航行体非定常空泡流流体动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超空泡减阻技术是实现水下航行体高速航行的有效途径,具有广阔的应用前景。航行体运动稳定性是保障航行体有效、准确的重要先决条件之一。而空泡流非定常特性对航行体流体动力以及运动稳定性具有显著影响。因此,必须对非定常空泡流流体动力开展进一步研究,从而为超空泡减阻技术的广泛应用及改进提供必要的依据。
     非定常空泡流影响因素较多,如通气不稳定性、物体运动状态变化、外界流场扰动等,国内外学者对此开展大量的研究,但多通过试验手段对空泡流非定常特性进行研究,采用数值方法对空泡流非定常特性研究多针对简单的物理模型如空化器、水翼,在几何结构上和实际水下航行体相距甚远。此外,对非定常空泡流研究多基于势流假设。考虑到航行体平衡多是通过改变舵面控制力与矢量推力实现,因此本文采用试验研究和数值研究相结合的方法对空化器转动、航行体水平尾翼运动、航行体变速运动、与航行体俯仰运动过程非定常空泡流空泡形态与航行体流体动力特性进行研究,在此基础之上,结合航行体运动方程与空泡流控制方程,给出能够准确预测超空泡航行体姿态与弹道的数值模拟方法。本文主要研究内容如下:
     基于均质平衡流理论,对比分析了采用多相流模型、湍流模型、空化模型计算非定常空泡流的结果,并基于试验结果选取了合理的数学模型与计算方法。
     利用通气空泡水洞开展了试验研究,得到了空化器攻角在非定常流场条件下,通气空泡形态与流体动力特性的影响规律。结合试验研究结果,采用数值模拟的方法研究了局部空泡和超空泡状态下航行体空化器转动对非定常空泡流空泡形态与航行体流体动力特性影响。
     采用人工通气的方法,针对超空泡航行体尾翼进行了水洞试验研究,分析了水翼楔形角对空泡形态与流体动力影响。同时,利用数值模拟的方法研究了水平尾翼安装位置、弹出过程及其攻角等因素对非定常空泡流流体动力的影响。
     采用相对运动方法,设定来流速度时间函数,实现航行体变速运动数值模拟;基于达朗贝尔原理,对流体相对运动方程进行推导,同时考虑到动坐标系牵连作用,采用流体相对运动方程代替CFD动量方程(N-S方程),提高了数值模拟精度。分别对自然空化与通气空化状态下航行体变速运动过程中的空泡形态变化及流体动力特性进行了系统研究,得到了自然空化航行体加速度与空泡形态滞后时间的关系,通气空化空泡形态脉动特性。
     通过数值模拟对航行体在俯仰运动过程中的超空泡流场进行了研究,得到了俯仰角速度、周期等因素对非定常空泡流流体动力的影响。
     通过理论推导,得到了航行体相对与地面坐标系下运动方程,结合udf二次开发,实现航行体运动方程与空泡控制方程耦合求解,建立了航行体纵平面内姿态与无控弹道的数值计算模型,得到了航行体质心位置对航行体减速运动航行体纵平面姿态与无控弹道的影响规律,为进一步对航行体弹道研究提供参考。
Supercavitation drag reduction is an effective way for realizing high-speedmoving of underwater vehicle, and this technology has a broad applicationprospect. Motion stability of the underwater vehicle is one of the importantpreconditions to insure the vehicle security. The unsteadycharacteristic of cavityflow has significant effect on hydrodynamics and motion stability of the vehicle.Therefore, it is necessary to research the hydrodynamics of the unsteady cavityflow in order that the supercavitation drag reduction can be improved andapplied.
