膜吸收净化含苯废气及其传质性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以含苯废气作为研究体系,开展了膜吸收工艺在VOCs净化领域的研究,研究内容主要包括工艺性能研究和传质理论研究。工艺性能研究方向主要围绕工艺参数的优化、膜材质与吸收剂的兼容性研究等方面展开。传质理论方向则以双膜理论为基础,结合传质阻力方程,建立了传质微分模型,模拟膜吸收传质过程,预测传质相关系数。同时,对减压膜蒸馏工艺再生吸收剂性能也进行了初步的研究,建立了膜吸收-减压膜蒸馏新型组合工艺。
     首先,根据膜吸收工艺的特点、吸收剂循环利用以及与膜材质的兼容性等因素,结合传统吸收工艺对VOCs吸收剂的要求,对含苯废气吸收剂进行筛选,最终选取工业用于芳烃提纯的N-甲酰吗啉(NFM, n-Formyl morpholine)水溶液作为吸收剂,测定了不同浓度的NFM水溶液的密度、粘度、表面张力和亨利定律常数(苯)等物性参数,通过线性拟合得到不同条件下物性常数的计算公式;采用扫描电镜观察了使用前后膜表面形态的变化,结果表明:NFM水溶液具有较高的表面张力,难以湿润有机高分子膜表面,能与有机高分子膜很好地兼容,有效的避免了因膜孔润湿带来的膜相传质阻力增大对传质过程的影响,该溶液是膜吸收良好的吸收剂。
     设计并搭建了膜吸收-减压膜蒸馏组合工艺装置,以亲水性有机溶剂NFM水溶液为吸收剂,疏水性多孔聚丙烯中空纤维膜组件为气、液膜接触器,在实验装置上开展了膜吸收净化含苯废气性能的研究:分析了气、液流量、吸收剂温度、吸收剂浓度和进口气中苯初始浓度等操作条件对去除率和传质系数的影响;采用传质阻力方程对总传质系数进行模拟计算,并将模型值与实验值进行对比;同时计算了传质过程中的传质阻力,研究了气液传质过程的控制因素,结果表明:膜吸收净化含苯废气具有较高的传质效率,在NFM体积分数为40%,吸收剂流量20-100 mL·min-1,进口气流量40-300 mL-min-1,进口气浓度10.2 mg·L-1的条件下,C6H6去除率为65.0%-99.5%,总体积传质系数为0.0157-0.08412 s-1;膜吸收工艺在实验时间内具有较高的稳定性和可操作性;传质阻力模型值与实验值符合较好,能够较好的反映膜吸收传质过程,在实验条件下,实验值与模型计算值之间的平均误差为7.9%,最大误差为20.2%;通过对传质阻力计算发现,在NFM水溶液吸收C6H6的体系中,液相传质阻力占总传质阻力的99%以上,气相阻力与膜相阻力可忽略不计,传质过程主要受液膜控制。
     在双膜理论的基础上建立了气相在中空纤维膜管程流动的膜吸收过程的非线性微分方程,提出了微分方程的数值求解方法;在非润湿条件下,模拟了C6H6在膜丝管程及膜孔内的传质过程,求解出组分在管程及膜孔内的浓度分布,预测传质相关系数,并将模拟结果与实验结果进行了对比,结果表明:对不同气、液流量条件下膜吸收净化含苯废气效率进行模拟,模型计算值与实验值平均误差为1.81%;吸收速率模型值与实验值平均误差为1.9%,总传质系数模型值与实验值平均误差为12.16%。模型可以较准确地描述中空纤维膜吸收C6H6的过程,可作为膜吸收技术工业放大的理论依据。
     在相同的操作条件下,比较了膜吸收与传统的传质设备填料塔的传质特性和传质性能,结果表明:通过吸收剂流量、进口气流量、进口气浓度及吸收剂NFM体积分数对两种装置的净化效果的影响,膜吸收的吸收效率和总体积传质系数KGa值高于填料塔;膜吸收过程中的传质单元高度HTUG (the height of a transfer units)值明显低于填料塔的HTUG值。膜接触器与传统的传质设备相比具有自身独特的传质特性,这些独特的传质特性使膜接触器具有比传统的传质设备等更好的应用潜力和市场。
     最后,采用减压膜蒸馏(VMD, vacuum membrane distillation)工艺再生吸收剂,实现吸收剂的循环利用,疏水性聚丙烯中空纤维膜为再生膜接触器,研究了减压膜蒸馏过程中,各操作参数对吸收剂再生性能的影响。实验结果表明减压膜蒸馏技术对含苯NFM水溶液具有较高的再生效率和传质通量。减压膜蒸馏具有体积小,再生效率高,能耗少和膜通量高等优点。
Removal VOCs from waste gas using membrane-based gas absorption process was firstly studied in this paper. The systemic investigations are performed about process performance and mass transfer theory. The study of process performance was mainly including optimization of process parameters, compatibility research between membrane materials with absorbent. The study of mass transfer theory, based on the double film theory, was mainly including establishment of a differential model of mass transfer combining with mass transfer resistance equation, prediction of mass transfer parameters. Meanwhile, the process performance of membrane-based gas absorption process and traditional technology packed tower was compared. A new combined process, membrane-based gas absorption combining vacuum membrane distillation, was established, and the process performance of vacuum membrane distillation for the regeneration of absorbent was also studied here.
     In the first, combined with the request of VOCs absorbent in traditional absorbent absorption process, the works focused on the selection of absorbent which could be easy to regeneration and has good compatibility with the membrane material in the membrane-based gas absorption. As a result, the N-Formyl morpholine which is used as aromatics extraction solution was selected as the absorbent in this study. Density, viscosity, surface tension and benzene henry's law constant in different concentration and temperature were determined experimentally. Fitting equations of experimental data were obtained. Compatibility of NFM and microporous hollow fiber polypropylene membrane was studied, and the results show that the NFM aqueous solution was provided with high surface tension and difficult to wet the PP membrane. It had compatibility with PP membrane, which could be efficiently to decrease the effect of the increasing of membrane resistance caused by the wetting of membrane pore. The NFM aqueous was suitable absorbent for the absorption benzene in membrane-based gas absorption process.
