基于能量调节的电液变转速阀控马达驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液变转速是通过改变电动机转速来改变液压泵输出流量的液压驱动技术,近年来研究和发展迅速,并逐步应用到液压电梯、注塑机、风机等领域。电液变转速驱动技术获得广泛应用的主要原因是节能效果显著,但同时也存在着响应速度慢、低速性能差等缺点。其中,响应速度慢是其主要缺点,致使其目前仅用于对响应速度及控制精度要求不高的场合。在普通变转速驱动的基础上加上阀控,组成变转速一节流复合驱动,有利于提高控制精度和减速时的响应速度,但不能提高加速时的响应速度。
     基于能量调节的电液变转速驱动技术是解决这个问题的一个很好途径。在系统中加装能量调节器,当系统需要能量,而液压泵由于加速响应慢而不能快速加速时,能量调节器释放能量,加快执行对象的加速响应;而在系统能量过剩时,同样由于液压泵的减速响应慢而不能快速减速时,能量调节器吸收能量,减少系统节流及溢流损耗。其余情况下,能量调节器关闭。基于能量调节的电液变转速驱动技术已就执行对象为液压缸时进行了仿真和试验研究,结果表明,此技术在保持传统变转速驱动高效率的基础上,能够大大提高执行对象液压缸的加速响应,获得了良好的效果,但所有的试验都是在空载情况下进行,并没有进行带载试验。
     本论文研究的是基于能量调节的电液变转速驱动技术在液压马达速度控制上的应用。在建模分析能量调节器及整个系统之后,提出基于分层控制的系统控制策略,并从能量调节思想出发,实现对被控对象的协调控制。进行了大量的仿真和试验研究,除空载外,还进行了马达的带载仿真和试验。结果表明,基于能量调节的电液变转速驱动技术在液压马达的速度控制上也收到了很好的成效,在保持传统变转速驱动高效率的基础上,提高了马达的响应速度,而且抗负载干扰能力较好。与此同时,能量调节器结构简单,应用到实际中系统改造小,具有良好的应用前景。
     第1章首先简要说明了液压领域里两种最基本的调速方式,即节流调速和容积调速的各自特点。然后从变频技术的发展出发,详细阐述了电液变转速驱动的发展背景及研究现状。蓄能器是能量调节器的重要构件,所以也对蓄能器的主要功能及典型应用作了说明。控制策略也是至关重要的,尤其是对于本系统的多输入多输出控制对象而言,在第1章中也对液压领域常用的控制策略进行简要说明。
     第2章对能量调节器进行了详尽分析。首先从功能特点出发,将能量调节器在系统中的作用分为两方面,即辅助动力源和吸收压力脉动。并详细说明了能量调节器在系统中的应用,即开式回路或闭式回路形式的系统结构。能量调节器作为辅助动力源使用是其在系统中的主要作用,作为吸收压力脉动使用时,分析了其能够吸收压力脉动的原因。
     第3章首先说明了基于能量调节的电液变转速阀控马达的原理,试验台构造。着重分析了基于ARM的系统控制器设计。然后推导出了整个系统的数学模型,并对其线性化,分析了系统的控制性能。此外,还定性分析了能量调节器的加入对阎控马达调速性能的影响。
     第4章从能量调节思想出发,提出了系统的分层控制结构,并分别对能量层、控制层、反馈层进行了详细说明以及给出了各自实现。本章还对三种对比研究系统的控制策略进行了说明。
     第5章为仿真研究。首先是定负载仿真,然后是变负载仿真。设计了阶跃、正弦、方波等多种指令转速形式,并进行了扰动仿真,目的是全面分析本系统的特点和性能。除此之外,本章还对蓄能器的主要参数对系统的影响进行了仿真分析,得出了能量调节器的设计原则和依据。
     第6章是试验研究。同仿真研究一致,也进行了定负载试验和变负载试验,指令转速的形式也有多种。仿真和试验结果表明,本系统在保持传统变转速驱动高效率的基础上,提高了马达的响应速度,而且抗负载干扰能力也很好。
     第7章为结论和展望。总结得出了本论文研究的主要结论,以及今后研究的方向。
Variable-speed electrohydraulic drive is the technique that changing the pump's output flowrate via changing the motor's speed. It has been greatly studied and improved these years. And it has been used in hydraulic elevator, injection machine and fan drive et al. Variable-speed electrohydraulic drive is very popular because of its high efficiency. But it also has some disadvantages such as slow response, poor low-speed performance due to the big inertia of motor-pump. The main disadvantage is slow-response, which makes it only be used in the situations of low response and low control precision. To solve these problems, a flow control valve is added to realize the compound control drive composing of variable-speed control and valve control. The compound control drive can improve control precision, low-speed performance, and the deceleration response. But it is helpless to improving the acceleration response.