     There are many influencing factors on the unsteady cavity flow, such as theinstability of ventilation, the change of the vehicle’s motion state, external flowfield disturbance and so on. Domestic and overseas scholars have manypublications on it, but many researches on the unsteady characteristic of thecavity flow are experimental methodology. And the numerical methods about theunsteady characteristic of the cavity flow mainly aim at simple physical models,such as cavitator and hydrofoil. These models are far cry from the realunderwater vehicle in geometrically. In addition, the researches abouttheunsteady cavity flow are generally based on the potential flow assumption.Considering the stability of the vehicle is realized by changing the control forceof control surface and the thrust vector, experimental and numericalmethodologiesare used to study the cavitator rotation, hydrofoil motion, variablemotion, pitching motion and the hydrodynamics of theunsteady cavity flow. Onthis basis, combining the equations of motion of the vehicle and the equations ofcontrol of the cavity flow, a numerical simulation method is presented toforecast the attitude and trajectory of the vehicle with supercavitation. The mainworks of this paper are as follows:
     Based on homogeneous equilibrium flow theory, the numerical results ofthe unsteady cavitation flow are calculated by using multiphase flow model,turbulence model and cavitation model. The rational mathematical model andnumerical method are selected by comparing numerical results with experiment.
     Water tunnel experiments are conducted to study characteristics ofventilated supercavitation. The influence of the attack angle of cavitatoronventilated cavity and hydrodynamicsare studied. Combining experimental results,numerical simulations are performed to research the influence of cavitatorrotation of the vehicle on the hydrodynamics of the unsteady cavity flow in thelocal cavity and supercavitation states.
     Adopting the method of artificial ventilation, the water tunnel experimentsaiming at the hydrofoil of the vehicle with supercavitation are performed,and theinfluence of hydrofoil wedge angle on cavity shape and hydrodynamicsareanalyzed. In addition, using numerical simulations, the influence of hydrofoilposition, hydrofoil eject, hydrofoil attack angle on the hydrodynamicsof theunsteady cavity flow are studied.
     By adopting the method of relative movement, setting the time function of inflow velocity, numerical simulations are performed to realize the variablemotion of the vehicle. Based on d’Alembert principle, equations of fluid relativemotion are derived. Considering the convected effect of non-inertial coordinatesystem, the equations of fluid relative motion are used to replace the N-Sequations, and the accuracy of numerical simulations is improved. Cavitationmorphology changes and hydrodynamics of the vehicle’s variable motionprocess are studied in the natural cavitation and ventilated cavitation states, andthe relationship between natural cavitation acceleration of the vehicle and thetime lag of cavity form.
     Numerical simulations are performed to study the supercavitation flow fieldin the pitching motion process of vehicle, and the influence of the pitchingangular velocity and cycle on the hydrodynamics of theunsteady cavity flow isobtained.
     The equations of motion of the vehicle relative to the ground coordinatesystem are obtained by using theoretical derivation. Coupled solutions of themotion equations of the vehicle and the control equations of cavitation aresolved by using UdF secondary development. Numerical model of thelongitudinal plane attitude and free-flight trajectory of the vehicle is established.
引文
[1] Savchenko Y N.Supercavitation-Problems and Perspectives[C].In:CAV2001.Fourth International Symposium on Cavitation.Lecture003.Pasadena:California Institute of Technology,2001:1-8
    [2]于开平,隗喜斌,蒋增辉.俄罗斯和乌克兰超空泡减阻技术研究进展,飞航导弹,2007,(8):5-11.