     An experimental scale device combining membrane-based gas absorption with vacuum membrane distillation for benzene separation from mixture gas was designed and built up. Using NFM aqueous solution as absorbent and PP as the membrane contactor, the performance of membrane-based gas absorption process was studied. Effects of gas and liquid flow rate, absorbent temperature, absorbent concentration, benzene initial concentration in feed gas et al. on the removal efficiency and mass transfer coefficient were studied. Mathematical model based on resistance-in-series concept was presented to predict the value of the overall mass transfer coefficient ko(?), which was compared with experimental value, and the mass transfer resistance was also calculated to study the domain factor in mass transfer process. The results show that the characteristics of separation of C6H6/N2 by membrane contactor are of quicker mass transfer velocity and higher efficiency of separation. The removal efficiency achieves 65.0%-99.5%, and the overall volumetric mass transfer coefficient kGa achieves 0.0157-0.08412 s-1, when following conditions were used:volume ratio of NFM,40%; flow rate of absorbent,20-100 mL-min-1; flow rate of feed gas,40-300 mL-min-1. It was proved that membrane-based gas absorption process has high stability and operability. Prediction values of the overall mass transfer coefficient are in better agreement with experimental values, the average error is 7.9%, and maximal error is 20.2%. For all practical purposes, the resistance of liquid phase can be assumed as approximately 99% of the total resistance to calculate the area required for the absorption system design. The resistance of gas phase and membrane can be neglected. The resistance of liquid phase is the domain factor of mass transfer process.
     Based on the double-film theory, nonlinear differential equations were established to simulate the process of mass transfer process while the gas phase flow in the tube side. The mass transfer process in the membrane tube side and membrane pore were simulated using differential equations, and the distribution of benzene in the tube side and membrane pore were also simulated, mass transfer coefficient were predicted, which were compared with those of experiment. The results showed that the average error of benzene removal efficiency was 1.81% between simulate values with those of experimental values, and the average error of absorption rate was 1.9%, the average error of overall mass transfer coefficient was 12.16%. The mass transfer process could be accurately simulated by the differential equations, which can be used as the theory basis for the industrial enlargement of membrane-based gas absorption technology.
     Under same conditions, the performance of membrane-based gas absorption process were compared with those of traditional packed tower, and the results showed that the membrane contactor had significantly higher absorption efficiency, overall volumetric mass transfer coefficient and lower values of height of a transfer units based on the studies of effects of absorbent and gas flow rate, initial concentration and absorbent concentration on the mass transfer performance using two technology. It could be conclude that the membrane-based gas absorption process own unique mass transfer characteristics, which meant this technology had more market potential for the removal of VOCs from gas mixtures of industrial emission.
     In order to regenerate and recycle absorbent, vacuum membrane distillation process was introduced. Microporous hollow fiber polypropylene membrane was used as the membrane contactor. Studies of effects of operational parameter on the regeneration performance were carried out, and the results showed that the characteristics of regeneration by VMD process were of higher regeneration efficiency and mass transfer flux. VMD had the advantages such as high efficiency and flux, low power consume, which was the best technology for the removal VOCs from exhaust gas combining with the membrane-based gas absorption.
引文
[1]高莲,谢永恒.控制挥发性有机化合物污染的技术[J].化工环保,1998,18(6):343-346.
    [2]晏乃强.电晕-催化法治理有机废气的技术研究[D].博士学位论文.杭州:浙江大学,1999.
    [3]Noel de Nevers. Air Pollution Control Engineering (second edition)[M]. McGraw-Hill Companies, Inc,2000:329-330
    [4]王宝庆.挥发性有机废气净化技术研究进展[J].环境污染治理技术与设备,2003,4(5):47-51.
    [5]李国文.生物法净化挥发性有机废气(VOCs)的研究[D].博士学位论文.西安:西安建筑科技大学,1999.
    [6]Panagiotis P. Combustion of Nonhalogenated Volatile Organic Compounds over Group VIII Metal Catalysts [J]. Appl. Catal. B-Environ.1997,13:175-184.
    [7]北川律夫,中原伸一.燃烧法リ·サ_ム蓄热式脱臭システ厶.环境管理(日)1995.31(2):35.
    [8]中华人民共和国大气污染防治法.2000.4.29颁布,2000.9.1实行.
    [9]GB 16297-1996,大气污染物综合排放标准[S].
    [10]王鹏飞,王艺,宫曼丽,任南琪.生物滴滤塔处理“三苯”废气的影响因素研究[J].哈尔滨工业大学学报,2003,35(1):73-75
    [11]邢巍巍.膜技术在挥发性有机蒸汽(VOC)处理中的应用[J].辽宁城乡环境科技,2005,25(6):23-24
    [12]郝吉明,马广大.大气污染控制工程(第二版)[M],北京:高等教育出版社,2002.
    [13]Kuniko Urashima, Jen-Shih Chang. Removal of Volatile Organic Compounds form Streams and Industrial Flue Gases by NonThermal Plasma Technology [J]. IEEE Trans.Ind.A ppl,2000,7(5):602-614.
    [14]刘鹏.VOC的回收与处理技术简介[J].石油化工环境保护,2001,(4):39-42.
    [15]吴碧君,刘晓勤.挥发性有机物污染控制技术研究进展[J].电力环境保护,2005,21(4):39-42.
    [16]廉继范.回收挥发性有机化合物的膜系统[J].化学工程,1996,24(6):33-77.
    [17]王健礼.催化燃烧去除挥发性有机气体的整体式催化剂[D].大学博士学位论文.成都:四川,2007.
    [18]Khan F I, Ghosal A K. Removal of Volatile Organic Compounds from Polluted Air [J]. J. Loss Prev. Process Ind.,2003, (13):527-545.
    [19]Ghoshal A K, Manjare S D. Select of Appropriate Technique for Recovery of VOCs:An Analysis [J]. J. Loss Prev. Process Ind.,2002, (15):413-421.
    [20]Cordi E M, Falconer J L. Oxidation of Volatile Organic Compounds on Ag/A12O3 Catalyst [J]. Appl. Catal., A,1997, (151):179-191.