     Energy regulation based variable-speed electrohydraulic drive technique through adding an energy regulation device (ERD) into the compound drive system, is a good solution to this problem. If the system is accelerating while the pump can't accelerate quickly due to its big interia, the ERD releases energy in order to improve response. If the system is decelerating while the pump can't decelerate quickly, the ERD is open to absorb system redundant hydraulic oil. It decreases restriction loss and overflow loss. In other cases, the ERD is closed. Energy regulation based variable-speed electrohydraulic drive technique has been applied in cylinder control. The simulations and experiments results have shown that it can improve the acceleration response greatly and gain a good energy-saving effect. But all experiments were implemented under no-load condition. Load experiments have not accomplished yet.
     This dissertation discusses the application of energy regulation based variable-speed electrohydraulic drive technique to the hydraulic motor's speed control. After modeling and analyzing the ERD and the total system, the hierarchical control strategy is proposed, which realizes the coordinate control together with the erergy regulation idea. A large number of simulations and experiments, which include no-load and load conditions, have been carried out. The results show that the energy regulation based variable-speed electrohydraulic valve-controlled motor drive can improve the hydraulic motor's acceleration response on the base of high efficiency as the conventional variable-speed electrohydraulic drive and it has a good anti-load-interference ability. At the same time, the modification works will be small due to the ERD's simple structure. And the energy regulation based variable-speed electrohydraulic drive has a very good application prospect.
     The Chapter 1 introduces the two basic speed-regulation modes, the valve resistance technique and the pump displacement control technique, in hydraulic drive firstly. Then, from the development of frequency control technique, the background and the present state of the variable-speed electrohydraulic drive are discussed in detail. The accumulator is an important component of the ERD. So the accumulator's main functions and some typical application examples were given. The control strategy is very important too, sepecially to the MIMO system. The frequent control strategies are also discussed in the Chapter 1.
     The Chapter 2 discusses the ERD thoroughly. The ERD can display two aspects of effect, which are the auxiliary power sourse and the role of absorbing pulse ripple. And this chapter gives a detailed description about the ERD's use in the open-loop or close-loop hydraulic systems. The main effect of the ERD to this system is its purpose of auxiliary power sourse. Also, the Chapter 2 discusses the reason why the ERD can absorb pulse ripple.
     The Chapter 3 firstly introduces the principles of energy regulation based variable-speed electrohydraulic valve-controlled motor drive, the structure of the testrig. It introduces emphatically the design of the controller based on ARM. Then the mathematical model of the whole system was deduced. After linearization, the system's control performance was discussed. The Chapter 3 also discussed qualitatively the influence of adding ERD to the valve-controlled motor drive system.
     The Chapter 4 proposed the hierarchical control structure on the base of energy regulation idea. It also discussed the principles and implementations of the energy layer, the control layer and the feedback layer. The control strategies of the other three contrast system were also discussed in this chapter.
     The Chapter 5 is the simulation discussiones, which not only includes the constant-load simulations, but also the varying-load simulations. To analyzing the system's performances generally, various input speed forms, like as step, sinusoldai, rectangle et al, are designed. The disturbed simulations are also implemented. The simulations of ERD's main parameters are also carried out in this chapter for the purpose of the design rule of the ERD.
     The Chapter 6 is the experiment discussiones, which also include the constant-load and the varying-load experiments. It also has various input speed forms as the Chapter 5. The simulations and experiments results show that the discussed system in this paper can improve the hydraulic motor's acceleration response on the base of high efficiency like as conventional variable-speed electrohydraulic drive. And the energy regulation based vairvble-speed drive has a good anti-load-interference ability.
     The Chapter 7 is the conclusions. It also gives the suggestions for the further research.
