复杂网络建模的仿真与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,复杂网络的理论和实证研究,对于揭示复杂系统的复杂性提供了一个重要的手段。在理论研究中,结合真实系统的性质形象直观的进行复杂网络建模,对于深入了解复杂网络的形成过程和不同节点间的相互关系,捕捉网络演化微观机制和动态特性具有重要的意义;在实践研究中,构造符合自身特性的理论模型以及针对不同的需求实证分析真实系统内在的动力学性质,对于揭示现实系统对应复杂网络的形成及演化机制,提高复杂网络对实际系统需求的应用能力是非常重要的。因此,本文从复杂网络建模和应用两个角度进行理论与实践研究。对于复杂网络建模,以图论为基础,结合真实系统的随机性和确定性,分别利用不同的建模算法对小世界网络和无标度网络进行建模,通过对网络拓扑属性的计算解析网络模型的特性。对于复杂网络应用,以脑记忆功能网络和公交网络为例,首先建立相应的复杂网络模型,其次解析计算网络的拓扑属性,然后利用实验数据进行模型实证分析,最后结合不同的需求进行复杂网络应用研究。主要研究内容如下:
     1、对于小世界网络,利用确定性建模的方式,根据三角形内外迭代算法不断增长,建立了一个小世界网络模型,解析计算主要拓扑属性发现,模型具有较短的平均路径长度和较大的聚类系数,而网络度分布服从指数分布说明网络模型同时具有随机网络的性质。对于无标度网络,在网络增长和择优连边机制的基础上,引入竞争机制和反择优删除连边机制,根据优化算法建立了一个无标度网络扩展模型,解析计算网络的度分布发现,网络的幂律指数大于1,1到2为亚标度,2到3为无标度,大于3只在理论上存在,说明模型对应更广泛的实际系统,适用性更强。
     2、通过确定性的方式,利用元记忆的定义抽象神经元和脑区为内模和外模节点,根据记忆的信息处理过程提出了构造算法和检索算法,建立了脑记忆功能双模结构网络,通过对网络拓扑属性的分析发现,双模记忆网络具有较短的平均路径长度和较大的聚类系数,属于小世界网络,数值模拟的结果验证了算法及模型的有效性。
     3、以公交站点和公交线路为节点,建立了公交站点网络、公交换乘网络和公交线路网络,通过实验数据解析计算了三种网络的动力学拓扑特性,根据模型结果的不同以及与实际系统特征表现出的不相符,利用网络去噪和建立虚拟节点的方式提出了网络优化方法,应用于患者就医静态复杂网络中,实现了路径选择的需求;最后利用动态建模算法将动态旅游网络转换为静态复杂网络,解决了旅游出行时的动态路径选择问题。
Recently, theoretical and empirical studies of complex networks have provided an important way to reveal the complexity of complex systems. In theoretical study, direct and visual modeling to complex networks with real system characters plays an important role, it can find the construction process of complex networks and mutual relation of nodes deeply, and catch the micro-mechanism and the dynamic characters in network evolution. In empirical study, theoretical models with itself characters and practical analysis of inner dynamics characters for real systems with different requirements are very important to reveal the construction and evolution of real system networks, and to improve the application ability in corresponding to real system requirements. In the thesis, we make research on theoretical and practical studies on complex networks modeling and application. In complex networks modeling studies, firstly, we set up the small world network and scale free network with different algorithms from the randomness and determinacy in real systems based on graph theory, and then analyze the characters of network models by computing the topology characters. In complex networks application studies, taking brain memory functional network and bus transport network for example, firstly, we model the memory network and bus transport network, and then analyze the topology characters and practice the model by the experimental data, at last we apply the complex network to the real systems with different requirements. The main contents of the thesis are as follows.
     1. To small world network, we set up a small world network model by the triangle inter and outer iteration algorithm with the deterministic method. By the analysis of the main topology characters, the model had small Average Path Length (APL) and big clustering coefficient. Meanwhile, it had the character of random network from the degree distribution with exponential distribution. To scale free network, we set up an extended scale free network model by the optimization algorithm. In the algorithm we introduced competition mechanism and anti-preferential mechanism based on network growth and preferential attachment. By the analysis of degree distribution, the power law index was bigger than1. With the index from1to2was the character of sub-scale free, and from2to3was the character of scale free. It was only a theoretical value with the index bigger than3. The results of the extended model implied that it was more universal corresponding to real systems.