    [3]傅金祝.超空泡水中兵器[J].水雷战与舰船防护,1998,6(2):2-4
    [4]丛敏,魏国福.美国海军的超空泡研究计划[J].飞航导弹.2009,(1):17-20
    [5]傅金祝.美国的快速机载灭雷系统[J].水雷战与舰船防护1998,6(4):41-44
    [6]朱炳贤,周鹰.美国的快速机载扫雷系统[J].水雷战与舰船防护2005,13(3):12-16
    [7]金大桥,王聪,余锋.水下超空泡射弹研究综述[J].飞航导弹.2010,(7):19-23
    [8] Ashley S.Warp-drive Underwater[J].Scientific American,2001,(2):62-71
    [9]傅金祝.超空泡水下航行体[J].水雷战与舰船防护,2002,10(1):28-30
    [10]颜开,褚学森,许晟等.超空泡流体动力学研究进展[J].船舶力学,2006,10(4):148-155
    [11] Logvinovich G V.Some Problems of Supercavitating Flows[C].In:CantwellB,Masure B,Grinchenko V T,et al.,eds.High Speed Body Motion inWater.AGARD-R-827.Hull:Canada Communication Group Inc,1998:189-193
    [12] Logvinovich G V. Hydrodynamics of Flows with FreeBoundaries[M].Naukova Dumka,Kiev,1969.(in Russian)
    [13] Ziemmerman S.Submarine Technology for the21st Century[M].TraffordPublishing,2nd edition,2000
    [14] Levinson N. On the Asymptotic Shape of the Cavity Behind an AxiallySymmetric Nose Moving Through an Ideal Fluid[J].Ann.Math.1946,47:704-730
    [15] Garabedian P R.Calculation of Axially Symmetric Cavities and Jets[J].Pac JMath,1956,6(4):611-684.
    [16] Knapp R,daily J,Hammitt F.Cavitation[M].McGraw-Hill,New York,1970
    [17] May A. Water Entry and the Cavity Running Behavior ofMissiles[R].Maryland:NTIS,1975
    [18] May A. Vertical Entry of Missiles Into Water[J]. Journal of AppliedPhysics.1952,23:1362-1372
    [19] May A.The Cavity After Vertical Water Entry[R].AD679905,1963
    [20] Kunz R F,Lindau J W,Billet M L,et al.Multiphase CFD Modeling ofdeveloped and Supercavitating Flows[R]. RTO AVT Lecture Series on“Supercavitating Flows”,von Kármán Institute (VKI) in Brussels,Belgium,2002:269-312
    [21] Reichardt H.The Laws of Cavitation Bubbles at Axially Symmetrical Bodies ina Flow[R].Ministry of Aircraft Production Volkenrode,MAP-VC,Report andTranslations766,ONR,1946.
    [22] Kirschner I N,Fine N E,Gieseke T A,et al.Supercavitation Research anddevelopment[J].PRO Undersea defense Technologies,Hawaii,2001:1-10
    [23] Kirschner I N. Results of Selected Experiments Involving SupercavitatingFlows[R].VKI Special Course on Supercavitating Flows,Brussels,2001:RTO-EN-010(15).
    [24] Savchenko Y N. Experimental Investigation of Supercavitating Motion ofBodies[R].RTO AVT Lecture Series on “Supercavitating Flows”,von KármánInstitute (VKI) in Brussels,Belgium,2001,4:1-24
    [25] Savchenko Y N, Semenenko V N. Unsteady Supercavitated Motion ofBodies[J].International Journal of Fluid Mechanics Research,2000,27(1):109-137.
    [26] Savchenko Y N. Modeling the Supercavitation processes[J]. InternationalJournal of Fluid Mechanics Research,2001,28(5):644-659
    [27] Savchenko Y N, Semenko Y A, Putilin S I. Some Problems of theSupercavitating Motion Management[C]. CAV2006Sixth InternationalSymposium on Cavitation.Wageningen,The Nethelands.2006
    [28] Phillip B B. Supercavitation[M]. California State Science Fair2002ProjectSummary.Project Number:J0102,2002.
    [29] Silberman E,Song C S.Instability of Ventilated Cavities[J].Journal of ShipResearch,1961,13-33.
    [30] Wosnik M,Schauer T J,Arndt E I.Experimental Study of A VentilatedSupercavitating Vehicle[C]. Fifth International Symposium onCavitation.Osaka,Japan,November1-4,2003,OS-7-008.
    [31] Kuklinski R T,Henoch C,Castano J.Experimental Study of Ventilated Cavitieson dynamic Test Model[C].Naval Undersea Warfare Center,Cav2001:SessionB3.004,2001.
    [32] Stinebring D R,Billet M L,Lindau J W,et al.developed Cavitation-Cavitydynamics[R]. Van Den Braembussche, ed. VKI Special Course onSupercavitating Flows,Brussels,2001:RTO-EN-010(5).