引文
[1]路甬祥,胡大绂.电液比例控制技术[M].北京:机械工业出版社,1988
    [2]姜继海,宋锦春,高常识.液压与气压传动[M].北京:高等教育出版社,2001
    [3]严金坤.液压元件[M].上海:上海交通大学出版社,1989
    [4]李洪人.液压控制系统[M].北京:国防工业出版社,1981
    [5]张平格.液压传动与控制[M].北京:冶金工业出版社,2004
    [6]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,1998
    [7]王春行.液压伺服控制系统[M].北京:机械工业出版社,1981
    [8]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006
    [9]路甬祥主编.液压气动技术手册[M].机械工业出版社,2001
    [10]金波,顾临怡.基于变频调速的电液复合控制系统及其控制方法.中国发明专利:CN 1391 146A[P].2003-1-15
    [11]沈海阔.基于能量调节的电液变转速控制系统研究[D].杭州:浙江大学博士学位论文,2007
    [12]Shen Haikuo,Jin Bo,Chen Ying.Research on Vary Speed Electro-hydraulic Control System Based On Energy Regulating Strategy[C]//ASME International Mechanical Engineering Congress and Exposition,Chicago,USA,2006
    [13]Shen Haikuo,Jin Bo,Yu Yaxin,et al.Study on Energy-Saving Variable Speed Hydraulic Control System[C]//Proceedings of the International Conference on Advanced Design and Manufacture,Harbin,China,2006:435-440
    [14]金波,沈海阔,陈鹰.基于能量调节的电液变转速液压缸位置控制系统[J].机械工程学报,2008,44(1):25-30
    [15]沈海阔,金波,陈鹰.基于能量调节的电液变转速控制系统[J].机械工程学报,2009,45(5):209-213
    [16]许明,金波,李伟.基于能量调节的电液变转速系统ARM控制器设计[J].浙江大学学报(工学版),2009,43(2):202-206
    [17]周德群.中国能源的未来:结构优化与多样化战略[J].中国矿业大学学报(社会科学版),2001,3:86-95
    [18]杨文培.能源发展与经济增长互动关系探讨[J].煤炭经济研究,2005,1:20-21
    [19]Lu Yongxiang.Historical progress and prospects of fluid power transmission and control[C]//Proceeding of the Fifth International Conference on Fluid Power Transmission and Control,Beijing,China,2001:62-68
    [20]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,1999
    [21]任礼维、林瑞光.电动机与拖动基础[M].杭州:浙江大学出版社,1995
    [22]李华德.交流调速控制系统[M].北京:电子工业出版社,2003
    [23]肖岚、徐慧,胡文斌等.变频器的电压空间矢量调制控制技术研究[J].电工技术学报,2004,19(2):73-78
    [24]Iwanciw P.,Ward,R.An application of medium power AC vector controlled drives[C]//Fourth International Conference on Power Electronics and Variable-Speed Drives,1991:17-19
    [25]李永东.交流电动机数字控制系统[M].北京:机械工业出版社,2002
    [26]Tsugutoshi Ohtani,Noriyuki Takada,Koji Tanaka.Vector control of induction motor without shaft encoder[J].IEEE Transactions on industry applications.1992,28(1):157-164
    [27]Colin Schauder.Adaptive speed identification for vector control of induction motors without rotational transducer[J].IEEE Transactions on industry applications,1992,28(5):1054-1061
    [28]王文森,李永东,王光辉等.基于PI自适应法的无速度传感器异步电动机矢量控制系统[J].电工技术学报,2002,17(1):1-6
    [29]宁德胜.基于DSP的注塑机专用矢量变频器[D].杭州:浙江大学硕士学位论文,2005
    [30]三菱电动机株式会社.三菱变频调速器FR-A500使用手册[M].