     2. We set up a bi-modular model of brain memory functional network by deterministic method, in the process, the inter-modular and intra-modular nodes were abstracted by the neuron and brain cortical with the meta-memory definition, the construction and retrieve algorithms were put forward on the view of information process of memory. By the topology characters analysis, the bi-modular memory network had small APL and big clustering coefficient that was the characters of small world. The numerical simulation supported the results.
     3. We set up bus station network, bus transfer network and bus line network with the node abstraction from bus station and bus line, and then analyzed the dynamics topology characters of them. Because of the differences of results in different models and between real system and models, We put forward the optimization methods by getting rid of network noise and setting up virtual nodes, and then applied it to static complex network with patient medical seeking, the results satisfied the requirement of path selection. At last, by the dynamic generating algorithm the dynamic travel network was changed to static complex network and satisfied the application requirement of dynamic path selection.
引文
[1]Newman M E J. Models of the small world[J]. Journal of Statistical Physics,2000, 101:819-841.
    [2]Strogatz S H. Exploring complex network[J]. Nature,2001,410:268-276.
    [3]Albert R, Barabasi A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics,2002,74(1):47-97.
    [4]Dorogovstsev S N, Mendes J F F. Evolution of networks [J]. Advances in Physics,2002,51(4):1079-1187.
    [5]Wang X F. Complex networks:Topology dynamics and synchronization[J]. International Journal of Bifurcation and Chaos,2002,12(5):885-916.
    [6]Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003,45(2):167-256.
    [7]Barabasi A L, Bonabeau E. Scale-free networks[J]. Scientific American, 2003,208:60-69.
    [8]Amaral L A N, Ottino J M. Complex newtokrs:Augmenting the framework of the study of complex systems[J]. The European Physical Journal B,2004,38:147-162.
    [9]Boccaletti S, Latora V, Moreno Y, et al. Complex netwoks:Structure and dynamics [J]. Physics Reports,2006,424:175-308.
    [10]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10.
    [11]Vicsek T. Complexity:The bigger picture[J]. Nature,2002,418:131.
    [12]于景元,刘毅.复杂性研究与系统科学[J].科学学研究,2002,20:449-453.
    [13]戴汝为,操龙兵.一个开放的复杂巨系统[J].系统工程学报,2001,16(5):376-381.
    [14]方锦清.令人关注的复杂性科学与复杂性性研究[J].自然杂志,2002.24(1):7-15.
    [15]Harte J. Toward a Synthesis of the Newtonian and Darwinian Worldviews[J]. Physics Today,2002,55(10):29.
    [16]Gallagher R, Tim A, Dennis N, et al. Beyond Reductionism[J]. Science,1999,284 (2): 79-109.
    [17]昊金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):19-46.
    [18]周涛,柏文洁,汪秉宏,等.复杂网络研究概述[J].物理,2005,34(1):31-36.
    [19]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [20]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M].北京:高等教育出版社,2009.
    [21]汪秉宏,周涛,王文旭,等.当前复杂系统研究的几个方向[J].复杂系统与复杂性科学,2009,5(4):21-28.
    [22]戴汝为.开展“系统复杂性”研究任重而道远[J].复杂系统与复杂性科学,2004,1(3):1-3.
    [23]成思危.复杂性科学探索[M].北京:民主与建设出版社,1999.
    [24]方锦清,汪小帆,刘曾荣.略论复杂性问题和非线性复杂网络系统的研究[J].科技导报,2004,25(2):9-13.
    [25]Stefan B, Hans G S. Handbook of Graphs and Networks:From the Genome to the Internet[M]. Germany:Wiley-VCH,2003.
    [26]Ben-Naim E, Frauenfelder H, Toroczkai Z. Complex networks[M]. Berlin:Springer, 2004.
    [27]Pastor-Satorras R, Rubi M, Diaz-Guilera A. Statistical mechanics of complex networks[M]. Berlin:Springer,2003.
    [28]Costa L, Rodrigues F A, Travieso G. Characterization of complex networks:A survey of measurements[J]. Advances in Physics,2007,56(1):167-242.
    [29]方锦清,汪小帆,郑志刚,等.一门崭新的交叉科学:网络科学(上)[J].物理学进展,2007,27:239-343.
