全地面起重机臂架算法对变形量的影响分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全地面起重机在工厂、码头、建筑工地、矿山等场地有着广泛的用途。为实现起重机大起升高度和大幅度,主臂与副臂的组合方式得到了广泛应用。大起升高度和大幅度时的起重量逐渐成为衡量起重机性能的一个重要指标。起重能力是由一定臂长和幅度下的额定起重量定义的,而额定起重量又反过来影响着幅度,因此在设计过程中必须考虑臂架变形的影响。
     目前在起重性能的计算和变形的计算上有了一些研究,但并没有深入研究起重量对变形的影响。换而言之,在对起重性能进行确定时没有相关文献讨论起重量对变形量的影响。
     本文以某500t全地面起重机臂架系统为研究对象,从线性、非线性理论出发,仅针对臂架强度决定的起重性能,研究主臂工况和塔式副臂工况下不同理论对臂架变形量的影响规律。具体研究工作如下:
     (1)研究全地面起重机的作业工况和臂架工作原理,选取主臂工况和塔式副臂工况为研究对象,在充分了解臂架结构特点的基础上对臂架各部分进行模型简化并建立两种工况下臂架的有限元模型。对此两种工况下简化模型和复杂模型进行对比,验证本文简化模型的正确性。
     (2)研究有限元参数化建模思想,采用比例迭代法利用ANSYS有限元软件的APDL语言编写求解最大起重量的计算程序,实现线性、非线性理论下不同工况的循环求解。
     (3)用MATLAB对有限元结果进行处理,通过对不同初始变幅角、主臂臂长和塔式副臂臂长等因素的研究,得出线性、非线性理论对臂架变形的影响规律。
     研究结果表明,随着主臂臂长、塔臂臂长以及初始变幅角的增加,刚性、线性、非线性对变形量的影响差别越来越大。因此,在臂长较短或者臂长较长初始变幅角较小时,可用线性模型代替非线性模型,以提高计算效率。本文研究成果为同类型全地面起重机臂架系统有限元模型的简化提供借鉴,为臂架系统的设计、分析提供了参考,同时为更准确合理的计算起重性能提供依据。
All-terrain crane has a wide usage in factories, docks, construction sites, mines and other fields. The combination of main boom and tower jib has been widely used for large lifting height and workable radius of the crane. The lifting weight under large lifting height and workable radius seems to be an important indicator to measure the crane. Since the normal lifting capacity is defined by the rating weight under a certain length of boom and designated workable radius, then the rating weight can influence the workable radius. Therefore, the deformation effects should be considered in design process.
     Some researches have been studied on the calculation of lifting capacity and deformation, whereas there is no in-depth explotation on the influence of lifting weight on the deformation. In other words, no papers discuss the lifting weight influence under the deformation when determining lifting capacity.
     A certain500t all-terrain crane is taken to study, based on the linear and nonlinear theories, laws of the influence of different theories on the main boom and the tower jib working conditions are all considered. Specific research works are as follows:
     (1) The working conditions and principles of all-terrain crane are studied, and the main-boom and the tower jib working conditions are selected out. The models of every part of the boom are simplified and the FEA models are set up with fully understanding the boom structure. A comparison is made from the simplified and the complicated model to verify the correctness of the simplification in this thesis.
     (2) Parameterized modeling is investigated. With APDL provided by FEA software ANSYS, a proportional iterative method is used in program to solve the maximum lifting weight, tending to realize various cycle conditions under linear and nonlinear theories.
     (3) MATLAB is used in processing the FEA results by researching different initial luffing angle, length of the main boom and the length of the tower jib to obtain the laws of influence of linear and nonlinear theories on deformation of the boom.
     The study indicates that with the increase of the length of the main boom and the tower jib and the initial luffing angle, the influence of stiffness linearity and nonlinearity on deformation grows larger. As a result, when the boom is comparatively short or the initial luffing angle is small, calculating efficiency can be improved by the replace of nonlinear model by using the linear one. The results provide a reference for simplifying the finite element model of the same type boom for all-terrain crane. This still suits for its designing and analyzing. It can be a more accurate and reasonable method for lifting capacity calculation.
引文
[1]贾体锋,张艳侠.全地面起重机关键技术发展探析[J].建筑机械,2011,1(2):54-61.
    [2]王欣,高顺德,屈福政.国内外大型起重机的发展状况[J].建筑机械,2005(2):28-32.
    [3]蔡福海,高顺德,王欣.全地面起重机发展现状及其关键技术探讨[J].工程机械与维修,2006(9):66-70.
    [4]刘永峰,田洪森.国内外工程起重机发展状况研究[J].施工技术,2008(12):476-477.
    [5]滕儒民,姚海瑞,陈礼,等.全地面起重机超起装置对臂架受力影响研究[J].机械设计,2012,(1):91-96.
    [6]王恒华,沈祖炎.QAY160全地面起重机吊臂系统在变幅工况下的动力学分析[J].建筑机械,1998,(12):15-19.
    [7]廉伟东.全地面起重机副臂解析法计算程序开发[D].长春:吉林大学,2007.
    [8]王雨松.全地面起重机副臂线性静力分析及其部件屈曲分析[D].长春:吉林大学,2007.
