LNAPLs在包气带中运移机理及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻非水相液体(LNAPLs)属典型的有机污染物,其泄漏后进入包气带,对土壤及地下水污染严重,已成为当前地下水环境保护中的核心课题。本文以多孔介质流体动力学、溶质运移动力学和水文地质学理论为指导,以柴油作为代表污染质,从物理模拟试验入手,模拟LNAPLs在包气带的污染行为,重点研究LNAPLs在包气带中的运移规律,并从三相流角度建立了LNAPLs在包气带运移的多相流数学模型,定性定量研究LNAPLs在包气带中运移问题,揭示了LNAPLs在包气带中的运移机理,主要研究成果如下:
     1)利用自制物理模拟试验装置,开展了LNAPLs在不同介质中的油水驱替试验,揭示了LNAPLs在包气带中的运移规律及特征。得出LNAPLs在渗漏初期主要受重力作用驱动,锋面尚未到达地下水毛细区上边缘时,其运动以垂向迁移为主,并保持规则的、圆弧形移动,当锋面到达毛细区上边缘以后,柴油沿着毛细区上边缘横向扩展,垂向进入毛细区和地下水中的部分有限;在不同介质中油流锋面具有不同分布特征,即均质介质油流锋面可分为残余油区及毛细带聚集油区,上细下粗型介质为聚集区-残余油区-聚集油区组合形式,含夹层型介质为残余油区及聚集油区交替出现型;影响油流锋面分布特征的因素主要有包气带岩性、初始水相压力、流场变化等;锋面最大发育宽度受孔隙度及介质渗透性能限制,当存在弱渗透性介质时,锋面横向发育加大尤为明显,反映出弱渗透性介质对污染物的阻滞作用,上述规律为揭示机理奠定基础。
     2)利用砂性漏斗试验装置所获取的两相系统各流体对之间的s-p关系,并借助F.F.Fagerlund折算理论将两相系统k-s-p关系扩展到三相系统,系统研究了三相系统中k-s-p关系。三相系统中,油、水两相的k-s曲线形状均为上凹型,各相相对渗透率曲线变化在小于等渗点饱和度之前,水相相对渗透率增加较慢而油相气相相对渗透率减小较快,当大于等渗点饱和度后,水相相对渗透率增加较快而油相缓慢减少至零。上述研究为分析多相流动以及对多相流问题进行数学模拟奠定基础。
     3)借助油气藏渗流力学理论,从多相流角度出发构建了描述LNAPLs在包气带运移的多相流动力学模型,并运用TOUGH2软件求解模型,反演后参数与实测参数基本吻合,为LNAPLs的污染预测及机理分析提供了定量支撑。
     4)基于物理模拟试验及数学模型,定性定量研究了LNAPLs在包气带中的迁移机理。得出在一定渗漏量下,均质介质颗粒越粗,LNAPLs越易到达毛细带。而进入毛细带中则以横向迁移为主,其中粗粒相横向迁移面积大于细粒相迁移面积,但在细粒相中LNAPLs聚集区的饱和度大于粗粒相。不论哪种砂性介质,油相发生横向迁移时水相饱和度为0.45。对于以砂性介质为主的非均质结构地层,弱渗透性介质存在对油相下移尽管有一定阻滞作用,但对于长期泄漏源,弱渗透夹层存在不足以完全阻滞油相下移,故应该重视输油管道泄漏等问题。
     本文研究对于定量化研究有机污染物在地下环境系统中迁移、污染预测提供理论依据和试验支持,对于确保地下水资源的可持续利用以及有效控制及修复LNAPLs污染具有一定的理论价值和实际意义。
Light non-aqueous phase pollutant (LNAPLs) is the typical organic compounds, can cause serious soil and groundwater pollution after spilled into vadose zone,the issue of organic pollution has become the core topic of groundwater environment protection.Therefore, under the guidance of the porous medium hydrodynamics solute migration dynamics and the hydrogeology theory, the paper make the diesel oil represents LNAPLs, simulated the pollution behavior of two-dimensional region through the laboratory physical model test, with emphasis on the disciplinarian in vadose zone, and also established the migration multi-phase flow mathematical model of LNAPLs in vadose zone from the perspective of three-phase flow, revealed the the migration mechanism and the influencing factor qualitatively and quantitatively. the main research results are as follows:
     (1)The displacement experiments between oil-water has carried out in different media by self-physical simulation test device,and revealed migration laws and distribution characteristics of LNAPLs in the vadose zone. The results indicated that diesel oil transfer dominated by the vertical pattern at the initial stage of diesel leakage beause of the gravity controlling by the medium porosity and permeability, the frontal area maintains the rule, the round arc migration before the front on the edge of the capillary. After the front reached the edge of the capillary zone, the degree of front development grows slowly, diesel oil transport with the horizontal expansion and always along the edge of the capillary zone, vertically enters in the capillarity area and the ground water part is very limited. The oil frontal have different distribution characteristics in different media, the oil frontal can be divided into residual oil zone and capillary band together oil in homogeneous medium,and in thin coarse-type medium shows combination of gathered-residual-gathered oil zone,in containing sandwich-type medium shows residual-gathered oil zone alternating type.The characteristic of oil stream frontal concerned with the lithological character, initial aqueous phase pressure, flow field changes. The maximum growth width of frontal area confined by the porosity and the medium penetrating capability, The frontal area crosswise growth enlarges when has weak infiltration medium, it reflected the weak permeable medium has the obvious retardarce to the pollutant retardation.The laws lay the foundation to reveal the mechanism.