    [31]彭天好,徐兵,杨华勇.变频液压技术的发展及研究综述[J].浙江大学学报(工学版),2004,38(2):215-221
    [32]方匡阳.变频调速技术应用液压系统探讨[J].工程机械,1996,10:24-25
    [33]冯开林,刘广瑞.变频调速在液压技术中的应用研究[J].山东工程学院学报,1997,11(2):28-30
    [34]Berubger AG.,The frequency-controlled hydraulic drive[J].Elevator World,1998,46(2):94-96
    [35]胡军,芮丰,黄新年.液压调速系统与交流变频调速系统的研究[J].流体传动与控制,2004,4(3):14-15
    [36]赵庆龙,胡大邦,芮丰等.变频液压调速系统速度控制的研究[J].液压气动与密封,2003,1:5-7
    [37]刘国华,花蓉.交流变频液压调速系统的问题及措施[J].安徽理工大学学报(自然科学版),2004,24(3):47-49
    [38]权龙.转速可调泵直接闭环控制差动缸伺服系统静特性[J].机械工程学报,2002,38(3):144-148
    [39]权龙.转速可调泵直接闭环控制差动缸伺服系统动特性[J].机械工程学报,2003,39(2):13-17
    [40]罗勇武,周剑,黎勉等.液压变频调速系统数学模型的分析[J].现代制造工程,2001,11:53-55
    [41]彭天好,杨华勇,徐兵.变频回转液压系统的动态特性仿真[J].机床与液压,2001,3:7-9
    [42]李湘闽.变频液压容积节流调速系统的设计与分析[J].机床与液压,2002,4:112-114
    [43]W.Backe,H.Murrenhoff.An energy-saving drive concept:the speed-controlled displacement motor[C]//Proceedings of the first International Conference on Fluid Power,Hangzhou,China,1985
    [44]Yutaka Tanaka,Kazuo Nakano.Variable speed control of hydraulic pump for energy savings[C]//Proceedings of the first International symposium on Fluid Power transmission and control,Beijing,China,1991:124-128
    [45]Kazuo Nakano,Yutaka Tanaka.Energy saving type electro-hydraulic servo system[J].Journal of Fluid Control,1988,18(3):35-51
    [46]Yutaka Tanaka,Tetsuji Machda,Kazuo Nakano.Speed and displacement control of pump system for energy saving[C]//Proceeding of the Second International symposium on Fluid Power transmission and control,Shanghai,China,1995:12-16
    [47]B.Kazmeier,D.G.Feldman et al.Electro-hydrostatic low power linear drive-system performance and controls to minimize power consumption[C]//Proceedings of the Third International symposium on Fluid Power transmission and control,Hangzhou,China,1997
    [48]Radek Manasek.Simulation of an electro-hydraulic load-sensing system with AC motor and frequency changer[C]//Proceeding of the 1st FPNI-PhD Symposium,Slovakia,2000: 311-324
    [49]Helduser,S.,Ruhlicke,I.Elekrohydraulische Antriebssysteme mit drehzahlveranderbaren Pumpen[M].AIF-AbschluBbericht Nr.25/B 9953,1996
    [50]Helduser,S.,Neubert,Yh.Elekrohydraulische antriebssysteme mit drehzahlveranderbaren Pumpen[M].VDMA-AbschluBbericht,Eresden 2001
    [51]Wu H.W.,Lee C.B.Self-tuning adaptive speed control of a pump/inverter-controlled hydraulic motor system[J].Proceedings of the Institution of Mechanical Engineers,Part Ⅰ:Journal of System & Control Engineering,1995,209(2):101-114
    [52]Biedermann O.,J.Engelhardt,G.Geerling..More efficient fluid power systems using variable displacement hydraulic motors[C]// Proceeding of the 1st FPNI-PhD Symposium,Slovakia,2000