    [9]将红旗,王繁生.起重机吊臂结构有限元模态分析.[J].农业机械学报,2006,37(3):20-22.
    [10]李大涛,刘晓婷.高空作业平台伸缩臂有限元分析及优化[J].起重运输机械,2010(5):67-70.
    [11]韦仕富,王三民,郑钰琪,等.某型汽车起重机吊臂有限元分析及试验验证[J].机械设计2011,28(6):92-96.
    [12]冯立浩.基于Solid Works simulation的随车起重机吊臂有限元分析[J].制造业信息化,2011,(5):80-81.
    [13]纪爱敏,彭泽,刘木南.QY25K型汽车起重机伸缩臂吊臂的有限元分析[J].工程机械,2003(1):19-21.
    [14]吴晓.SQTJ160型铁路起重机伸缩臂的有限元分析[J].起重运输机械,1998(3):3-6.
    [15]焦文瑞,孔庆华.汽车起重机箱伸缩式吊臂的有限元分析[J].工程机械,2007,38(9)::33-36.
    [16]邢怀念,张小鹏,刘增利.MK650型起重机桁架臂结构有限元分析与应变测试[J].机械强度,2011,32(2):281-284.
    [17]王欣,马青,滕儒民等.应用ANSYSY计算履带起重机臂架弹性稳定性的简化模型[J].起重运输机械,2009(11):15-19.
    [18]郑慧强.起重机结构非线性变形和内力的矩阵计算法[J].建筑机械,1988,(12):18-23.
    [19]张正元.塔机水平臂主载荷下线性和非线性变形和内力 [J].同济大学学报,2000,(12):732-737.
    [20]雷正保.汽车起重机起重特性的精确计算[J].建筑机械,1990,(12):11-14.
    [21]单增海.大吨位全地面起重机臂架大变形分析的参数化软件开发[D].长春:吉林大学,2007.
    [22]张正得.大吨位全地面起重机利用有限元进行性能计算程序开发[D].长春:吉林大学,2011.
    [23]姚嘉.全地面起重机性能计算及有限元分析[D].长春:吉林大学,2009.
    [24]滕儒民,刘阚元,陈礼.有限元方法计算大吨位伸缩臂起重机起重性能[J].中国工程机械学报,2011,(6):194-199.
    [25]裘伟峰,张宗山,李春生.汽车起重机吊臂设计非线性迭代计算[J].今日工程机械,2010,(8):122-123.
    [26]黄皓轩,杨贯中.基于BP神经网络的汽车起重机工作幅度计算[J].微计算机信息,2012,(2):120-121.
    [27]Oran C. Tangent stiffness in space frames [J]. Journal of structural Division, 1973,99(6):652-683.
    [28]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2003.
    [29]J.E. Barradas Cardoso, Nuno M. B. Benedito, et. Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation [J]. Thin-Walled Structures,2009,47:1363-1372.
    [30]A. Banerjee, B. Bhattacharya, A.K.Mallik. Large deflection of cantilever beams with geometric non-linearity:Analytical and numerical approaches [J]. Non-linear mechanics,2008(43):366-376.
    [31]卜筠燕.基于有限元的臂架系统非线性分析方法研究及应用[D].大连:大连理工大学,2008.
    [32]Yong Bai. A Theory of Nonlinear Finite Element Analysis [J]. Marine Structural Design,2003:227-249.
    [33]P.H.Wang, Initial Shape of Cable-Stayed Bridges [J]. Comput&Struct, Vol.46,1993
    [34]J. FFleming. Nonlinear Static Analysis of Cable stayed Bridge [J]. Comput&Struct, Vol.
    [35]龚曙光,谢桂兰,黄云清ANSYS参数化编程与命令手册[M].北京:机械工业出版社,2009.
    [36]彭正中,王新敏,司瑞军ANSYS几何非线性理论及其在桥梁结构中的应用[J].成果与应用,2004(4):55-57.
    [37]Sung-Bo Kim, Moon-Young Kim. Improved formulation for spatial stability and free vibration of thin-walled tapered beams and space frames [J]. Engineering Structures,2000,22(5):44-458.
    [38]Kiyohiro Imai, Dan M. Frangopol. Geometrically Nonlinear Finite Element Reliability Analysis of Structural Systems [J]. Computers and Structures,2000, 77(6):677-691.
    [39]Y. M. Desai, N. Popplewell, A. II. Shah. Geometric nonlinear static analysis of Cable supported structures [J]. Computer&Structures,1988(6):1001-1009.
    [40]Loannis G Raftoyiannis, John Ch. Eromopoulos. Stability of Tapered and Stepped steel Columns with Initial Imperfections [J]. Engineering Structures,2005, 27(8):1248-1257.
    [41]王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002.
    [42]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [43]张萍ANSYS建模过程中单元属性的定义[J].现代电子技术,2003,159(16):5-36.
    [44]黄大巍,李风,毛文杰.现代起重运输机械[M].北京:化学工业出版社,2006.
    [45]GB/T 3811-2008起重机设计规范[S].北京:中国标准出版社,2008:14-15.
    [46]周宁ANSYS APDL高级工程应用实例分析与二次开发[M].北京:中国水利水电出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700