     (2) The relationship between s-p in two-phase system has obtained by sandy funnel test devices, and extended it into three-phase system using conversion theory of F. F. Fagerlund, studied the relationship of k-s-p in three-phase systemly.The results shows the k-s curve shape of oil and water is on concave no matter with which kind of lithological, the aqueous phase relative permeability increases slowly but the oil phase and gas phase relative permeability reduces quickly before the isotonia spot. After being bigger than an isotonia spot degree of saturation, the aqueous phase relative permeability increases but the oil phase reduces the to zero slowly.The results lay the foundation for analysis of multiphase flow and the mathematical simulation.
     (3) The multiphase flow dynamics model describing LNAPLs in vadose zone migtration was established from the perspective of multi-phase flow, and solve the model using TOUGH2 software, the inversion parameters are basically consistent with the measured parameters,it can provide quantitative support for forecast and analysis mechanism of LNAPLs pollution.
     (4) Based on physics-simulation and mathematical models, has studied migration mechanism of the LNAPLs in the vadose zone qualitatively and quantitatively.The results shows that the controlling factors of LNAPLs migration in the vadose zone are lithology, structure, and initial soil moisture content.Under a certain amount of leakage in homogeneous media,LNAPLs can reach the capillary zone. easily concerned with the media thickness level. The coarse granular media mains horizontal expansion after the front reached the capillary zone and transverse area in coarse-grained phase is larger than in the fine-grained phase, but the LNAPLs saturation of gathering zone in fine-grained phase is larger than in coarse-grained phase.Lateral migration of oil phase occurred when the water phas saturation threshold of 0.45 regardless of what kind of medium.For the hydrophilic medium, when the water phase occupies more than 45% pore space, LNAPLs migration blocked by water phase, the migration of LNAPLs show horizontal development.In non-homogeneous structure of strata.of sand-based medium,the weak penetration medium shows a certain blocking effect,but for long-term leakage source, it is not sufficient to completely block the downward movement of LNAPLs.Therefore, we should attach importance to pipeline leaks and other issues.
     The research can provides the theory basis and the experimental support for the quantitative research of migration, pollution forecast and prevention of organic pollutant in underground environment system, also have some theoretical value and practical significance for ensuring the sustainable use of groundwater resources and pollution control effectively.
引文
[1]http://www.epa.gov/news/gn861103.html.[环保署将加强抽查加油站防范储油罐泄漏],1997年11月3日。
    [2]http://www.chinanews.com.cn/ny/news/2010/01-02/2050656.shtml.[陕西渭南发生大量柴油泄漏]中国新闻网,2010年1月1日。
    [3]Chrysikopoulos CV, Kim T-J. Local mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media[J]. Trans Porous Media,2000,38(1-2):167-187
    [4]A.S. Abdul,Migration of petroleum products through sandy hydrogeologic systems[J].Ground-Water Monitoring Review.1988,8(4):73-81.