    [21]李琳,刘俊新.挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J].环境污染治理技术与设备,2001,2(5):41-46.
    [22]Engleman V S. Updates on Choices of Appropriate Technology for Control of VOCs Emission [J]. Met. Finish.,2000, (98):433-445.
    [23]Webster T S, Devinny J S, Torres E M. Bio-filtration of odors, and volatile organic compounds from publicly owned treatment works [J]. Environ. Prog.,1996,15(3): 141-149.
    [24]Atoche J C, Moe W M. Trement of M E K and Toluene Mixtures in Biofilers:Effect of Operating Strategy on Performance During Transient Loading [J]. AlChE J.,2004, 3:468-481.
    [25]Neal A B, Loehr R C. Use of biofilters and suspended growth reactors to treat VOCs [J]. Waste Manage.,2000,20:59-68.
    [26]Moe W M, Irvine R L. Effect of nitrogen limitation on performance of toluene degrading biofilters [J]. Wat. Res.,2001,35(6):1407-1414.
    [27]刘雪锦.表面活性剂强化生物滴滤塔对氯苯净化的研究[D].硕士学位论文.上海:上海大学,2007.
    [28]Timothy N O, Miranda A I, Ansar Z, et al. TiO2 photo catalysis for indoor air applications:effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiience [J]. Environ. Sci. Technol.,1995,29(5): 1223-1231.
    [29]Hsiao M C, Merritt B T, Penetrante, B M et al. Plasma-assisted decomposition of methanol and trichloroethylene inatmospheric pressure air streams by electrical
    dischargeprocessing [J]. J. Appl. Phys.,1995,78(5):3451-3457.
    [30]Nifuku M, Horvath M, Bodnar J. A study on the decomposition of volatile organic compounds by pulse corona [J]. J. Electrostat.,1997,40-41:687-692.
    [31]Chang M B, Lee C C. Destruction of formaldehyde with dielectric barrier discharge plasma [J]. Environ. Sci. Technol.,1995,29(1):181-186.
    [32]Yamamoto T, Chang J S, Berezin A A, et al. Decomposition of toluene, o-xylene, trichloroethylene, and their mixture using BaTiO3 packed bed reactor [J]. J.Adv.Oxidation Technol.,1996,1(1):67-78.
    [33]Chang J S, Myint T, Chakrabarti A, et al. Removal of carbon tetrachloride from air stream by a corona torch plasma reactor [J]. Jpn. J. Appl. Phys.,1997,36:5018-5024.
    [34]Oda T, Yamashita R, Haga I, et al. Decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing-SPCP [J]. IEEE Trans. Ind. Appl. 1996,32:118-123.
    [35]Dinelli G, Civitano L, Rea M, et al. Industrial experiments on pluse corona simultaneous removel of NOx and SO2 from flue gas[C]. IEEE IAS Annual Meeting,1998,1620-1627.
    [36]任健新.膜分离技术及其应用[M].北京:化学工业出版社,2003.
    [37]Majumdar S, Bhaumik D, Sirkar K K. Performance of commercial-size plasmapolymerized PDMS-coated hollow fiber modules in removing VOCs from N2/air [J]. J. Membr. Sci.,2003,214:323-330.
    [38]Yeom C K, Lee S H, Song H Y, Lee J M. A characterization of concentration polarization in a boundary layer in the permeation of VOCS/N2 mixtures through PDMS membrane [J]. J. Membr. Sci.,2002,205:155-174.
    [39]Guizard C, Boutevin B, Guida F, Ratsimihety A, Amblard P, Lasserre J C, Naiglin S. VOC vapour transport properties of new membranes based on cross-linked fluorinated elastomers [J]. Sep. Purif. Technol.,2001,22-23:23-30.
    [40]Yeom C K, Lee S H, Song H Y, Lee J M. Vapor permeations of a series of VOCS/N2 mixtures through PDMS membrane [J]. J. Membr. Sci.,2002,198:129-143.
    [41]王湛,周翀.膜分离技术基础[M].北京:化学工业出版社,2006.
    [42]陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004.
    [43]陈翠仙,韩宾兵,Ranil Wickramasinghe.渗透蒸发和蒸气渗透[M].北京:化学工业出版社,2004.
    [44]Baker R W, Wijmans J G, Kaschemekat J H. The design of membrane vapor-gas separation systems [J]. J. Membr Sci.,1998,151:55-62.
    [45]李晖,刘富强,曹义鸣,等.膜法分离有机蒸气/氮气混合气的过程研究[J].膜科学
    与技术,2000,20(2):39-42.
    [46]Kneifel K, Nowak S, Albrecht W, Hilke R, Just R, Peinemann K V. Hollow fiber membrane contactor for air humidity control:Modules and membranes [J]. J. Membr. Sci.,2006,276:241-251.
    [47]Mavroudi M, Kaldis S P, Sakellaropoulos G P. Reduction of CO2 emissions by a membrane contacting process [J]. Fuel,2003,82:2153-2159.
    [48]Lordgooe M, Carmichael K R, Kelly TW. Active carbon cloth adsorption cryogenic system to recover toxic volatile organic compounds [J]. Gas Sep. Purif.,1996, (2): 123-130.
    [49]李泽清.含VOCs废气的回收净化工艺[J].环境工程,2003,(5):38-40.
    [50]Kim J, Ham B, Kim Y. Removal of VOCs by Hybrid on Electron Beam Reactor with Catalyst Bed [M]. Radiat. Chem.,2004, (71):427-430.
    [51]张增凤,丁慧贤.低温等离子体催化脱除室内VOCs中的甲醛[J].黑龙江科技学院学报,2004,(1):15-24.
    [52]高立新,陆亚俊.室内空气净化器的现状及改进措施[J].哈尔滨工业大学学报,2004,(2):199-201.
    [53]Mulder M,李琳译.膜技术基本原理(第二版)[M].北京:清华大学出版社,1999.
    [54]时均,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [55]Prasad R, Sirkar K K. Membrane based solvent extraction in:W. S. W. Ho, K. K. Sirkar(Eds.), Membrane Handbook, Chapman & Hall, New York,1992,727-763.
