以Ti-Al薄膜为阻挡层的硅基铁电电容器的集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在不同氮气和氩气流量比的混合气体下,应用磁控溅射法在Si(001)衬底上制备了Ti-Al(10 nm)和Ti-Al-N(10 nm)薄膜,采用X射线衍射仪、扫描电子显微镜、四探针检测仪对Ti-Al和Ti-Al-N薄膜的微结构和阻挡性能进行了表征。实验发现非晶Ti-Al-N薄膜经过750℃的高温处理后仍保持非晶态,各膜层之间没有明显的互扩散和反应,相对于Ti-Al阻挡层材料, N的引入降低了阻挡层材料的吉布斯自由能,增强了阻挡层的高温稳定性,提高了阻挡层的失效温度,证明了具有良好阻挡性能的非晶Ti-Al-N薄膜可以用作Cu互连的阻挡层材料。
     应用磁控溅射法在Pt衬底上制备5 nm厚非晶Ti-Al薄膜作为缓冲层,利用脉冲激光沉积法制备Ba0.6Sr0.4TiO3(BST)薄膜,构造了Pt/BST/Pt和Pt/Ti-Al/BST/Ti-Al/Pt电容器,研究了Ti-Al过渡层对Pt/BST/Pt电容器结构及其性能的影响。实验表明,过渡层的引入虽然对BST薄膜的结晶质量没有明显改善,但是它有效地阻止了Pt电极和BST薄膜的互扩散,降低了BST薄膜氧空位的浓度,提高了铁电电容器的介电性能。
     采用Ti-Al薄膜分别作为扩散阻挡层和抗氧化阻挡层,应用溶胶-凝胶法构架了La_(0.5)Sr_(0.5)CoO_3 (LSCO)/Pb(Zr_(0.4)Ti_(0.6))O_3 (PZT)/La_(0.5)Sr_(0.5)CoO_3 (LSCO)/Ti-Al/Cu/Ti-Al/Si铁电电容器,实现了Cu薄膜与铁电电容器的集成。通过铁电测试仪对LSCO/PZT/LSCO电容器的铁电性能进行了测量。在驱动电压为5 V时,LSCO/PZT/LSCO电容器具有饱和趋势良好的电滞回线、较高的极化强度(23.0μC/cm~2)、较小的矫顽电压(1.6 V)。
Ti-Al film(10 nm),Ti-Al-N film(10 nm) have been deposited on the Si(001) substrates by magnetron sputtering method in various N2/Ar flow ratios. X-ray diffraction (XRD), scanning electron microscope(SEM) and four-point probe measurement (FFP) have been employed to characterize the barrier performance. It is found that the Ti-Al-N films remain amorphous after high temperature annealing up to 750 oC, no obvious reactions or interdiffusion occur in the Cu/Ti-Al-N/Si samples. and no Cu silicide is observed for the Cu/Ti-Al-N/Si sample compared to the Cu/Ti-Al/Si sample in which Cu3Si is observed. This indicates that dissolved nitrogen in Ti-Al can greatly reduce the Gibbs free energy of the barrier, enhance high temperature stability and increase the failure temperature. The Ti-Al-N film is ideal diffusion barrier for Cu metallization.
     The effect of amorphous Ti-Al buffer layer deposited by radio-frequency magnetron sputtering on the microstructural and physical properties of Ba0.6Sr0.4TiO3 (BST) film prepared by pulsed laser deposition technique on Pt/Ti/SiO2/Si(001) substrates was studied. It is found that the Ti-Al buffer layer can effectively prevent the interdiffusion between Pt electrode and BST film, lower the concentration of oxygen vacancy of the BST film, and improve the dielectric properties of the BST capacitors.
     La_(0.5)Sr_(0.5)CoO_3 (LSCO)/Pb(Zr_(0.4)Ti_(0.6))O_3 (PZT)/La_(0.5)Sr_(0.5)CoO_3 (LSCO)/Ti-Al/Cu/Ti-Al/Si heterostructure has been fabricated via both sol-gel and magnetron sputtering methods using Ti-Al film as diffusion barrier layer and oxygen barrier layer. The ferroelectric properties have been measured by a ferroelectric tester. It is found that the LSCO/PZT/LSCO capacitor has very good saturated ferroelectric loop, and the remnant polarization and coercive voltage, measured at 5 V, are ~23.0μC/cm~2 and ~1.6 V, respectively.