    [33] Ota T,Ueda K,Yoshikawa H.Hysteresis of Flow Around an Elliptic Cylinder inCritical Reynolds Number Regime[C].ASME Heat Transfer/Fluids EngineeringSummer Conference,Charlotte,North Carolina USA,2004.HT-FED04-56141.
    [34] Ota T,Tsubura I,Yoshikawa H.Unsteady Cavitating Flow Around an InclinedRectangular Cylinde[C]. ASME Heat Transfer/Fluids Engineering SummerConference,Charlotte,North Carolina USA,2004.HT-FED04-56143.
    [35] Savchenko Y N,"High-speed Body Motion at Supercavitating Flow"[C].ThirdInternational Symposiumon Cavitation,April1998,Grenoble,France.
    [36] Savchenko Y N,Vlasenko Y D,Senenenko V N.Experimental Study of High-Speed Cavitated Flows[J].International Journal of Fluid Mechanics Research,1999,26(3):365-374.
    [37] Vlasenko Y D.Experimental Investigation of Supercavitation Flow Regimes atSubsonic and Transonic Speeds[C].CAV2003Fifth International Symposium onCavitation,Osaka,Japan,2003,Cav03-GS-6-006:1-8
    [38] Hrubes J D. High Speed Imaging of Supercavitating UnderwaterProjectiles[J].Experiments in Fluids.2001,30:57-64
    [39] Kirschner I N,Rosenthal B J,Uhlman J S.Simplified dynamical SystemsAnalysis of Supercavitating High-speed Bodies[C].CAV2003Fifth InternationalSymposium on Cavitation,Osaka,Japan,2003,Cav03-OS-7-005:1-8
    [40] Truscott T T,Beal D N,Techet A H.Shallow Angle Water Entry of BallisticProjectile[C].Cav2009,Ann Arbor,Michigan,USA,2009(100):1-14
    [41] Cameron P J K,Rogers P H,doane J W,et al.An Experiment for the Studyof Free Flying Supercavitating Projectiles[J].Journal of Fluids Engineering,2011,133(021303):1-9
    [42]王海斌,王聪,魏英杰,于开平,张嘉钟,贾力平.轴对称航行体通气超空泡的特性实验研究[J].工程力学.2007,24(2):166-171
    [43]王海斌,王聪,魏英杰,张嘉钟,贾力平.水下航行体通气超空泡的实验研究[J].船舶力学.2007,11(4):514-520
    [44]隗喜斌,魏英杰,黄庆新,于开平,张学伟,黄文虎.通气超空泡临界通气率的水洞试验分析[J].哈尔滨工业大学学报.2007,39(5):797-799
    [45]贾力平,张嘉钟,于开平等.空化器线形与超空泡减阻效果关系研究[J].船舶工程.2006,28(2):20-23.