    [53]Motamed,Farzin.Use of a variable frequency motor controller to drive AC motor pumps on aircraft hydraulic systems[C]//Proceedings of the International Conference on Aerospace power and Energy Conversion Engineering,1995
    [54]Peter Dahmann.Closed loop speed and position control of a hydraulic manipulator in brick works with a frequency controlled internal gear pump in motor/pump operation[C]//The third International fluid power conference.Aachen,Germany,2002
    [55]YAMAMOTOI T.Apparatus for controlling a hydraulic elevator.United States:US4593792[P].1986-10-10
    [56]Shimoaki Motoo.VVVF-controlled hydraulic elevators[J].Mitsubishi Electric Advance.1992,61(12):13-15
    [57]Sedrak,Daniel,Closed-loop electronic valving and the application of variable voltage variable frequency in hydraulics[J].Elevator World,1999,47(9):66-72
    [58]陈钢.变转速容积-比例复合控制电梯液压系统的设计和控制策略的研究[D].杭州:浙江大学博士学位论文,1995
    [59]张健民.VVVF液压电梯速度控制系统研究[D].杭州:浙江大学博士学位论文,1997
    [60]徐兵.采用蓄能器的液压电梯变频节能控制系统研究[D].杭州:浙江大学博士学位论文,2001
    [61]林建杰.液压电梯闭式回路节能型电液控制系统研究[D].杭州:浙江大学博士学位论文,2005
    [62]张健民,杨华勇,路甬祥.能量回馈式VVVF液压电梯速度控制系统研究[J].机械 工程学报,2000,36(7):61-65
    [63]彭天好.变频泵控马达调速及补偿特性的研究[D].杭州:浙江大学博士学位论文,2003
    [64]徐兵,欧阳小平,杨华勇.配置蓄能器的变频液压电梯节能控制系统[J].浙江大学学报(工学版),2002,36(5):521-525
    [65]张健民,杨华勇,陈刚.变频调速技术在液压电梯速度控制中的应用[J].液压与气动,1997,5:9-10
    [66]杨华勇,张健民.智能控制理论和液压电梯[J].中国电梯,1998,4
    [67]张健民,刘国平等.非线性PID在液压电梯实时控制中的应用[J].浙江大学学报,1998,34
    [68]张健民,杨华勇.液压电梯智能PID控制策略的研究[J].控制理论与应用,1996,10
    [69]Zhang Jiamin,Yang Huayong,Sha Daohang,Lu Yongxiang,The development of single neuron adaptive control in hydraulic elevator[C].ICFP,Hangzhou,China,1997
    [70]张健民,杨华勇,路甬祥.基于CMAC神经网络的液压电梯实时控制研究[J].机床与液压,1998,3:13-15
    [71]徐兵,杨华勇.变频驱动液压电梯控制系统综述[J].中国机械工程,2001,12(9):1082-1086
    [72]周琛.变频调速液压电梯速度控制系统的研究[D].浙江大学硕士学位论文,2001
    [73]孙威.变频调速液压电梯下降速度控制系统研究[D].浙江大学硕士学位论文,2000
    [74]胡东明,徐兵,杨华勇等.采用闭式油路的变频液压电梯能耗特性分析[J].浙江大学学报(工学版),2007,41(3):475-479
    [75]金波,宁德胜,许明等.注塑机控制系统的现状及发展趋势[J].液压气动与密封,2006,1:7-10
    [76]权龙,李凤兰.注塑机电液控制系统节能原理及最新技术[J].机床与液压,1999,5:6-7
    [77]Helduser.S.Improved energy efficiency in plastic injection molding machines[J].The Eighth Scandinavian International Conference on Fluid Power,2003,12:1219-1229
    [78]彭勇刚,洪杰.变频控制在注塑机控制器中的应用[J].机电工程,2002,19(6):21-23
    [79]黄方平,徐兵,杨华勇等.变频液压技术在注塑机中的应用[J].液压气动与密封, 2004,3:22-25
    [80]Tamaki Shoji,et al.Hydraulic device of shield excavating machine[P].U.S.patent:2737560.2001-01-16
    [81]胡国良.盾构模拟试验平台电液控制系统关键技术研究[D].杭州:浙江大学博士学位论文,2006
    [82]邢彤.盾构刀盘液压驱动与控制系统研究[D].杭州:浙江大学博士学位论文,2008
    [83]郑久强.盾构刀盘液压驱动系统研究[D].杭州:浙江大学硕士学位论文,2006
    [84]郑久强,龚国芳,胡国良等.盾构刀盘变转速液压驱动系统[J].工程机械,2006(4):36-38
    [85]权龙,Helduser S.基于可调速电动机的高动态节能型电液动力源[J].中国机械工程,2003,14(7):606-609
    [86]田原,吴盛林.无阀电液伺服系统理论研究及试验[J].中国机械工程,2003,11(14):1822-1824
    [87]何培双,刘庆和.无阀电液伺服系统[J],制造技术与机床,2003,6:66-67