引文
[1] X. W. Lin and D. Pramanik. Future interconnect technologies and copper metallization [J]. Solid State Technology, Oct 1998:63-79.
    [2] R. Liu, C. S. Pai, E. Martinez, et al. Interconnect Technology trend for microelectronics [J]. Solid-State Electronics, 1999,43:1003-1009.
    [3] S. Rawal, D. P. Norton, K. C. Kim, et al. Ge/HfNx diffusion barrier for Cu metallization on Si [J]. Appl. Phys. Lett., 2006, 89:231914.
    [4] H. T. Liu and Z. Q. Wu. Physics, 2001, 30(12):757.
    [5] B. Zhao. IC interconnect technology-challenges and opportunities. In: International Conference on Solid-State and Integrated Circuit Technology Proceedings (ICSICT2001),2001:337.
    [6] International Technology Roadmap for Semiconductors. Austin,TX:SEMATECH,1999
    [7] S. Vaidya, T. T. Sheng, A. K. Sinha, et al . Line width Dependence of electromigration in Evaporated Al-0.5Cu [J]. Appl.Phys.Lett., 1980, 36:464.
    [8] S. Q. Wang, S. Suthar, C. Hoeflich, et al. Diffusion barrier properties of TiW between Si and Cu [J]. J. Appl. Phys., 1993, 73(5):2301.
    [9] M. A. Nieolet. Ternary amorphous metallic thin films as diffusion barriers for Cu metallization [J]. Applied Surface Science, 1995, 91(l-4):269-276.
    [10] S. Rawal, E. Lambers, D. P. Norton, et al. Comparative study of HfNx and Hf-Ge-N copper diffusion barriers on Ge [J]. J. Appl. Phys., 2006, 100:063532.
    [11] P. L. Pai and C. H. Ting. Selective electroless copper for VLSI [J]. Interconnection. IEEE Electron Device Lett., 1989(10):423.
    [12] E. Korczynski. Interconnect: the new frontier[J]. Solid State Technology, 1998, 41(9):83.
    [13] A. Petra, R. Mikko, A. Kai, et al. The growth and diffusion barrier properties of atomic layer deposited NbNx thin films [J]. Thin Solid Films, 2005, 491(1-2):235-241.
    [14] N. G. William and J. L. Plawsky. Design of diffusion barriers [J]. Thin Solid Films, 2007, 515:4794–4800.
    [15] J. Pelleg, and G. Sade. Diffusion barrier properties of amorphous TiB2 for application in Cu metallization [J]. J. Appl. Phys., 2002, 91(9):6099.
    [16] H. C. Chung and C. P. Liu. Effect of crystallinity and Preferred orientation of Ta2N films on diffusion barrier Properties for copper metallization [J]. Surface and Coatings Technology, 2006, 200(10):3122-3126.
    [17] Y. Wang, F. Cao, Y. T. Liu, et al. Investigation of Zr-Si-N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization [J]. Appl.Phys.Lett., 2008, 92:032108.
    [18] S. H. Kim, S. S. Oh, K. B. Kima, et al. Atomic-layer-deposited WNxCy thin films as diffusion barrier for copper metallization [J]. Appl. Phys. Lett., 2003, 82:4486.
    [19] A. Gupta, H. Wang, A. Kvit, et al. Effect of microstructure on diffusion of copper in TiN films [J]. J.Appl. Phys., 2003, 93(9):5210.
    [20] T. Laurila, K. Zeng, J. K. Kivilahti, et al. TaC as a diffusion barrier between Si and Cu [J]. J. Appl. Phys., 2002,91(8):5391.
    [21] J. P. Chu, and C. H. Lin. Formation of reacted layer at the barrierless Cu(WN)/Si interface [J]. Appl. Phys. Lett., 2005, 87:211902.
    [22] D. S. Yoon, H. K. Baik, S. M. Lee, et al. Effect on thermal stability of a Cu/Ta/Si heterostructure of the incorporation of cerium oxide into the barrier [J]. J. Appl. Phys., 1998, 83(12):8074.