    [46]贾力平,王聪,于开平等.空化器参数对通气超空泡形态影响的实验研究[J].工程力学.2007,24(3):159-164
    [47]蒋增辉,于开平,张嘉钟等.超空泡航行体尾部流体动力特性试验模型支撑方式的选择研究[J].机械科学与技术。2007,26(12):1648-1651
    [48]蒋增辉,于开平,张嘉钟等.超空泡航行体尾部流体动力特性试验研究[J].工程力学,2008,25(3):26-30
    [49]张学伟,张嘉钟,王聪等.通气超空泡形态及其稳定性实验研究[J].哈尔滨工程大学学报.2007,28(4):381-387
    [50]曹伟,王聪,魏英杰等.自然超空泡形态特性的射弹试验研究[J].工程力学,2006,23(12):175-187
    [51]金大桥,王聪,魏英杰等.通气超空泡水下射弹实验研究[J].工程力学,2011,28(9):214-222
    [52]金大桥,王聪,曹伟等.通气超空泡水下射弹数值模拟及试验研究[J].兵工学报,2011,32(10):1184-1188
    [53]陈伟政,张宇文,袁绪龙,邓飞.重力场对轴对称体稳定空泡形态影响的实验研究[J].西北工业大学学报.2004,24(3):274-278
    [54]杨武刚,张宇文,阚雷,范辉.通气法控制超空泡流动的实验研究[J].应用力学学报.2007,24(4):504-508
    [55]张琦.超高速航行体尾部流场特性分析与试验研究[D].西北工业大学硕士论文.2006:38-45
    [56]裴譞,张宇文,孟生等.超空泡航行器尾喷管实验研究[J].应用力学学报.2010,27(3):584-588
    [57]谢正桐,何友声.小攻角下轴对称细长体的充气空泡试验研究[J].试验力学,1999,14(3):279-287
    [58] Feng X M,Lu C J,Hu T Q.Experimental Research on a SupercavitatingSlender Body of Revolution with Ventilation[J].Journal of Hydrodynamics,2002,Ser.B,14(2):17-23
    [59]蒋洁明,鲁传敬,胡天群等.轴对称体通气空泡的水动力试验研究[J].力学季刊,2004,25(4):450-456
    [60]李其弢,胡天群,何友声.超空泡航行体摆动实验研究[C].第七届全国实验流体力学学术会议,2007,114-119
    [61] Lee Q T,Xue L P,He Y S.Experimental Study of Ventilated Supercavitieswith a dynamic Pitching Model[J].Journal of Hydrodynamics,2008,20(4):456-460
    [62] Li Xiangbin, Wang Guoyu, Zhang Mindi. Structures of SupercavitatingMultiphase Flows[C].International Journal of Thermal sciences.2008,47(10):1263-1275
    [63]易淑群,张明辉,周建伟等.攻角对轴向约束模型加速过程超空泡影响的试验研究[J].水动力学研究与进展,2010,25(3):292-298
    [64]易淑群,惠昌年,周建伟等.通气量对轴向加速过程超空泡发展规律影响的试验研究[J].船舶力学,2009,13(4):522-526
    [65]顾建农,张志宏,高永琪等.充气头型对超空泡轴对称体阻力特性影响的试验研究[J].兵工学报,2004,25(6):766-769
    [66] Senocak I. Computational Methodology for the Simulation of TurbulentCavitating Flows[D].Phd dissertation,University of Florida,USA.2002:23-26.
    [67] Logvinovich G V.Subsonic Compressible Flow Past a Body with developedCavitation[J].Fluid dynamics,2002,37(6):873–876
    [68] Vasin A D.Supercavities in Compressible Fluid[R].RTO AVT Lecture Serieson “Supercavitating Flows”,von Kármán Institute (VKI) in Brussels,Belgium,2001,16:1-29
    [69] Vasin A D.The Principle of Independence of the Cavity Sections Expansion asthe Basis for Investigation on Cavitation Flows[R].RTO AVT Lecture Series on“Supercavitating Flows”,von Kármán Institute (VKI) in Brussels,Belgium,2001,8:1-27
    [70] Serebryakov V V.Problems of Hydrodynamics for High Speed Motion in Waterwith Supercavitation[C]. CAV2006Sixth International Symposium onCavitation,Wageningen,Netherlands,2006
    [71]张学伟,张亮,王聪,张嘉钟,魏英杰.基于Logvinovich独立膨胀原理的超空泡形态计算方法[J].兵工学报,2009,30(3):361-365
    [72] Alyanak E,Venkayya V,Grandhi.R,Penmetsa.Variable Shape Cavitatordesign for a Supercavitating Torpedo[C].Collection of Technical Papers-10thAIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,August30,2004-September1,2004
    [73] Alyanak E,Venkayya V.Cavitator design for a Supercavitating TorpedoUsing Evidence Theory for Reliability Estimation[C].3rdM.I.T.Conference on Computational Fluid and Solid Mechanics,June14,2005-June17,2005
    [74]张志宏,孟庆昌,顾建农等.水下亚音速细长锥型射弹超空泡形态的计算方法[J],爆炸与冲击,2010,30(3):254-261
    [75]孟庆昌,张志宏,顾建农等.超空泡射弹尾拍分析与计算[J].爆炸与冲击.2009,29(1):56-60
    [76] Merkle C L,Feng J,Buelow P O.Computational Modeling of the dynamicsof Sheet Cavitation[C].3rd International Symposium on Cavitation,Grenoble,France,1998:307-313.