    [56]Kreulen H, Smolders C A, Versteeg G F, Swaajj W P M. Microorous hollow fiber membrane modules as gas-liquid contactors, Part 1. Phsical mass transfer process, A specific application:Mass transfer in highly viscous liquids [J]. J. Membr. Sci.,1993,78: 197-216.
    [57]Feron P H M, Jansen A E. An ecotechnology-integrated MEA process for CO2-removal [J]. Energy convers. Manag.,1995.36:401-411.
    [58]Falk P O, Dannstrom H. Separation of carbon dioxide from offshore gas turbine exhaust [J]. Energy Convers. Manag.,1997,38(Suppl):S81-S86.
    [59]Zhang Q, Cussler E L. Microporous hollow fibers for gas absorption I:mass transfer in liquid [J]. J. Membr. Sci.,198523(3):321-332.
    [60]Zhang Q. Cussler E L. Microporous hollow fibers for gas absorption Ⅱ:mass transfer across the membrane[J]. J. Membr. Sci.,198523(3):333-345.
    [61]Atchariyawut S, Jiraratananon R, Wang R. Mass transfer study and modeling of gas-liquid membrane contacting process by multistage cascade model for CO2 absorption
    [J]. Sep. Purif. Technol.,2008,63:15-22.
    [62]Dindore V Y, Brilman D W F, Feron P H M, Versteeg G F. CO2 absorption at elevated pressures using a hollow fiber membrane contactor [J]. J. Membr. Sci.,2004,235: 99-109.
    [63]陆建刚,王连军,郑有飞,陈敏东.膜基-吸收耦合技术回收气体CO2[J].环境工程,2007,25(7):53-59.
    [64]Park H H, Deshwal B R, Kim W I, Lee K H. Absorption of SO2 from flue gas using PVDF hollow fiber membranes in a gas-liquid contactor [J]. J. Membr. Sci.,2008,319: 29-37.
    [65]Mahmud H, Kumar A, Narbaitz R M, Matsuura T. A study of mass transfer in the membrane air-stripping process using microporous polyproplylene hollow fibers [J]. J. Membr. Sci.,2000,179:29-41.
    [66]Lu J G, Zheng Y F, Cheng M D. Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption [J]. J. Membr. Sci.,2008,308:180-190.
    [67]张慧峰,张卫东,张泽廷,史季芬.中空纤维膜脱除SO2的实验研究[J].环境科学与技术.2003,26(5):8-10.
    [68]童志权.大气污染控制工程[M].北京:机械工业出版社,2006.
    [69]曹春城,吴燕翔,王良恩,朱跃姿.工业含苯废气几种吸收剂的初步评价[J].福州大学学报(自然科学版),1992,20(2):105-108.
    [70]高坚,张卫东.中空纤维膜组件酸性气体渗透吸收过程的研究.第四届全国膜和膜过程学术报告会论文集.南京,2002.
    [71]Mautsuura T. Synthetic membrane and membrane separation processes [M]. Boca Raton: CRC Press,1994.
    [72]Cui Z F, Chang S, Fane A G. The use of gas bubbling to enhance membrane processes [J]. J. Membr. Sci.,2003,221:1-35.
    [73]Yang MC, Cussler E L. Designing hollow-fiber contactors [J]. AlChE J.,1986,32(11): 1910-1916.
    [74]黄德群,陈玉芳.完美的仿生脏器-膜式人工肺[J].医疗保健器具,2005,6:56-56
    [75]杨祖荣,刘丽英.化工原理[M].北京:化学工业出版社,2005.
    [76]Wang K L, Cussler E L. Baffled membrane modules made with hollow fiber fabric [J]. J. Membr. Sci.,1993,85:265-278.
    [77]Wickramasinghe S R, Semmens M J, Cussler E L. Hollow fiber modules made with hollow fiber fabric[J]. J. Membr. Sci.,1993,84:1-14.
    [78]Li D F, Wang R, Chung T S. Fabrication of lab-scale hollow fiber membrane modules
    with high packing density [J]. Sep. Purif. Technol.,2004,40:15-30.
    [79]Wickramasinghe S R, Semmens M J, Cussler E L. Mass transfer in various hollow fiber geometries [J]. J. Membr. Sci.,1992,69:235-250.
    [80]Gabelman A, Hwang S T. Hollow fiber membrane contactors [J]. J. Membr. Sci., 1999,159:61-106.
    [81]Sengupta A, Peterson P A, Miller B D, Fuld C W. Large-scale application of membrane contactors for gas transfer from or to ultrapure water [J]. Sep. Purif. Technol.,1998,14: 189-200.
    [82]Jansen A E, Klaassen R, Feron P H M, et al. Membrane gas absorption processes in environmental applications. In:J.G. Crespo, K.W. Boddeker (Eds), Membrane Processes in Separation and Purification, Kluwer Academic Publishers, Dordrecht, 1994:343-356.
    [83]Nishikawa N, Ishibashi M, Ohta H, Akutsu N, Matsumoto H, Kamata T, Kitamura H. CO2 removal by hollow-fiber gas-liquid contactor [J]. Energy Convers. Mgmi.,1995, 36(6-9):415-418.
    [84]Kim Y S, Yang S M. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents [J]. Sep. Purif. Technol.,2000,21:101-109.
    [85]Yeon S H, Lee K H, Sea B, Park Y I, Lee K H. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas [J]. J. Membr. Sci., 2005,257:156-160.
    [86]AL-Saffar H B, Ozturk B, Hughes R. A comparison of porous and non-porous gas-liquid membrane contactors for gas separation [J]. Trans. Inst. Chem. Eng., Part A, 1997,75 685-692.
    [87]Li K, Teo W K. Use of permeation and absorption methods for CO2 removal in hollow fibre membrane modules [J]. Sep. Purif. Technol.,1998,13:79-88.
    [88]Kumar P S, Hogendoorn J A, Feron P H M, Versteeg G F. New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactor [J]. Chem.Eng. Sci., 2002,57:1639-1651.