    [88]臧义昌.直驱式容积控制电液伺服系统动静态特性研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007
    [89]邱兆湘.直驱式电液伺服装置油源及系统性能的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007
    [90]郭建宇.无阀电液伺服系统的建模与仿真研究[D].大连:大连理工大学硕士学位论文,2005
    [91]张路军,李继志,顾心怿等.蓄能器类型及应用综述[J].机床与液压,2001,6:5-7
    [92]贾利国.蓄能器在液压系统中的节能应用[J].机电工程,2006,23(5):10-15
    [93]江琳.液压蓄能器的应用[J].流体传动与控制,2006,19(11):27-28
    [94]赵铁栓,姚怀新.车辆液压驱动系统中蓄能器与数学模型[J].工程机械,2005,9:56-60
    [95]韩文,常思勤.对二次调节系统中蓄能器的研究[J].机床与液压,2003,5:197-198
    [96]丁强,裘丽华.二次调节加载系统中液压蓄能器的研究[J].机床与液压,2006,2:109-111
    [97]战兴群.静液驱动二次调节技术控制特性的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1999
    [98]战兴群,张炎华,赵克定.二次调节系统中液压蓄能器数学模型的研究[J].中国机 械工程,2001,5:45-47
    [99]封士彩.气囊式蓄能器气体多变指数理论值和实际值的确定[J].液压与气动,2002,5:3-5
    [100]姚黎明,张菁,马力中等.皮囊式蓄能器蓄能效率的理论和实验[J].节能技术,2006,24(3):131-132
    [101]孔祥东,权凌霄,姚静等.基于力学分析的蓄能器数学模型建立及实验研究[J].液压与气动,2006,7:31-34
    [102]刘海昌,姜继海,Okoye Celestine.基于数值方法的液压蓄能器能量损失分析[J].中国机械工程,2006,17(6):1283-1285
    [103]黄中华,金波,刘少军等.皮囊式蓄能器快速增压过程[J].中南大学学报(自然科学版),2006,37(4):306-309
    [104]黄中华.深海浮游微生物浓缩保压取样关键技术研究[D].长沙:中南大学博士学位论文,2006
    [105]HUANG Zhong-hua,LIU Shao-jun,JIN Bo.Accumulator-Based Deep-Sea Microbe Gastight Sampling Technique[J].China Ocean Engineering,2006,20(2):335-342
    [106]孔祥东,朱晓霞,权凌霄等.比例阀控蓄能器吸收压力冲击的仿真研究[J].机床与液压,2008,36(11):131-134
    [107]曹树平,罗小辉,胡军华等.吸收压力脉动的自适应蓄能器回路研究[J].中国机械工程,2008,19(6):671-675
    [108]阮晓芳,邱敏秀,孔晓武.蓄能器对带长管道阀控系统动态特性的改善[J].工程设计,2002,9(2):97-100
    [109]K.S.Fu.Leaning control systems and intelligent control systems:An Intersection of artificial intelligence and automatic control[J].IEEE Transactions on AC,1971,16(1)
    [110]杨叔子,杨克冲.机械工程控制基础[M].武汉:华中科技大学出版社,2002
    [111]刘豹.现代控制理论[M].北京:机械工业出版社,2004
    [112]Katsuhiko Ogata著,卢伯英等译.现代控制工程(第三版)[M],电子工业出版社,2000
    [113]李少远,席裕庚等,智能控制的新进展(Ⅰ)[J],控制与决策,2000,(1):2-5
    [114]李少远,席裕庚等,智能控制的新进展(Ⅱ)[J],控制与决策,2000,(2):136-140
    [115]韦巍.智能控制技术的研究现状与展望[J].机电工程,2000,(6):1-4
    [116]骆涵秀,李世伦,朱捷等.机电控制[M].杭州:浙江大学出版社,2003
    [117]孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华大学出版社,1997
    [118]从爽.神经网络、模糊控制及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001
    [119]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2006
    [120]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005
    [121]G.P.Liu,S.Delay.Optimal-tuning nonlinear PID control of hydraulic systems[J].Control Engineering Practice,2000,(8):1045-1053
    [122]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003
    [123]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2005
    [124]马俊功,王世富,王占林.电液速度伺服系统的模糊PI控制[J].控制工程,2006,13(6):530-532
    [125]吴振顺.自适应控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,2005
    [126]王丽艳.时变负载泵控马达系统自适应、模糊及智能控制的应用研究[D].北京:北京理工大学,1995.
