66法规的客车侧翻碰撞安全性能的仿真与优化[J].汽车工程,2010,32(12):1042-1046.
    [46]张建振.空气弹簧活塞形状对悬架特性的影响[D].吉林:吉林大学,2003.
    [47]鲍卫宁,陈立平,张云清,等.汽车耦合空气弹簧悬架系统动力学模型的研究[J].汽车工程,2008,30(3):231-234.
    [48]周栋,黄虎,刘新田,等.大客车横向稳定杆有限元分析[J].上海工程技术大学学报,2008,23(3):215-217.
    [49]宋健,邢如飞.带橡胶套的稳定杆有限元分析[J].车辆工程,2005,27(5):592-594.
    [50]姜立标,王登峰,谢东,等.电控空气悬架载荷平衡系统仿真[J].汽车工程,2007,29(3):234-237.
    [51]陈燎,周孔亢,李仲兴.空气弹簧动态特性拟合及空气悬架变刚度计算分析[J].机械工程学报,2010,46(4):93-97.
    [52]白金泽LS-DYNA 3D理论基础与实例分析[M].北京:科学出版社,2005.
    [53]邰永刚.大客车翻滚碰撞性能研究及改进设计[D].北京:中国农业大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700