    [89]Franken ACM, Noltedn JAM, Mulder M H V, Bargeman D, Smolders C A. Wetting criteria for the applicability of membrane distillation [J]. J. Membr. Sci.,1987,33(3): 315-328.
    [90]Mavroudi M, Kaldis S P, Sakellaropoulos G P. A study of mass transfer resistance in membrane gas-liquid contacting processes [J]. J. Membr. Sci.,2006,272:103-115.
    [91]Poddar T K. Removal of VOCs from air by absorption and stripping in hollow fiber devices [D]. Faculty of New Jersey Institute of Technology,1995.
    [92]Kiani A, Bhave R R, Sirkar K K. Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane [J]. J. Membr. Sci.,1984,20:125-145.
    [93]Kim B S, Harriott P. Critical energy pressure for liquids in hydrophobic membranes [J]. J. Colloid Interface Sci.,1987,115:1-3.
    [94]陆建刚.酸性气体(H2S,CO2)的脱除及其气液传质特性的研究.博士学位论文.南京:南京理工大学,2005.
    [95]Whitman W G. Preliminary experimental confirmation of the two-film theory of gas absorption [J]. Chem. Metall. Eng.,1923,29:146-148.
    [96]Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure [J], Trans. Am. Inst. Chem. Eng.,1935,35:36-60.
    [97]Danckwerts P V. Significance of liquid-film coefficients in gas absorption [J]. Ind. Eng. Chem.,1951,43:1460-1467.
    [98]Prasad R, Sirkar K K, Dispersion-free solvent extraction with microporous hollow-fibre modules [J]. AIChE J.,1988,34:177-188.
    [99]Dahuron L, Cussler E L. Protein extractions with hollow fibers [J]. AIChE J.,2000,55: 5531-5543.
    [100]Viegas R M C, Rodrguez M, Lugue S, Alvarez J R, Coelhoso I M, Crespo J P S G. Mass transfer correlations in membrane extraction:analysis of Wilson-plot methodology [J]. J. Membr. Sci.,1998,145:129-138.
    [101]Kreulen H, Smolders C A, Versteeg G F, van Swaaij W P M. Membrane contactors for CO2 absorption [J]. J. Membr. Sci.,1993,78:197-199.
    [102]Wu J, Chen V. Shell-side mass transfer performance of randomly packed hollow fiber modules [J]. J. Membra. Sci.,2000,172:59-72.
    [103]Costello M J, Fane A G, Hogan P A, Schofield R W. The effect of shell hydrodynamics on the performance of axial flow hollow fiber modules [J]. J. Membr. Sci.,1993,80: 1-11.
    [104]张秀莉.疏水性多孔膜和膜组件气体吸收传质性能及其数学模型的研究.博士学位论文,北京:北京化工大学,2004.
    [105]郑巨孟.中空纤维膜及膜接触器传质特性的研究.博士学位论文,杭州:浙江大学,2003.
    [106]陈炜,朱宝库,王建黎,徐又一,徐志康.中这纤维膜接触器分离CO2/N2混合气体的研究[J].膜科学与技术,2004,24(2):32-37.
    [107]张卫东,朱慎林,骆广生,戴猷元,汪家鼎.溶胀对中空纤维膜萃取器传质性能的影响[J].膜科学与技术,1998,(1):18-22.
    [108]Yeh H M, Chen C H, Yueh T Y. Influence of channel-width ratio on solvent extraction through a double-pass parallel-plate membrane module [J]. J. Membr. Sci.,2004,230: 13-19.
    [109]Yun C H, Prasad R, Sirkar K K. Membrane solvent extraction removal of priority organic pollutants from aqueous waste streams [J]. Ind. Eng. Chem. Res.,1992,31: 1709-1717.
    [110]高坚.膜吸收过程传质性能的研究.博士学位论文,北京:北京化工大学,2006.
    [111]Poddar T K, Sirkar K K. A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions [J]. J. Membr Sci.,1997,132:229-233.
    [112]Poddar T K, Majumdar S, Sirkar K K. Membrane-based absorption of VOCs from a gas stream [J]. AIChE J.,1996,42(11):3267-3282.
    [113]Poddar T K, Majumdar S, Sirkar K K. Removal of VOCs from air by membrane-based absorption and stripping [J]. J. Membr Sci.,1996,120:221-237.
    [114]Xia B, Majumdar S, Sirkar K K. Regenerative Oil Scrubbing of Volatile Organic Compounds from a Gas Stream in Hollow Fiber Membrane Devices[J]. Ind. Eng. Chem. Res.,1999,38(9):3462-3472.
    [115]Majumdar S, Bhaumik D, Sikar KK, Simes G. Membrane-Based Absorption-Stripping Process for Removal and Recovery of Volatile Organic Compounds[J]. Environ. Prog., 2001,20(1):27-35.
    [1]许业伟,袁文辉.“三苯”系VOCs治理技术和进展.广东化工,2001,28(3):2-4.
    [2]衣新宇,赵修华,姚贞亚,季学李.表面活性剂在净化废气中应用的可行性研究.日用化学品科学,2003,26(6):25-27.
    [3]Mulder M.李琳译.膜技术基本原理(第二版).北京:清华大学出版社,1999.
    [4]Falk Pedersen O, Dannstrom H, Witzko R, Bier C. Natural Gas Sweetening using Membrane Gas/Liquid Contactors// 49th. Laurane Reid Gas Conditioning Conference,1999.
    [5]陆建刚,王连军,郑有飞,陈敏东.膜基-吸收耦合技术回收气体CO2[J].环境工程,2007,25(7):53-59.
    [6]Gabelman A, Hwang S. Hollow fiber membrane contactors [J]. J. Membr Sci.,1999,159: 61-106.
    [7]Ghosh A C, Borthakur S, Dutta N N. Absorption of carbon monoxide in hollow fiber membranes[J]. J. Membr Sci.,1994,96:183-192.
    [8]Bhaumik D, Majumdar S, Sirkar K. Absorption of CO2 in a transverse flow hollow fiber membrane module having a few wraps of the fiber mat [J]. J. Membr Sci.,1998,138: 77-82.