    [30]方锦清,汪小帆,郑志刚,等.一门崭新的交叉科学:网络科学(下)[J].物理学进展,2007,27:361-448.
    [31]张方风.大脑功能连接的复杂网络研究[M].北京:对外经济贸易大学出版社,2011.
    [32]孙俊峰,洪祥飞,童善保.复杂脑网络研究进展——结构、功能、计算与应用[J].复杂系统与复杂性科学,2010,7(4):74-90.
    [33]张方风,郑志刚.复杂脑网络研究:现状与挑战[J].上海理工大学学报,2012,31(2):138-153.
    [34]唐一源.探索大脑,优化人生[M].北京:科学出版社,2009.
    [35]赵庆柏.小世界脑网络的模拟及应用研究[D].大连:大连理工大学,2009.
    [36]Zhao Q B, Feng H B, Tang Y Y. Modelling human cortical network in real brain space[J]. Chinese Physics Letters,2007,24(12):3582-3585.
    [37]Tang Y, Zhang W, Chen K, et al. Arithmetic processing in the brain shaped by cultures[J].Proc Natl Acad Sci U S A,2006,103(28):10775-10780.
    [38]薛绍伟.不同状态下脑功能网络特性研究[D].大连:大连理工大学,2013.
    [39]薛绍伟,唐一源,李健,等.一种基于fMRI数据的脑功能网络构建方法[J].计算机应用研究,2010,27(11):4055-4057.
    [40]Tang Y Y, Lu Q L, Geng X J, et al. Short-term meditation induces white matter changes in the anterior cingulate[J]. Proc Natl Acad Sci U S A,2010,107(35):15649-15652.
    [41]彭聃龄.普通心理学[M].北京:北京师范大学出版社,2005.
    [42]McIntosh A R, Nyberg L, Bookstein F L. Differential functional connectivity of prefrontal and medial temporal cortices during episodic memory retrieval[J]. Human Brain Mapping,1997,5:323-327.
    [43]吴建军,高自友,孙会君,等.城市交通系统复杂性[M].北京:科学出版社,2010.
    [44]章忠志.复杂网络的演化模型研究[D].大连:大连理工大学,2006.
    [45]章忠志,周水庚,方锦清.复杂网络确定性模型研究的最新进展[J].复杂系统与复杂性科学,2008,5(4):29-46.
    [46]Chavez M, Valencia M, Latora V, et al. Complex networks:new trends for the analysis of brain connectivity[J]. International Journal of Bifurcation and Chaos, 2010,20(6):1677-1686.
    [47]Rubinov M, Sporns O. Complex network measures of brain connectivity:Uses and interpretations[J]. NeuroImage,2010,52(3):1059-1069.
    [48]Bullmore E, Sporns O. Complex brain networks:graph theoretical analysis of structural and functional systems[J]. Nature reviews. NeuroScience,2009,10(3): 186-198.
    [49]Ratcliff R. Connectionist models of recognition memory:Constraints imposed by learning and forgetting functions[J]. Psychological Review,1990,97:285-308.
    [50]Schott B H, WUstenberg T, Wimber M, et al. The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans[J]. Human Brain Mapping,2013,34(2):407-424.
    [51]Schlosser R, Wagner G, Sauer H. Assessing the working memory network:Studies with functional magnetic resonance imaging and structural equation model ing [J]. Neuroscience,2006,139(1):91-103.
    [52]郝晶,李坤成.人类记忆脑机制的功能成像研究[J].中国CT和MRI杂志,2004(03):54-58.
    [53]常鸣,马寿峰.我国大城市公交网络结构的实证研究[J].系统工程学报,2007(04):412-418.
    [54]王东,刘刚.基于复杂网络的城市公交网络的研究[J].统计研究,2008(11):109-111.
    [55]许晴,祖正虎,徐致靖,等.330个中国城市P空间下公交复杂网络实证研究[J].交通运输系统工程与信息,2013(01):193-198.
    [56]郑金连,狄增如.复杂网络研究与复杂现象[J].系统辩证学学报,2005(04):8-13.
    [57]Newton S I.Philosophise naturalis principia mathematica[M]. California:J. Societatis Regiae ac Typis J. Streater,1687.
    [58]许良英,李宝恒,赵中立,等.爱因斯坦文集[M](第一卷).北京:商务印书馆,2009:214.