    [5]Schroth,Martin,Three phase immiscible fluid movement in the vicinity of textural interface[J]. Joural of Contaminant Hydrology.1998 (32):1-23
    [6]E.L.Wipfler, M.Ness, G.D. Breedveld etc, Infiltration andredistribution of LNAPL into unsaturated layered porous media[J]. Joural of Contaminant Hydrology.2004 (71):47-66.
    [7]邢巍巍LNAPLs在土体中的运移特性研究[D].北京:清华大学,2005
    [8]Leonardo I., Avery H.Demond, Estimation of drainage three-phase relative permeability for organic liquid transport in the vadose zone[J]. Joural of Contaminant Hydrology.2003 (66):261-285
    [9]Oak M.J., Baker L.E., Thomas D. etc, Three-phase relative permeability of Berea sandstone[J]. Journal of Petroleum Technology.1990,42 (8):1054-1061.
    [10]Parker J.C., Lenhard R.J., Kuppusamy T., A parametric model for constitutive properties governing multiphase flow in porous media[J]. Water Resources Research.1987,23 (4):618-624.
    [11]Lenhard R.J., Parker J.C., Experimental validation of the theory of extending two-phase saturation-pressure relations to three-fluid phase systems for monotonic drainage paths[J]. Water Resources Research.1988,24 (3):373-380.
    [12]C. Kechavarzia, K. Soga, T.H. Illangasekare, Two-dimensional laboratory simulation of LNAPL infiltration and distribution in the vadose zone[J].Journal of Contaminant Hydrology.2005 (76):211-233
    [13]R.J. Lenhard,M. Oostrom, A constitutive model for air-NAPL-water flow n the vadose zone accounting for immobile non-occluded(residual)NAPL in the strongly water-wet porous media[J]. Journal of Contaminant Hydrology.2004 (71):261-282
    [14]P.J. Van Geel, J.F. Sykes, The Importance of Fluid Entrapment Saturation Hysteresis and Residual Saturations on the Distribution of a LNAPL in a Variably-Saturated Sand[J]. Journal of Contaminant Hydrology.1997,25(2):249-270
    [15]P.J.Van Geel,S.D. Roy,A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure-saturation relationship[J]. Journal of Contaminant Hydrology.2002 (58):79-110
    [16]Lenhard R J, Oostrom, A Constitutive Model for Air-NAPL-Water Flow in the Vadose Zone Accounting for Immobile No-occluded(Residual)NAPL in the strongly water-Wet Porous Media[J].Journal of Contaminant Hydrology,2004,71:261-282
    [17]Oak M J, Baker L E, Thomas D, etal.Three-Phase Relative Permeability of Bereas and stone[J].Journal of Petroleum Technology,1990,42(8):1054-1061
    [18]M.D. White,M.Oostrom,R.J.Lenhard,Modeling fluid and transport in varialely saturated porous media with the STOMP simulator.1.Nonvolatile three-phase madel description[J].Advances in Water Recource.1995,18(6):353-364
    [19]Schroth, Martin. H., Istok, Jonathan D., Selker, John S. Three-phase immiscible fluid movement in the vicinity of tex-tural interfaces. Journal of Contaminant Hydrology,1998,32:1-23
    [20]Darnault, C. J. G., Throop, J. A., DiCarlo, D. A., Rimmer, A., Steenhuis, T. S., J.-Yves Parlange.Visualization by light transmission of oil and water contents in transient two-phase flow fields[J].Journal of Contaminant Hydrology,1998,31:337-348.
    [21]C. Kechavarzia, K. Soga, T.H. Illangasekare, Two-dimensional laboratory simulation of LNAPL infiltration and distribution in the vadose zone[J].Journal of Contaminant Hydrology.2005 (76):211-233
    [22]Abriola L M, Rathfelder K. Mass Balance Errors in Modeling Two-Phase Immiscible Flow:Causes and Remedies[J]. Advances water Resources,1993,16:223-239
    [23]Karkare, M.V., Fort,T.,1993.Water movement in unsaturated porous media due to pore size and surface tension induced capillary pressure gradients[J]. Langmuir,9:2398-2403.