    [9]Yeon S H, Lee K S, Sea B, Park Y I, Lee K H. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas [J]. J. Membr Sci., 2005,257:156-160.
    [10]Kim Y S, Yang S M. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents [J]. Sep. Purif. Technol.,2000,21:101-109.
    [11]王志,龚彦文,袁力,王世昌.中空纤维膜吸收器中CO2吸收过程模拟[J].化工学报,2003,54(11):1563-1568.
    [12]李睿,徐军,许志良,王连军,李健生,孙秀云.膜吸收技术分离VOCs/N2混合气性能的研究[J].环境工程学报,2008,2(9):1194-1198.
    [13]Poddar T K, Majumdar S, Sirkar K K. Removal of VOCs from air by membrane-based absorption and stripping [J]. J. Membr Sci.,1996,120:221-237.
    [14]Poddar T K, Sirkar K K. A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions [J]. J. Membr Sci.,1997,132:229-233.
    [15]Poddar T K, Majumdar S, Sirkar K K. Membrane-based absorption of VOCs from a gas stream [J]. AIChE J.,1996,42(11):3267-3282.
    [16]Xia B, Majumdar S, Sirkar K K. Regenerative Oil Scrubbing of Volatile Organic Compounds from a Gas Stream in Hollow Fiber Membrane Devices[J]. Ind. Eng. Chem. Res.,1999,38(9):3462-3472.
    [17]Majumdar S, Bhaumik D, Sikar KK, Simes G. Membrane-Based Absorption-Stripping Process for Removal and Recovery of Volatile Organic Compounds[J]. Environ. Prog., 2001,20(1):27-35.
    [18]Poddar T K. Removal of VOCs from air by absorption and stripping in hollow fiber devices [D]. Faculty of New Jersey Institute of Technology,1995.
    [19]陆建刚,马骏,王连军.膜接触器分离混合气中二氧化碳[J].膜科学与技术,2005,5:15-20.
    [20]朱宝库,陈炜,王建黎,徐又一,徐志康.膜接触器分离混合气CO2的研究[Ⅱ].环境科学,2003,24(5):34-38.
    [21]叶向群,孙亮,张林,周志军,陈欢林.中空纤维膜基吸收法脱除空气中二氧化碳的研究[J].高校化学工程学报,2003,17(3):237-242.
    [22]陈炜,朱宝库,王建黎,徐又一,徐志康.中空纤维膜接触器分离CO2/N2混合气体的研究[J].膜科学与技术.2004,24(1):32-37.
    [23]Kneifel K, Nowak S, Albrecht W, Hilke R, Just R, Peinemann K V. Hollow fiber membrane contactor for air humidity control:Modules and membranes[J]. J. Membr. Sci., 2006,276:241-251.
    [24]Mavroudi M, Kaldis S P, Sakellaropoulos G P. Reduction of CO2 emissions by a membrane contacting process [J]. Fuel,2003,82:2153-2159
    [25]Park H H, Deshwal B R, Kim I W, Lee H K. Absorption of SO2 from flue gas using PVDF hollow fiber membranes in a gas-liquid contactor [J]. J. Membr. Sci.,2008,319: 29-37.
    [26]Li J L, Chen B H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors [J]. Sep. Purif. Technol.,2005,41(2):109-122.
    [27]Geankoplis C J. Transport processes and Unit Operations.3rd ed. Englewood Cliffs, NJ: Prentice Hall,1993.
    [28]Poling B E, Prausnitz J M, O'Connell J P.气液物性估算手册[M].北京:化学工业出版社,2006,3.
    [29]Prasad R, Sirkar K K. Dispersion-free solvent extraction with microporous hollow-fiber modules[J]. AIChE J.,1988,34(2):177-188.
    [30]Mahmud H, Kumar A, Narbaitz R M, et al. A study of mass transfer in the membrane air-stripping process using microporous polyproplylene hollow fibers[J]. J. Membr. Sci., 2000,179:29-41.
    [31]Rangwala H A. Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors [J]. J Membr Sci,1994,112(2):229-240.
    [32]张慧峰,张卫东,张泽廷,史季芬.中空纤维膜吸收法脱除SO2的实验研究[J].环境科学与技术,2003,26(5):8-10.
    [1]Mahmud H, Kumar A, Narbaitz R M, Matsuura T. A study of mass transfer in the membrane air-stripping process using microporous polypropylene hollow fibers [J]. J. Membr. Sci.,2000,179:29-41.
    [2]Evren V. A numerical approach to the determination of mass transfer performances through paritially wetted microporos membranes transfer of oxygen to water [J]. J. Membr. Sci.,2000,175:97-110.
    [3]Kumar P S, Hogendoom J A, Feron P H M, Versteeg G F. New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors [J]. Chem. Eng. Sci., 2002,57:1639-1651.
    [4]Mavroudi M, Kaldis S P, Sakellaropoulos G P. Reduction of CO2 emissions by a membrane contacting process [J]. Fuel,2003,82:2153-2159.
    [5]Dindore V Y, Brilman D W F, Feron P H M, Versteeg G F. CO2 absorption at elevated pressures using a hollow fiber membrane contactor [J]. J. Membr. Sci.,2004,235: 99-109.
    [6]Mavroudi M, Kaldis S P, Sakellaropoulos G P. A study of mass transfer resistance in membrane gas-liquid contacting process [J]. J. Membr. Sci.,2006,272:103-115.
    [7]Dindore V Y, Brilman D W F, Geuzebrock F H, Versteeg G F. Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors [J]. Sep. purif. Technol., 2004,40:133-145.
    [8]陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社,2004.
    [9]童志权.大气污染控制工程[M].北京:机械工业出版社,2006.
    [10]曹春城,吴燕翔,王良恩,朱跃姿.工业含苯废气几种吸收剂的初步评价[J].福州大学学报(自然科学版),1992,20(2):105-108.
    [11]黄小林,金毓荃,刘婕,李明,李华.用水-柴油吸收剂处理含苯废气[J].北京工业大学学报,1999,20(1):40-43.
    [12]程丛兰,黄小林,朗爽,耿红.苯系物新型吸收剂的研究[J].北京工业大学学报,2000,26(1):107-111.