    [59]Bollobas B. Modern Graph Theory[M]. New York:Springer,1998.
    [60]West D B. Introduction to Graph Theory[M].Englewood:Prentice-Hall,1995.
    [61]Harary F. Graph Theory[M]. Cambridge:Perseus,1995.
    [62]Erdos P, R6nyi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences,1960,5:17-61.
    [63]Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[J]. Nature,1998,393(6684):440-442.
    [64]Barabasi A L, Albert R. Emergency of Scaling in random networks[J]. Science,1999, 286(5439):509-511.
    [65]刘晓平,唐益明,郑利平.复杂系统与复杂系统仿真研究综述[J].系统仿真学报,2008(23):6303-6315.
    [66]Barabasi A L. Linked:The new science of networks[M]. Cambridge:Perseus,2002.
    [67]Milgram S. The small world problem[J]. Psychology Today,1967,5:60-67.
    [68]王波,王万良,杨旭华.一种基于加权复杂网络的最优公交换乘算法[J].武汉理工大学学报(交通科学与工程版),2008(06):1113-1116.
    [69]Sun H J, Wu J J. Scale-free characteristics of supply chain distribution networks[J]. Modern Physics Letters B,2005,19(17):841-848.
    [70]赵月,杜文,陈爽.基于出行选择的无标度网络演化模型[J].西南交通大学学报,2008(04):531-534.
    [71]Papadopoulos F, Kitsak M, Serrano M A, et al. Popularity versus similarity in growing networks[J]. Nature,2012,489(7417):537-540.
    [72]陈康.复杂网络建模与特性研究[D].西安:西安电子科技大学,2008.
    [73]冯建.复杂网络模型的构造与分析[D].沈阳:东北大学,2005.
    [74]方锦清,李永.网络科学中统一混合理论模型的若干研究进展[J].力学进展,2008(06):663-678.
    [75]Dorogovstsev S N, Mendes J F F. Evolution of networks:From biological Nets to the Internet and WWW[M].New York:Oxford University Press,2003.
    [76]Hayes B. Graph Theory in Practice[J]. American Scientist,2000,88:9-13.
    [77]Hayes B. Graph Theory in Practice:Part II[J].American Scientist,2000,88(2): 104-109.
    [78]Evans T S. Exact solution for network rewiring models[J]. European Physical Journal B,2007,56:65-69.
    [79]方锦清.网络科学的理论模型探索及其进展[J].科技导报,2006(12):67-72.
    [80]Newman M E J, Watts D J. Renormalization group analysis of the small-world network model[J]. Physics letter A,1999,263:341-346.
    [81]Kasturirangan R. Multiple Scales in Small World Graphs. Cond-mat/9904055.
    [82]Doorgovtsev S N, Mendes J F F. Exactly solvable small-world network[J]. Europhysics letters,2000,50:1-7.
    [83]Kleinberg J. Navigation in a small world[J]. Nature,2000,406:845.
    [84]杨波,陈忠,段文奇.基于个体选择的小世界网络结构演化[J].系统工程,2004,22(12):1-5.
    [85]Ozik J, Hunt B R, Ott E. Growing networks with geographical attachment Preference: Emergence of small worlds[J]. Physical Review E,2004,69:026108.
    [86]刘强,方锦清,李永,等.探索小世界特性产生的一种新方法[J].复杂系统与复杂性科学,2005,2(2):13-19.
    [87]Zhang Z Z, Rong L L, Comellas F. Evolving small-world networks with geographical attachment preference[J]. Journal of Physics A (Mathematical and General),2006, 39(13):3253-3261.
    [88]Zhang Z Z, Rong L L, Chonghui G. A deterministic small-world network created by edge iterations[J]. Physica A,2006,363(2):567-572.
    [89]彭遨员.确定性小世界网络模型及搜索策略研究[D].长沙:湖南师范大学,2012.
    [90]周力全.基于小世界网络理论的用户创新扩散研究[D].重庆:重庆大学,2008.
    [91]Wang B, Yang X H, Wang W L. A novel scale-free network model based on clique growth [J]. Journal of Central South University of Technology,2009,16(3):474-477.
    [92]Zhang C G, Zhang Y. Scale-free fully informed particle swarm optimization algorithm[J]. Information Sciences,2011,181(20):4550-4568.