    [127]吴振顺,卢剑锋,董泳.变结构自适应控制器及其在液压伺服系统中的应用[J].机械工程学报,2000,36(5):107-110
    [128]李喜莲.盾构刀盘驱动液压系统及其功率自适应控制方法研究[D].杭州:浙江大学硕士学位论文,2007
    [129]夏瑛.火炮电液伺服系统的神经网络辨识与自适应控制研究[D].南京:南京理工大学硕士学位论文,2007
    [130]许克凤.模糊自适应控制技术在变频调速系统中的应用研究[D].武汉:华中农业大学硕士学位论文,2006
    [131]刘峰.牵引车辆液压驱动系统白适应控制策略研究[D].西安:长安大学硕士学位论文,2006
    [132]周玉平,孙新学,荣茜等.模型参考自适应控制在液压伺服控制系统中的应用[J].机床与液压,2003,4:9-11
    [133]章卫国,杨向钟.模糊控制理论与应用[M].西安:西北工业大学出版社,1999
    [134]Ranjit Kumar Barai,Kenzo Nonami.Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot[J],Information Sciences,2007,(177):1892-1915
    [135]易纲,常思勤.基于模糊神经预测的新型电控液驱车辆的能量管理策略研究[J].机床与液压,2006,11:121-123
    [136]Rolf Isermann.On fuzzy applications for automatic control,supervision and fault diagnosis[J].IEEE on SMC-part A,1998,28(2)
    [137]Yu Jingzhe,Yan Hongping,Sun Hongtai,et al.Fuzzy control technique based on genetic algorithms optimizing and its application[C]//IEEE International Conference on Intelligent Processing System,Beijing,China,1997:329-333
    [138]王永骥,涂健.神经元网络控制[M].北京:机械工业出版社,1999
    [139]J Watton,Y Xue.Simulation of fluid power circuits using artificial networks models Part Ⅰ:selection of component models[J].Proceeding of the Institute Mech.,1997,211:417-428
    [140]J Watton,Y Xue.Simulation of fluid power circuits using artificial networks models Part Ⅱ:Circuit simulation[J].Proceeding of the Institute Mech.,1997,211:429-438
    [141]罗守华,王积伟,颜景平.基于CMAC神经网络的泵控马达调速系统控制性能[J].东南大学学报(自然科学版),2000,30(3):58-60
    [142]Chen Fuchung.Back-propagation neural networks for nonlinear self-turning adaptive control[J].Special section on neural networks for system and control,IEEE control magazine,1990,(4):44-48
    [143]Xue Y.,Watton J.A Self-organizing neural network approach to data-based modelling of fluid power systems dynamics using the GMDH algorithm[J].Journal of Systems and Control Engineering,1995,209:229-240
    [144]Nishiumi T,Watton J.Model reference adaptive control of an electrohydraulic motor drive using an artificial neural network compensator[J].Journal of Systems and Control Engineering,1997,211:111-122
    [145]Xue Y,Watton J.Dynamics modelling of fluid power systems applying a global error descent algorithm to a self-organising Radial Basis Function Network[J].Mechatronics,1998,727-745
    [146]Nishiumi T,Konami S,Watton J.An application of a neural network controller to a hydraulic servo cylinder system[J].Journal of the Japan Hydraulics and Pneumatics Society,2000,31(4):115-122
    [147]Xue Y,Watton J.Position control of a pneumatic servo actuator with time delay using a neural network predictor[C]//The 5th JFPS International Symposium on Fluid Power,Nara,Japan,2002,637-642
    [148]Knohl T,Unbehauen H.Adaptive position control of electrohydraulic servo systems using ANN.Mechatronics,2000,127-143
    [149]管成.非线性系统的滑模自适应控制及其在电液控制系统中的应用[D].杭州:浙江大学博士学位论文,2005.