    [23] H. Jiang, T. J. Klemmer, J. A. Barnard, et al. Epitaxial growth of Cu on Si by magnetron sputtering [J]. J. Vac. Sci. Technol., 1998:3376-3383.
    [24] P. Majumder and C. G. Takoudis. Investigation on the diffusion barrier properties of sputtered Mo/W-N thin films in Cu interconnects [J]. Appl. Phys. Lett., 2007, 91:162108.
    [25] J. S. Kwak, H. K. Baik, J. H. Kim, et al. Improvement of Ta diffusion barrier performance in Cu metallization by insertion of a thin Zr layer into Ta film [J]. Appl. Phys. Lett., 1998, 72(22):2832.
    [26] S. H. Kim, K. T. Nam, A. Datta, et al. Failure mechanism of a multilayer(TiN/Al/TiN) diffusion barrier between copper and silicon [J]. J. Appl. Phys., 2002, 92(9):5512.
    [27] L. C. Leu, D. P. Norton, M. E. White, et al. Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects [J]. Appl. Phys. Lett., 2008, 92:111917.
    [28] H. Ono, T. Nakano, and T. Ohta. Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, MO, Ta, W) [J]. Appl. Phys. Lett., 1994, 64(12):1511.
    [29] L. Liu, Y. Wang, H. Gong, et al. Annealing effects of tantalum films on Si and SiO2/Si substrates in Various vacuums [J]. J. Appl. Phys., 2001, 90(1):416-420.
    [30] M. Y. Yan, K. N. Tu, A.V. Vairagar, et al. Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer [J]. Appl. Phys. Lett., 2005, 87:261906-1.
    [31] J. P. Chu, C. H. Lin, and V. S. John. Cu films containing insoluble Ru and RuNx on barrierless si for excellent property improvements [J]. Appl. Phys. Lett., 2007, 91:132109.
    [32] S. P. Murarka, J. Steigerwald, R. J. Gutmann, et al. Inlaid copper multilevel interconnections using planarization by chemical -mechanical polishing [J], MRS Bull., 1993, 18:46.
    [33] C. Muller, N. Menou, R. Barrett, et al. Nondestructive microstructural diagnostic of integrated ferroelectric capacitor arrays: Correlation with electrical characteristics [J]. J. Appl. Phys., 2006,99: 054504.
    [34] K. Takashi, S. Tomohiro, W. Takayuki, et al. Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 2002, 80(15):2746-2748.
    [35] T. L. Ren , H. J. Zhao, L. T. Liu, et al. Piezoelectric and ferroelectric films for microelectronic applications [J]. Materials Science and Engineering. 2003,99:159-163.
    [36] M. Goel. Recent developments in electroceramics [J]. MEMS applications for energy and environment. Ceramics International. 2004,30:1147–1154.
    [37] T. Delage, C. Champeaux, A. Catherinot et al. Epitaxial bilayers and trilayers of superconducting and high K materials grown by PLD for microwave applications [J]. Thin Solid Films. 2004,453 -454:273–278.
    [38] T. J. Wu. Structure and properties of PZT thin films on strontium ruthenate and calcium ruthenate electrodes [J]. Mater. Chem. Phys., 2004, 85(1):88–95.
    [39] P. Hongsik, J. Juhwan, D. K. Min, et al. Scanning resistive probe microscopy: Imaging ferroelectric domains [J]. Appl. Phys. Lett., 2004, 84 (10):1734-1736.
    [40] S. Ezhilvalavan and T. Y. Tseng. Progress in the developments of (Ba,Sr)TiO3 (BST) thin films for Gigabit era DRAMs [J]. Mater. Chem. Phys., 2000, 65: 227-248.
    [41] O. Auciello, W. Fan, S. Saha, et al. Hybrid titanium-aluminum oxide layer as alternative high-k gate dielectric for the next generation of complementary metal-oxide-semiconductor devices [J]. Appl. Phys. Lett., 2005, 86:042904.
    [42] W. Fan, S. Saha, J. A. Carlisle, et al. Materials science and integration bases for fabrication of (BaXSr1-X)TiO3 thin film capacitors with layered Cu-based electrodes [J]. J. Appl. Phys., 2003, 94(9):6192-6200.