    [93]Adamic L A, Huberman B A, Barabasi A L, et al. Power-Law distribution of the World Wide Web[J]. Science,2000,287:5461.
    [94]陈盛辉.具有高集群的加权无标度网络建模分析[D].福州:福建师范大学,2007.
    [95]关峻.复杂生态系统的无标度理论研究及其实证分析[D].武汉:武汉理工大学,2006.
    [96]罗银花.无标度网络模型的研究与应用[D].上海:东华大学,2009.
    [97]王林.复杂网络的SCALE-FREE性、SCALE-FREE现象及其控制[D].西安:西北工业大学,2006.
    [98]李涛,裴文江,王少平.无标度复杂网络负载传输优化策略[J].物理学报,2009(09):5903-5910.
    [99]刘锡伟.复杂网络的动力行为研究:稳定性与同步性[D].上海:复旦大学,2008.
    [100]史春辉.复杂网络拓扑结构抗毁性研究[D].成都:电子科技大学,2012.
    [101]陶少华.复杂网络演化模型研究及拓扑结构优化[D].武汉:华中师范大学,2007.
    [102]Albert R, Barab'asi A L. Topology of evolving networks:local events and universality[J]. Physical Review Letters,2000,85:5234-5237.
    [103]Zhang Z Z, Rong L L, Bing W, et al. Local-world evolving networks with tunable clustering[J]. Physica A,2007,380:639-650.
    [104]Li X, Chen G. A local-world evolving network model[J]. Physica A:Statistical Mechanics and its Applications,2003,328(1-2):274-286.
    [105]Chen Q H, Shi D H. The modeling of scale-free networks [J]. Physica A,2004,335: 240-248.
    [106]da Cruz J P, Lind P G. The bounds of heavy-tailed return distributions in evolving complex networks[J]. Physics Letters A,2013,377:189-194.
    [107]Dorogovstsev S N, Mendes J F F. Evolution of networks with aging of sites[J]. Physical Review E,2000,62:1842-1845.
    [108]Caldarelli, G., Capocci, A., Rios, P. D. L., Munoz, M. A.:Scale-free networks from varying vertex intrinsic fitness[J].Physical Review Letters,2000,89:258702.
    [109]Vazquez A. Growing network with local rules:Preferential attachment, clustering hierarchy and degree correlations[J]. Physical Review E,2003,67:056104.
    [110]Fortunato S, Flammini A, Menczer F:Scale-free network growth by ranking[J]. Physical Review Letters,2006,96:218701
    [111]D'Souza R M, Borgs C, Chayes JT, et al. Emergence of tempered preferential attachment from optimization[M]. Proc. Natl Acad. Sci. USA,2007,104:6112-6117.
    [112]Dorogovstsev S N, Mendes J F F. Scaling behavior of developing and decaying networks[J]. Europhysics Letters,2000,52:33-37.
    [113]Bianconi G, Barab'asi A L. Competition and multiscaling in evolving networks. Europhysics Letters,2001,54:436-442.
    [114]Jeong H, Neda Z, Barabasi A L. Measuring preferential attachment in evolving networks[J]. Europhysics Letters,2003,61:567-572.
    [115]Dorogovstsev S N, Mendes J F F, Samukhin, A. Size-dependent degree distribution of a scale-free growing network[J]. Physical Review E,2001,63:062101.
    [116]Dorogovstsev S N, Mendes J F F, Samukhin A. Structure of growing network with preferental linking[J]. Physical Review Letters,2000,85(21):4633-4636.
    [117]Krapivsky P L, Redner S, Leyvraz F F. Conneetivity of gorwing random netwokrs[J]. Physical Review Letters,2000,85(21):4629.
    [118]Albert R, Jeong H, Barabasi A L. Attack and error tolerance in complex networks[J]. Nature,2000,406:387-482.
    [119]Border A, Kumar R, Maghoul F, et al. Grpah Structure in the web[J]. Computer Networks,2000,33:309-320.
    [120]Carlyson J, Newman M E J, Strogatz S H, et al. Network robustness and fragiligy: Percolation on random graphs [J]. Physical Review Letters,2000,85(25):5468-5471.
    [121]Cohen R, Erez K, ben-Avraham D, et al. Resilience of the internet to random breakdowns [J]. Physical Review Letters,2000,85(21):'4626-4628.