    [150]董彩云.基于滑模变结构控制的电液伺服系统及实验研究[D].河北:燕山大学硕士学位论文,2007
    [151]张静,王占林.变结构自适应控制方法及其在液压系统中的应用[J].机床与液压,2002,6:184
    [152]戴义平,邓仁纲,刘炯等.基于遗传算法的汽轮机数字电液调节系统的参数辨识研究[J].中国电动机工程学报,2002,22(7):101-104
    [153]陈根社,陈新海.应用遗传算法设计自动交互控制器[J].西北工业大学学报,1994,(2):247-253
    [154]董铸荣.低速大扭矩叶片式液压马达静动态特性分析与试验研究[D].华南理工大学硕士学位论文,2001
    [155]刘春芳.液压三轴仿真转台低速性能及其控制策略的研究[D].哈尔滨工业大学博士学位论文,2003
    [156]夏铭.阀控马达角位置伺服系统的优化设计与研究[D].上海交通大学硕士学位论文,2001
    [157]周威.基于线性二次最优控制PID参数优化方法的泵控马达恒速系统研究[D],长安大学硕士学位论文,2006
    [158]丘铭军.工程车辆液压驱动系统模糊PID自适应控制策略研究[D].长安大学硕士学位论文,2006
    [159]罗小梅.电液比例变量泵控马达控制系统的分析研究[D].长安大学硕士学位论文,2005
    [160]宋海林.泵控马达静液驱动系统分析与研究[D].吉林大学硕士学位论文,2005
    [161]李婷婷.电液比例变量泵—马达恒速控制系统的研究[D].长安大学硕士学位论文,2004
    [162]杨成银,李志立.变量泵与定量马达容积调速系统负载特性分析[J].现代机械,1999
    [163]丛伟,刘宏涛.液压系统容积调速回路特性及其在机床中的应用[J].沈阳航空工业学院学报,2003,20(3)
    [164]王世明,李天石.交流变频容积调速回路的特性与速度控制[J].机床与液压,1999, (5):22-23
    [165]彭天好,徐兵,杨华勇.变频泵控马达调速系统单神经元自适应PID控制[J].中国机械工程,2003,20(10):1780-1784
    [166]彭天好,杨华勇,徐兵.变频泵控马达调速系统节能实验研究[J].煤炭学报,2004,29(2):109-114
    [167]彭天好,徐兵,杨华勇.变频泵控马达调速系统遗传算法PID控制[J].液压与气动,2003,11:1-3
    [168]彭天好,汲方林等.变转速泵控马达软件补偿速度降落[J].液压与气动,2005,8:62-64
    [169]彭天好,徐兵,杨华勇.大惯量变转速泵控马达调速系统模糊控制[J].机床与液压,2004,10:77-79
    [170]莫波.变量泵源阀控系统若干理论与应用技术的研究[D].北京:北京理工大学,1996.
    [171]莫波,曹泛.变量泵源阀控系统的理论与试验研究[J].液压与气动,2002,(5):1-3
    [172]陈宝江,莫波,曹泛.变量泵源阀控系统的前馈自适应控制方法[J].机械工程学报,2006,42(3):217-220
    [173]杨俭.电液比例位置复合控制及相关研究[D].杭州:浙江大学,2005
    [174]韩颖.阀控马达速度伺服系统的数字控制研究[D].北京:北京交通大学硕士学位论文,2004
    [175]赵敬伟.伺服阀控液压马达速度控制系统性能研究[D].山东:山东大学,2005
    [176]于刚.伺服阀控液压马达系统的辨识与控制研究[D].山东:山东大学,2007
    [177]郭亚军.泵控马达变转速节流复合调速系统特性研究[D].安徽:安徽理工大学,2008
    [178]付永领.AMESim系统建模和仿真[M].北京:北京航空航天大学出版社,2006
    [179]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002
    [180]黄琳.基于虚拟仪器的液压实验台CAT系统设计[D].浙江大学硕士学位论文,2006
    [181]黄琳,金波,沈海阔.基于虚拟仪器的液压试验台CAT系统设计[J].液压与气动,2005,(4):16-18
    [182]桑勇,王占林,祁晓野等.液压传动系统中节能技术的探讨[J].机床与液压,2007,35(3):83-86
    [183]卢文祥,杜润生.机械工程测试·信息·信号分析[M].武汉:华中科技大学出版社,1999
    [184]周立功,张华等.深入浅出ARM7-LPC213x/214x[M].北京:北京航空航天大学出版社,2005.
    [185]魏洪兴.嵌入式系统设计师教程[M].北京:清华大学出版社,2006.
    [186]Philips.LPC2132用户手册.2005
    [187]周航慈.单片机应用程序设计技术[M].北京:北京航空航天大学出版社,1991
    [188]彭熙伟,王渝.液压马达最低稳定转速分析及实验研究(上)[J].机床与液压,1999,3:54-56
    [189]彭熙伟,王渝.液压马达最低稳定转速分析及实验研究(下)[J].机床与液压,1999,4:49-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700