    [13]罗教生.用水-洗油吸收剂处理含苯废气的研究[J].环境与开发,1999,14(3):19-20.
    [14]陈蔷.9501#新型吸收剂性能研究[J].劳动保护科学技术,1997,17(4):22-23.
    [15]邱挺,刁春燕,王良恩.FBDO新型吸收剂治理有机废气的工艺研究[J].福州大学学报(自然科学版),2005,33(1):105-110.
    [16]刁春燕,邱挺,王良恩.BDO新型吸收剂治理含甲苯废气的实验研究[J].福建化工,2003,(3):20-22.
    [17]王良恩,吴燕翔,曹春城,朱跃姿.吸收法净化含苯类工业废气的研究[J].福建化工1992,(4):16-18.
    [18]Xia B, Majumdar S, Sirdar K K. Regenerative oil scrubbing 0# volatile organic compounds from a gas stream in hollow fiber membrane devices[J]. Ind. Eng. Chem. Res, 1999,38:3462-3472.
    [19]Poddar T K, Majumdar S, Sirkar K K. Removal of VOCs from air by membrane-based absorption and stripping [J]. J. Membr. Sci.,1996, (2):221-237.
    [20]Poddar T K, Sirkar K K. A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions [J]. J. Membr. Sci.,1997, (132):229-233.
    [21]Heymes F, Manno-Demoustier F, Charbit F. A new efficient absorption liquid to treat
    exhaust air loaded with toluene[J]. Chem. Eng. Sci.,2006, (115):225-231.
    [22]衣新宇,赵修华,朱登磊.表面活性剂吸收法治理含苯废气的中试实验[J].能源环境保护,2004,18(3):24-28.
    [23]衣新宇,赵修华,朱登磊.表面活性剂吸收法治理甲苯废气的中试实验[J].日用化学工业,2004,34(3):157-160.
    [24]段松涛,张吉波.芳烃优良抽提剂N-甲酰吗啉[J].精细与专用化学品,2002,(14):12-15.
    [25]王永华,王保强.饮用水中三氯甲烷亨利常数的测定[J].环境化学,2001,20(3):270-274.
    [26]Gossett J M. Measurement of Henry's law constants for C1 and C2 chlorinated hydrocarbons [J]. Environ. Sci. Technol,1987,21(2):202-208.
    [27]王永华,陶澍,李新云等.两次相平衡/气相色谱法测定水中挥发性氯代烃[J].环境化学,1977,16(1):68-72.
    [28]Robbins G A, Wang S, Stuart J D. Using the static headspace method to determine Henry's law constants [J]. Anal.Chem.,1993,65:3113-3118.
    [29]Staudinger J. Roberts P V. A critical reviews of Henry's law constants for environmental applications [J]. Crit. Rev. Environ. Sci. Tehconol.,1996,26(3):205-297.
    [30]Ayuttaya PCN, Rogers T N, Mullins M E, Kline A A. Henry's law constants derived from equilibrium static cell measurements for dilute organic-water mixtures [J]. Fluid Phase Equilib.,2001,185(12):359-377.
    [31]Mackay D, Shiu W Y. A Critical reviews of Henry's law constant for chemicals of environmental concern [J]. J. Phys. Chem. Ref. Data,1981,10(4):1175-1199.
    [32]王凯雄,姚铭.亨利定律及其在环境科学与工程中的应用[J].浙江树人大学学报,2004,4(6):85-89.
    [33]王永华.顶空气相色谱分析原理与技术[J].中国环境监测,2006,22(2):7-13.
    [34]Poddar T K. Removal of VOCs from air by absorption and stripping in hollow fiber devices [D]. Faculty of New Jersey Institute of Technology,1995.
    [35]陆建刚,马骏,王连军.膜接触器分离混合气中二氧化碳.膜科学与技术,2005,25(5):15-20.
    [36]涂晋林,吴志泉.化学工业中的吸收操作:气体吸收工艺与工程[M].上海:华东理工大学出版社,1994.
    [37]Dindore V Y, Brilman D W F, Geuzebroek F H, et al. Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors [J]. Sep. Purif. Technol.,2004,40: 133-145.
    [1]李睿,徐军,许志良,王连军,李健生,孙秀云.膜气体吸收技术分离VOCs/N2混合气性能的研究[J].环境工程学报,2008,2(9):1194-1198.
    [2]Prasad R, Sirkar K K. Membrane based solvent extraction in:W. S. W. Ho, K. K. Sirkar(Eds.), Membrane Handbook, Chapman & Hall, New York,1992,727-763.
    [3]陆建刚,马骏,王连军.膜接触器分离混合气中二氧化碳[J].膜科学与技术,2005,5:15-20.
    [4]王志,龚彦文,袁力,王世昌.中空纤维膜吸收器中CO2吸收过程模拟[J].化工学报,2003,54(11):1563-1568.
    [5]张慧峰,张卫东,张泽廷,史季芬.中空纤维膜吸收法脱除SO2的实验研究[J].环境科学与技术,2003,26(5):8-10.
    [6]Mavroudi M, Kaldis S P, Sakellaropoulos G P. A study of mass transfer resistance in membrane gas-liquid contacting processes [J]. J. Membr. Sci.,2006,272:103-115.
    [7]Poddar T K. Removal of VOCs from air by absorption and stripping in hollow fiber devices [D]. Faculty of New Jersey Institute of Technology,1995.
    [8]Atchariyawut S, Jiraratananon R, Wang R. Mass transfer study and modeling of gas-liquid membrane contacting process by multistage cascade model for CO2 absorption [J]. Sep. Purif. Technol.,2008,63:15-22.
    [9]Mavroudi M, Kaldis S P, Sakellaropoulos G P. Reduction of CO2 emissions by a membrane contacting process[J]. Fuel,2003,82:2153-2159
    [10]Rangwala H A. Absorption of CO2 into aqueous solutions using hollow fiber membrane contactors [J]. J. Membr. Sci.,1996,112:229-240.
    [11]Ghosh A C, Borthakur S, Dutta N N. Absorption of carbon monoxide in hollow fiber membranes[J]. J. Membr Sci.,1994,96:183-192.