    [24]Faust C.R.,Transport of immiscible fluids within and below the unsaturated zone:A numerical model[J]. Water Resources Research.1985,21(3):587-596
    [25]Kim,Jeongkon,Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table[J].Texasa & university,Phddissertation,1998
    [26]M.D. White,M.Oostrom,R.J.Lenhard,Modeling fluid and transport in varialely saturated porous media with the STOMP simulator.1.Nonvolatile three-phase madel description[J].Advances in Water Recource.1995,18(6):353-364
    [27]Schroth,Martin,Three phase immiscible fluid movement in the vicinity of textural interface[J]. Joural of Contaminant Hydrology.1998 (32):1-23
    [28]E.L. Wipfler, M.Ness, G.D. Breedveld etc, Infiltration andredistribution of LNAPL into unsaturated layered porous media[J]. Joural of Contaminant Hydrology.2004 (71):47-66.
    [29]武晓峰.轻质非水相流体在非饱和区及饱和区运移规律研究[D].北京:清华大学,1996
    [30]郑西来、王秉忱、佘宗莲.土壤-地下水系统石油污染原理与应用研究[M].地质出版社,2004
    [31]Zhao Yong sheng,Zheng De Feng,The moving mechanisms of LNAPL in unsaturated zone and aquifer[J],2nd International Conference on Future Groundwater at Risk. [c]Changchun,china,14-16 July,1998::27-33
    [32]郑德凤、赵勇胜、王本德.轻非水相液体在地下环境的运移特征与研究[J].水科学进展.2002,13(3):321-325
    [33]武晓峰、唐杰、藤间幸久.多孔介质两相流的统一毛细压力饱和度关系曲线[J].灌溉排水. 1999,7(5):68-73.
    [34]陈家军,支银芳,郑冰等.非离子表面活性剂对两相系统毛细压力和饱和度关系的影响[J].水科学进展.2008,19(4):453-459
    [35]刘汉乐,周启友,徐速.包气带中非均质条件下LNAPL运移与分布特性试验研究[J].水文地质工程地质,2006,5:52-57
    [36]刘汉乐,周启友,吴华桥.基于高密度电阻率成像法的轻非水相液体饱和度的确定[J].水利学报,2008,2,39(2):189-195
    [37]支银芳,陈家军,李玮.非离子表面活性剂Triton X-100溶液冲洗油污土壤试验研究.农业
    环境科学学报,2006,5(2):349-353.
    [38]王洪涛、罗剑.石油污染物在土壤中运移的数值模拟初探[J],环境科学学报.2000,20(6):755-760.
    [39]薛强、马士进、王惠芸.非水相液体传输的耦合动力学模型及数值解[J].辽宁工程技术大学学报.2005,24(4):524-526.
    [40]李永涛、王文科、王丽、王小丹,非饱和轻非水相液体污染研究进展,地球科学与环境学报,2007年9月第29卷第3期:326-330
    [41]薛强.石油污染物在地下环境系统中运移的多相流模型研究[D].阜新:辽宁工程技术大学2003.
    [42]崔学慧:地下水系统中多相流体数值模拟[D].北京:中国地质大学(北京),2006.
    [43]陈月明编.油藏数值模拟基础,北京,石油大学出版社,1989
    [45]韩大匡等.油藏数值模拟.北京:石油工业出版社.2001
    [46]R,特曼,A.米朗维尔(著).薛密(译).连续介质力学中的数学模型.北京:清华大学出版社.2004
    [47]沈平平著,油水在多孔介质中的运动理论和实践[M],石油工业出版社,2000:23-27
    [48]J.Bear著,李竞生、陈崇希译,多孔介质流体动力学[M],中国建筑出版社,1983:357
    [49]葛家理、宁正福、刘月田等,现代油气渗流力学原理。北京:石油工业出版社,2005
    [50]崔学慧:地下水系统中多相流体数值模拟[D].北京:中国地质大学(北京),2006.
    [51]孙讷正.地下水污染——数学模型和数值方法,地质出版社,1989
    [52]朱学愚,谢春红著.地下水运移模型[M].北京:中国建筑工业出版社,1990.
    [53]薛禹群主编,地下水动力学[M].北京:地质出版社,1997.