    [77] Ahujia V,Hosangadi A,Arunajatesan S.Simulations of Cavitating FlowsUsing Hybrid Unstructured Meshes[J].Transactions of the ASME,2001,123:332-340.
    [78] Yuan W,Schnerr G H.Numerical Simulation of Two-Phase Flow in InjectionNozzles:Interaction of Cavitation and External Jet Formation[J].Journal ofFluids Engineering.2003,125:963-969.
    [79] Vaidyanathan R,Senocak I et al.Sensitivity Evaluation of a Transport-BasedTurbulent Cavitation Model[J]. Journal of Fluids Engineering.2003,125:447-458.
    [80]王海斌,张嘉钟,魏英杰等.空泡形态与典型空化器参数关系的研究——小空泡数下的发展空泡形态[J].水动力学研究与进展.2005,25(2):251-257.
    [81]贾力平,张嘉钟,于开平等.空化器线形与超空泡减阻效果关系研究[J].船舶工程.2006,28(2):20-23.
    [82]贾力平.空化器诱导超空泡特性的数值仿真与试验研究[D].哈尔滨工业大学博士论文.2007:33-94.
    [83]黄海龙,王聪,黄文虎等.变攻角圆盘空化器生成自然超空泡数值模拟[J].北京理工大学学报,2008,28(2):100-103
    [84]黄海龙,魏英杰,黄文虎等.重力场对通气超空泡影响的数值模拟研究[J].哈尔滨工业大学学报,2007,29(5):800-803
    [85]杨武刚,张宇文,邓飞等.通气流量对超空泡外形特征影响实验研究[J].西北工业大学学报.2007,25(3):358-362
    [86]杨武刚,张宇文,阚雷.高速水下航行体超空化通气参数数值研究[J].弹箭与制导学报.2007,27(4):198-200.
    [87]周家胜,易文俊,王中原等.水下射弹的空泡形态特性研究[J].弹箭与制导学报.2007,27(3):173-178
    [88]易文俊,王中原,熊天红等.水下高速射弹超空泡减阻特性研究[J].弹道学报,2008,20(4):1-4
    [89]易文俊,熊天红,刘怡昕.水下高速射弹超空泡形态特性的数值模拟研究[J].舰船科学技术,2008,30(4):117-121
    [90]熊天红,易文俊.高速射弹超空泡减阻试验研究与数值模拟分析[J],工程力学,2009,26(8):174-178
    [91]熊天红,李铁鹏,易文俊等.水下高速射弹超空泡形态与阻力特性研究[J].弹道学报,2009,21(2):100-102
    [92]张博、王国玉.绕Clark-y水翼云状空化流动的数值计算与实验对比[C].中国工程热物理学会第十三届学术会议,2007:8-16.
    [93]李向宾,王国玉,张博,韩占忠.RNG k-ε模型在超空化流动计算中的应用评价[J].水动力学研究与进展,2008,23(2):181-188
    [94]黄彪,王国玉.基于k-ω SST模型的DES方法在空化流动计算中的应用[J].中国机械工程,2010,21(1):85-88
    [95] Wang G,Ostoja S M.Large Eddy Simulation of a Sheet/Cloud Cavitation on aNACA0015Hydrofoil[J].Applied Mathematical Modelling,2007,31(3):417-447.
    [96] Wu J. Filter-based Modeling of Unsteady Turbulent Cavitating FlowComputations[M].Gainesville:University of Florida,2005.
    [97]余志毅,顾玲燕,李向宾等.滤波器湍流模型在超空化流动计算中的应用评价[J].北京理工大学报,2008,28(1):32~36.