    [12]Nishikawa N, Ishibashi M, Ohta H, Akutsu N, Matsumoto H, Kamata T, Kitamura H. CO2 removal by hollow-fiber gas-liquid contactor [J]. Energy Convers. Mgmi.,1995, 36(6-9):415-418.
    [13]Karoor S, Sirkar K K. Gas absorption studies in microporous hollow fiber modules [J]. Ind. Eng. Chem. Res.,1993,32:674-684.
    [14]deMontigny D, Tontiwchwuthikul P, Chakma A. Comparing the absorption performance of packed columns and membrane contactors [J]. Ind. Eng. Chem. Res.,2005,44: 5726-5732.
    [15]陆建刚.酸性气体(H2S, CO2)的脱除及其气液传质特性的研究.博士学位论文.南 京:南京理工大学,2005.
    [16]张卫风,王秋华,方梦祥,骆仲泱,岑可法.膜吸收法与化学吸收法分离烟气中C02的试验比较[J].动力工程,2008,28(5):759-763.
    [1]Jing J S, Vane L M, Sikdar S K. Recovery of VOCs from surfactant solutions by Pervaporation [J]. J. Membr. Sci., 2997,136(1-2):233-247.
    [2]Blume I, Wijmans J G, Baker R W. The separation of dissolved organics from water by pervaporation [J]. J. Membr. Sci., 1990,49:253-286.
    [3]Wijmans J G, Athayde A L, Daniels R, Ly J H, Kamaruddin H D, Pinnau I. The role of boundary layers in the removal of volatile organic compounds from water by pervaporation [J]. J. Membr. Sci.,1996,109:135-146.
    [4]Wang B G. Miyazaki Y, Yamaguchi T, Nakao S. Design of a vapor permeation membrane for VOC removal by the filling membranes concept [J]. J. Membr. Sci.,2000,164:25-35.
    [5]Poddar T K, Sirkar K K. A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions [J]. J. Membr. Sci., 1997,132:229-233.
    [6]Nemeh A, Das A, Saraf A, Sirkar K K. A composite hollow fiber membrane-based pervaporation process for separation of VOCs from aqueous surfactant solutions [J]. J. Membr. Sci.,1999,158:187-209.
    [7]Yamaguchi T, Suzuki T, Kai T, Nakao S. Hollow-fiber-type pore-filling membranes made by plasma-graft poly merization for the removal of chlorinated organics from water [J]. J. Membr. Sci.,2001,194:217-228.
    [8]Bandini S, Gostoli C, Sarti G C. Separation efficiency in Vacuum membrane distillation [J]. J. Membr. Sci.,1992.73(2-3):217-229.
    [9]Bandini S, Saavedra A, Sarti G C. Vacuum Membrane distillation:experiments and modeling [J]. AIChE J.,1997,43(2):398-408.
    [10]Lawson K W, Lloyd D R. Membrane Distillation. I. Module design and performance evaluations using vacuum membrane distillation [J]. J Membr. Sci.,1996,120:111-121.
    [11]Bandini S, Sart G. C. Heat and mass transport resistances in vacuum membrane distillation per drop [J]. AIChE J.,1999,45(7):1422-1433.
    [12]任建勋,张信荣.中空纤维式减压膜蒸馏组件的温度压力分布及通量特性研究[J].膜科学与技术,2002,22(1):12-16,38.
    [13]Banat F A, Simandl J. Removal of benzene trances from contaminated water by vacuum membrane distillation [J]. Chem. Eng. Sci.,1996,51:1257-1265.
    [14]Sarti G C, Gostol C. Extraction of organic components from aqueous streams by vacuum membrane distillation [J]. J. Membr. Sci.,1993,80:21-23.
    [15]Urtiaga A M, Ruiz G, Kinetic. Analysis of the vacuum membrane distillation of chloroform form aqueous solutions [J]. J. Membr. Sci.,2000,165:99-110.
    [16]唐建军,周康根.实验条件对减压膜蒸馏法脱除水溶液中MIBK的影响[J].水处理技术,2002,25(1):22-24.
    [17]Couffin N, Cabassud C, Turcaud L. A new process to remove halogenated VOC for drinking water production: Vacuum membrane distillination [J]. Desalination,1998,117: 233-245.
    [18]沈志松,钱国芬,迟玉霞,刘宏之.减压膜蒸馏技术处理丙烯腈废水研究[J].膜科学与技术,2000,20(2):55-60.
    [19]马玖彤,张凤君,吴浩宇.膜蒸馏法处理甲醇水溶液的研究[J].水处理技术,2003,29(1):19-21.
    [20]张凤君,林学钰,刘虹,等.苯酚的膜蒸馏及结晶回收理研究[J].水处理技术,2002,28(3):11-13.
    [21]段小林.真空膜蒸馏脱除水溶液中VOC的研究[M].硕士学位论文.杭州:浙江工业大学,2004.
    [22]钟世安,李宇萍.减压膜蒸馏法处理多酚类制药废水的研究[J].水处理技术,2003,23(4):44-46.
    [23]闫建民.膜蒸馏的传递机理及膜组件优化研究[M].博士学位论文.北京:北京化工大学,2000.
    [24]谢林.高盐有机废水的膜蒸馏集成技术开发[M].硕士学位论文.杭州:浙江大学,2006.
    [25]甘利华.真空膜蒸馏机理研究[M].硕士学位论文.重庆:重庆大学,2002.
    [26]张建芳,李玲.减压膜蒸馏淡化处理盐水的实验研究[J].精细石油化工进展,2005,6(3):10-20.
    [27]杜军,刘作华,陶长元,等.减压膜蒸馏用于Cr3+废水处理的实验研究[J].水处理技术,2000,20(5):442-445.
    [28]秦操.减压膜蒸馏处理含酚永的研究[M].工程硕士学位论文.重庆:重庆大学,2001.
    [29]高振.真空膜蒸馏传递机理和过程特性研究[M].博士学位论文.天津:天津大学,2003.
    [30]王许云.PVDF疏水膜制备及膜蒸馏集成技术研究[M].博士学位论文杭州:浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700