    [54]杨天行,朱政嘉主编.水系统污染的数学模型及应用[M].长春:吉林大学出版社,1990
    [55]魏新平、王文焰,溶质运移理论的研究现状和发展趋势,灌溉排水,1998.17(4)
    [56]王丽,LNAPL在包气带运移的试验研究[D].西安:长安大学,2009.
    [57]郑德凤、赵勇胜、王本德.轻非水相液体在地下环境的运移特征与研究[J].水科学进展.2002,13(3):321-325
    [58]雅贝尔著,李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑出版社,1983.
    [59]郑西来.土壤中油-水驱机理研究[J].环境科学学报.2000(3):218-221.
    [60]武晓峰、唐杰、藤间幸久.地下水中轻质有机污染物透镜体研究[J].环境污染与防治.1999,7(5):17-20.
    [61]雅贝尔著,李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑出版社,1983.
    [62]王大纯,张人权,史毅红,等.水文地质学基础.北京:地质出版社.1995
    [63]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988
    [64]Van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America Journal,1980,44(5):892-898
    [65]肖建英、李永涛、王丽,利用Van Genuchten模型拟合土壤水分特征曲线,地下水,2007年9月第29卷第5期:46-48
    [66]Parker J. C., Lenhard R. J., Kuppusamy T. A Parametric Model for Constitutive Properties Governing Multiphas Flow in Porous Media[J].Water Resources Research,1987,23(4):618-624
    [67]McBride JF, Simmons CS, Cary JW. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media[J]. Contam Hydrol 1992,11:1-25
    [68]McBride JF, Simmons CS, Cary JW. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media[J]. Contam Hydrol 1992,11:1-25
    [69]F.Fritjof Fagerlund, Auli Niemi, Magnus Ode'n. Comparison of relative permeability-fluidsaturation-capillary pressure relations in themodelling of non-aqueous phase liquidinfiltration in variably saturated, layered media[J]. Advances in Water Resources,2006:1-23
    [70]Demond AH, Lindner AS. Estimation of interfacial tensionbetween organic liquids and water.Environ Sci Technol1993;27:2318-31
    [71]Adamson AW, Gast AP. Physical chemistry of surfaces.6thed. New York:John Wiley & Sons; 1997
    [72]郑冰.包气带轻油(LNAPL)污染多相流试验研究[D].北京:北京师范大学,2004
    [73]M.HSchroth, J.D.Istok, S.J.Ahearn, J.S.Selker. Geometry and position of light nonaqueous-phase liquid lenses in water-wetted porous media[J].Journal of Contaminant Hydrology 19(1995):269-287
    [74]郑冰.包气带轻油(LNAPL)污染多相流试验研究[D].北京:北京师范大学,2004
    [75]束善治.有机污染物包气带迁移的离心模型研究.岩土工程学报,2000,22(5):595-598
    [76]陈月明编.油藏数值模拟基础,北京,石油大学出版社,1989
    [77]Tuck, D.M., Bierck, B.R., Jaffe, P.R.Synchrotron radiation measurement of mutiphase fluid saturation in porous media:experimental technique and error analysis. [J]. Cont. Hydr.1998, 31:231-256.
    [78]杨景辉.土壤污染与防治[M].科学技术出版社,1995.
    [79]Wan J., Wilson JL, Visualization ofthe role ofthe gas-water interface on the fate and transport of colloids in porous media[J]. Water Resources Research.1994,30(1):11-23.
    [80]SMITH D W, ROWER K, BOOKER J R. The analysis of pollutant migration through soil with linear hereditary time-dependent sorption[J]. Int J Numer and Anal Methods in Geomechanics, 1993,17:255-260.
    [81]KANDIL H, MILLER C T, SKAGGS R W. Modelling long-term solute transport in drained unsaturated zones[J]. Water resources reseach,1992,28:2799-2809.
    [82]CHEN W, WAGENET R J. Solute transport in porous media with soption-site heterogeneity [J]. Environ Sci Technol,1995,29:2725-2734.
    [83]BEAR J, VERRUIJT A. Modelling groundwater flow and pollution[M]. Dordecht, Netherlands: D Reidel Publishing Company,1987.