    [98]隗喜斌,王聪,荣吉利等.锥体空化器非定常超空泡形态分析[J].兵工学报.2007,28(7):863-866.
    [99]杨洪澜,张嘉钟,赵存宝变速运动锥体超空泡形状分析与预测[J].水动力学研究与进展,A辑.2007,22(1):53-60.
    [100] Christopher E B.Fundamentals of Multiphase Flow[J].California Institute ofTechnology,2003:19-15
    [101]王福军.计算流体动力学分析—CFD软件原理与应用[M].清华大学出版社.2004:24-75
    [102] Fasel H F,Seidel J,Wernz S.A Methodology for Simulation of ComplexTurbulent Flows[J].Journal of Fluids Engineering.2002,124:933-42.
    [103] Zhang H J,Bachman C,Fasel H F.Application of A New Methodology forSimulations of Complex Turbulent Flows[R].AIAA Paper,2000:2000-2535.
    [104] Speziale C G.Turbulence Modeling for Time-dependent RANS and VLES:AReview[R].AIAA J1998,36(2):173–84.
    [105] Speziale C G. Computing Non-equilibrium Turbulent Flows with Timedependent RANS and VLES[C]. In:15th International Conference onNumerical Methods in Fluid Fynamics,Monterey;1996.
    [106] Shur M L,Spalart P R et al.A hybrid RANS-LES Approach with delayed-dESand Wall-modelled LES Capabilities[J].International Journal of Heat and FluidFlow,2008,(29):1638-1649.
    [107] Davidson L,Billson M.Hybrid LES-RANS Using Synthesized TurbulentFluctuations for Forcing in the Interface Region[J].International Journal of Heatand Fluid Flow,2006,(27):1028-1042.
    [108] Temmerman L, Hadzˇiabdic M et al. A Hybrid Two-layer URANS–LESApproach for Large Eddy Simulation at High ReynoldsNumbers[J].International Journal of Heat and Fluid Flow,2005,(26)173-190.
    [109] Mathey F,Cokljat D.Specification of LES Inlet Boundary Condition UsingVortex Method[C]. In: Hanjalic′K, Nagano Y, Tummers M,editors.Turbulence Heat,and Mass Transfer,vol.4.Begell House;2003.
    [110] Sergent E, Bertoglio J P, Laurence D. Coupling Between Large-eddySimulation and Reynolds-averaged Navier–Stokes[C].In:Presentation at3rdinternational workshop on direct and large eddy simulation,Munich,no writtencontribution;2003.
    [111] Spalart P R,Jou W H,et al.Comments on the Feas1ibility of LES for Wings,and on a Hybrid RANS/LES Approach[C].In:Proceedings of first AFOSRinternational conference on DNS/LES,Ruston,Louisiana.Greyden Press,Aug,1997,4-8.
    [112] Menter F R,Kuntz M.Adaptation of Eddy-viscosity Turbulence Models toUnsteady Separated Flow Behind Vehicles[C].In:McCallen,R.,Browand,F.,Ross,J.(eds.) Symposium on “the aerodynamics of heavy vehicles:trucks,buses and trains.” Monterey,USA,Dec2002,2-6.
    [113] Merkle C L,Feng L,Buelow P O.Computational Modeling of the dynamicsof Sheet Cavitation[C]. Third International Symposium on Cavitation,Grenoble,France,1998:307-313
    [114] Kunz R F,Boger D A,Chyczewski T S,et al.Multi-Phase CFd Analysis ofNatural and Ventilated Cavitation about Submerged Bodies[C]. ThirdASME/JSME Joint Fluids Engineering Conference,San Francisco,California,1999:FEDSM99-7364
    [115] Senocak I. Computational Methodology for the Simulation of TurbulentCavitating Flows[D].Phd dissertation,University of Florida,USA.2002:38-47
    [116] Singhal A K,Athavale M M,Li Huiying,et al.Mathematical Basis andValidation of the Full Cavitation Model[J].Journal of Fluids Engineering.2002,124(3):617-624

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700