    [43] W. Fan, S. Saha, J. A. Carlisle, et al. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices [J]. Appl. Phys. Lett., 2003, 82(9):1452-1454.
    [44] A. Kingon and S. Srinivasan. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications [J]. nature materials, 2005,4:233-237.
    [45]邢金柱,刘保亭,霍骥川,等.用于铜互连阻挡层磁控溅射法制备的Ti-Al薄膜研究.机械工程材.2009, 33(5), 83-86.
    [46] W. J. Leng, C. R. Yang, H. Ji, et al. Electrical and optical properties of lanthanum-modified lead zirconate titanate thin films by radio-frequency magnetron sputtering [J]. J. Appl. Phys., 2006, 100:106102.
    [47] A. S. Bhansali, R. Sinclair, A. E. Morgan, et al. A thermodynamic approach for interpreting metallization layer stability and thin-film reactions involving four elements: Application to integrated circuit contact metallurgy [J]. J. Appl. Phys., 1990;68:1043-9.
    [48] A. B. Kozyrev, A. D. Kanareykin, E. A. Nenasheva, et al. Observation of an Anomalous Correlation Between Permittivity and Tunability of a Doped (Ba,Sr)TiO3 Ferroelectric Ceramic Developed for Microwave Applications [J]. Appl. Phys. Lett., 2009, 95(1): 012908.
    [49] H. Shen, Y. H. Gao, P. Zhou, et al. Effect of Oxygen to Argon Ratio on Properties of (Ba,Sr)TiO3 Thin Films Prepared on LaNiO3/Si Substrates [J]. J. Appl. Phys., 2009, 105(6): 06163.
    [50] L. J. Sinnamon, R. M. Bowman, J. M. Gregg, et al. Investigation of Dead-layer Thickness in SrRuO3 /Ba0.5Sr0.5TiO3 /Au Thin-film Capacitors [J]. Appl. Phys. Lett., 2001, 78(12):1724-1726.
    [51] B. T. Liu, K. Maki, S. Aggarwal, et al. Low-temperature Integration of Lead-based Ferroelectric Capacitors on Si with Diffusion Barrier Layer [J]. Appl. Phys. Lett., 2002, 80(19):3599-3601.
    [52] M. Stengel and N. A. Spaldin. Origin of the Dielectric Dead Layer in Nanoscale Capacitors [J]. nature,2006, 443(12):679-682.
    [53] S. G. Lee. Effects of sol infiltration on the screen-printed lead zirconate titanate thick films [J]. Mater.Lett.,2007,61:1982-1985.
    [54] E. M. Alkoy, S. Alkoy, T. Shiosaki, et al. The effect of crystallographic orientation and solution aging on the electrical properties of sol-gel derived Pb(Zr0.45Ti0.55)O3 thin films [J]. Ceram.Int., 2007,33:1455-1462.
    [55] J. Perez, P. M. Vilarinho, T. Alkoy, et al. Electrical properties of lead zirconate titanate thick films prepared by hybrid sol-gel method with multiple infiltration steps [J]. Mater. Chem. Phys., 2007,101:280-284.
    [56] B. T. Liu, X. B. Yan, X. Zhang, et al. Ni-Al diffusion barrier layer for integating ferroelectric capacitors on Si [J]. Appl. Phys. Lett., 2007,91 :142908.
    [57] A. M. Dhote, O. Auciello, D. M. Grun, et al, Studies of thin film growth and oxidation processes for conductive Ti-Al diffusion barrier layers via in situ surface sensitive analytical techniques [J]. Appl. Phys. Lett., 2001, 79 :800-802.
    [58] B. Yang and S. Aggrarwal. La0.5Sr0.5CoO3/Pb(Nb0.04Zr0.28Ti0.68)O3/La0.5Sr0.5CoO3 thin film heterostructurees on Si using TiN/Pt conducting barrier [J]. Thin Solid Film, 1996,281-282:298-301.
    [59] S. Aggarwal, B. Nagaraj, I. G. Jenkins, et al. Correlation between oxidation resistance and crystallinity of Ti-Al as a barrier layer for high-density memories [J]. Acta. Mater, 2000, 48:3387-3394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700