    [83]YAVUZ CORAPCIOGLU M. A Compositional Multiphase Model for Groundwater Contamination by Petroleum Products:1. Theoretical Considerations[J]. Water resources reseach, 1986,23:191-197.
    [84]PARKER J C, LENHARD R J, KUPPUSAMY T. A parametric model for for conatitutive properties governing multiphase flow in porous media[J]. Water resources reseach,1997,23: 618-624.
    [85]Bresler E, Dagan G. Solute dispersion in unsaturated heterogenous soil at field scale applications[J].Soil Sci Soc Am J,1979,43:467-472.
    [86]PANTAZIDOU M, SITAR N. Emplacement of Non-aqueous Liquids in the Vadoze Zone[J]. Water Resource Research,1993,29(3):705-722.
    [87]FAUST C R. Transport of immiscible fluids within and below the unsaturated zone:A numerical media[J]. Water Resources Research,1985,21(4):587-596.
    [88]SMITH D W, ROWER K, BOOKER J R. The analysis of pollutant migration through soil with linear hereditary time-dependent sorption[J]. Int J Numer and Anal Methods in Geomechanics, 1993,17:255-260.
    [89]LANDIL H, MILLER C T, SKAGGS R W. Modelling long-term solute transport in drained unsaturated zones[J]. Water Resources Research,1992,28:2799-2809.
    [90]CHEN W, WAGENET R J. Solute transport in porous media with soption-site heterogeneity [J]. Environ Sci Technol,1995,29:2725-2734.
    [91]BRESLER E, DAGAN G. Solute dispersion in unsaturated heterogenous soil at field scale applications[J]. Soil Sci Soc Am J,1979,43:467-472.
    [92]MECARTHY J F, ZACHARA J M. Subsurface transport of contaminants.[J]. Environmental Science and Technology,1989,18:41-51.
    [93]WANG Z, FEYEN J, NICLSEN D R, et al. Two-phase flow infiltration equations accounting for air entrapment effect[J]. Water Resources Research,1997,33:2759-2767.
    [94]ALI A, MOHAMED T, SASAKI K, WATANABE. Solute Transport Through Unsaturated Soil Due to Evaporation[J]. Journal of Environmental
    [95]Hideo Nakajima,Centrifuge of LNAPL Movement in the vadose Zone[D],University of California Davis,2002
    [96]Sampath, K. and Keighin, C.W. Factors Affecting Gas Slippagein Tight Sandstones of Cretaceous Age in the Uinta Basin, JPT,1982,2715-2720.
    [97]Molly S.Costanza-Robinson. Mark L.brusseau.Gas phase advection and dispersion in unsaturated porous media[J]. Water Resources Research,2002,38(4):7-1-7-10.
    [98]Gomez-Lahoz, C, Garcia-Delgado, RA and Wilson, DJ. Model with mass transport limitations for pump and treat remediation of soils polluted with NAPL[J]. Environmental Monitoring and Assessment,1994a,32(2):161-186.
    [99]Mendoza, C.A. and Frind, E.O. Advective-dispersive transport of dense organic vapors in the unsaturated zone 1. Model development[J].Water Resources Research,1990,26(3):379-387.
    [100]Zaman, M.R. Subsurface Remediation by vacuum extraction for volatile organic chemicals:A Finite Element Model [D]. Ph.D. Dissertation, Department of Civil Engineering, Texas TechUniversity, Lubbock, TX,1993.
    [101]Benson, D. A., Huntley, D., and Johnson, P. C. Modeling vapor extraction and general transport in the presence of NAPL mixtures and nonideal conditions [J]. Ground Water, 1993,31(3):437-445.
    [102]Ang, C.C., and A.S. Abdul. Aqueous surfactant washing of residual oil contamination from sandy soil[J]. Ground Water Monitoring Review, Spring 1991.
    [103]Reeves, P.C., and M.A. Celia. A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model[J]. Water Resources Research, 1996,32(8):2345-2358.
    [104]Pantazidou, M. and N. Sitar. Emplacement of nonaqueous liquids in the vadose zone[J]. Water Resources Research,1993,29(3):705-722.
    [105]Van Geel, P.J. and J.F. Sykes. The Importance of Fluid Entrapment, Saturation Hysteresis and Residual Saturations on the Distribution of a LNAPL in a Variably-Saturated Sand. Journal ofContaminant Hydrology,1997,25(2):249-270.
    [106]Waddill, D.W., and J.C. Parker. Recovery of light, nonaqueous phase liquid from porous media:Laboratory experiments and model validation. Journal of Contaminant Hydrology,1997,27(1):127-155.
    [107]Demond, A.H. and P.V. Roberts. Effect of interfacial forces on two-phase capillarypressure-saturation relationships[J]. Water Resources Research,1991,27:423-437.
    [108]Demond, A.H. and P.V. Roberts. Estimation of two-phase relative permeability relationships for organic liquid contaminants[J]. Water Resources Research,1993,29:1081-1090.
    [109]Busby, R.D., R.J. Lenhard, and D.E. Rolston. An investigation of saturation-capillary pressure relations in two-and three-fluid systems for several NAPLS in different porous media[J].GroundWater,1995,33:570-578.
    [110]J. H. Dane,C. Hofstee. Simultaneous measurement of capillary pressure, saturation, and effective permeability of immiscible liquids in porous media [J]. Water Resources Research,1998,34(12):3687-3692.
    [111]Zhou, D and Blunt, M (1997). Effect of spreading coefficient on the distribution of light nonaqueous phase liquid in the subsurface. Journal of Contaminant Hydrology, 1997,25(1-2):1-19.
    [112]Bresler,E. and Dagan,G. Solute dispersion in unsaturated heterogenous soil at field scale. Ⅱ:Applications. Soil Sci.Soc.Am.J.,1979,43:467-472.
    [113]Faust C R. Transport of immiscible fluids within and below the unsaturated zone:A numerical media[J]. Water Resources Research,1985,21(4):587-596.
    [115]Mecarthy J F, Zachara J M. Subsurface transport of contaminants[J]. Environmental Science and Technology,1989,18:41-51.
    [116]Kandil H, Miller C T, Skaggs R W. Modelling long-term solute transport in drained unsaturated zone[J]s. Water Resources Research,1992,28:2799-2809.
    [117]Smith D W,RoweR K,Booker J R. The analysis of pollutant migration through soil with linear hereditary time-dependent sorption. Int J Numer and Anal Methods in Geomechanics,1993,17:255-260.
    [118]James J.Deitsch. Modeling the Desorption of Organic Contaminants form Long-Term contaminated Soil Using Distributed Mass Transfer Rates [J]. Environ. Sci. Tchnol. 1997,31(6):1581-1588.
    [119]Mercer, JW and Cohen, RM. A review of immiscible fluids in the subsurface:properties, models, characterization and remediation. Journal of Contaminant Hydrology,1990,6:107-163.
    [120]Faust, C.R., and J.W. Mercer. Groundwater modeling:Recent developments:Ground Water,1980,18(6):1233-1242.
    [121]Karickhoff, S. W., D. S. Brown, and T. A. Scott. Sorption of hydrophobic pollutants on natural sediments[J]. Water Research,1979,(10):241-248.
    [122]Karickhoff, S. W. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils[J]. Chemosphere,1981,(10):833-846.
    [123]K.C.巴斯宁耶夫,A.M.费拉索夫等.地下流体力学[M].张永一,赵碧华译.北京:石油工业出版社,1992.
    [124]武晓峰,唐杰,藤间幸久.多孔介质三相流中的毛细压力和相对渗透率[J].环境污染治理技术与设备,1999,5:68-73
    [125]胡雪蛟.多孔介质毛细压力-饱和度的滞后特征[J].自然科学进展,2001,ll(5)
    [126]任磊,黄廷林.土壤的石油污染.农业环境保护.2000,19(6):360-363
    [127]张蔚榛.地下水与土壤水动力学[M].武汉水利电力大学出版社1996,
    [128]郑德凤,轻非水相液体在包气带的运移机理及试验研究[D].长春:长春科技大学,1998
    [129]何更生.油层物理.北京:石油工业出版社.1997
    [130]张建国,油气藏渗流力学,石油大学出版社,东营
    [131]施小清,张可霓,TOUGH2软件的发展及应用.工程勘察,2009,10(6):29-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700