    [122]Cohen R, Erez K, ben-Avraham D, et al. Breakdown of the internet under unntentioinal attack[J]. Physical Review Letters,2001,86(16):3682-3685.
    [123]Valente A X C N, Sarkar A, Stone H A. Two-peak and three-peak optimal complex networks[J]. Physical Review Letters,2004,91:118702.
    [124]Bollobas B, Riordan 0. Robustness and vulnerability of scale-free reandom graphs[J]. Internet Math.,2003,1:1-35.
    [125]Holme P, Kim B J, Yoon C N, et al. Attack vulnerability of complex networks[J]. Physical Review E,2002,65:056109.
    [126]Bianconi G, Barab'asi, A L. Bose-Einstein in complex networks[J]. Physical Review Letters,2001,86:5632-5635.
    [127]Amaral L A N, Scala A, Barthel6my M, et al. Classes of small-world networks[J]. Proc. Natl. Acad. Sci. USA,2000,97:11149.
    [128]Kleinberg J, Kumar R, Raghavan P, et al.TheWeb as a graph:Measuerments, models and methods [C]. Proceedings of the Intemational Conference on Combinatiorics and Computing. Lecture Notes in Computer Science,1999,1627:1-17.
    [129]Kumar R, Raghavan P, Rajagopalan S, et al. Trawling the Web for emerging cyber-communities[J]. Comuter Network,1999,31(11-16):1481-1493.
    [130]Chung F, Lu L Y, Dewey T G, et al. Duplication models for biological networks[M]. Journal of Computer Biology,2003,10(5):677-688.
    [131]Krapivsky P L, Redner S. Organization of growing random networks[J]. Physical Review E,2001,63:066123.
    [132]Vazquez A. Disordered networks generated by recursive searches[J]. Europhysics Letters,2001,54:430-435.
    [133]Saramaki J, Kaski K. Scale free networks generated by random walkers[J].Physica A,2004,341:80-86.
    [134]Liu J G, Dang Y Z, Wang Z T. Multistage random growing small-world network with power-law degree distribution[J].Chinese Physics Letters,2006,23(3):746-749.
    [135]李增扬,韩秀萍,陆君安,等.内部演化的BA无标度网络模型[J].复杂系统与复杂性科学,2005(02):1-6.
    [136]Holme P, Kim B J. Growing scale free networks with tunable clustering[J]. Physical Review E,2002,65:026107.
    [137]Szabo G, Alava M, Dertesz J. Structural Transitions in scale-free networks[J]. Physical Review E,2003,67:056102.
    [138]Klemn K, Eguiluz V M. Highly clustered scale-free networks[J]. Physical Review E,2002,65:036123.
    [139]Klemn K, Eguiluz V M. Growing scale-free networks with small-world behavior[J]. Physical Review E,2002,65:057102.
    [140]Zhang Z Z, Zhou S G. Correlations in random Apollonian network[J]. Physica A-Statistical Mechanics and its Applications,2007,380:621-628.
    [141]Zhang Z Z, Zhou S G, Zhou T, et al. Incompatibility networks as models of scale-free small-world graphs[J]. European Physical Journal B,2007,60(2):259-264.
    [142]Zhang Z Z, Zhou S G, Wang Z Y, et al. A geometric growth model interpolating between regular and small-world networks[J]. Journal of Physics A:Mathematical and Theoretical,2007,40(39):11863-11876.
    [143]Liu Z H, Lai Y C, Ye N, et al. Connectivity distribution and attack tolerance of general networks with both preferential and random attachments[J]. Physics Letters a,2002,303(5-6):337-344.
    [144]Jin E M, Girvan M, Newman M E J. Structure of growing social networks [J]. Physical Review E,2001,64:046132.
    [145]Gross T, D'Lima C, Blasius B. Epidemic dynamics on an adaptive network[J]. Physical Review Letters,2006,96:208701.
    [146]Zhu C P, Zhou T, Yang H J, et al. The process of coevolutionary competitive exclusion:speciation, multifractality and power-laws in correlations[J].New Journal of Physics,2008,10:023006.
    [147]李季,汪秉宏,蒋品群,等.节点数加速增长的复杂网络生长模型[J].物理学报,2006(08):4051-4057.
    [148]李季明,张宁.具有随机性的确定性网络模型[J].复杂系统与复杂性科学,2007(02):56-61.
    [149]那日萨,张书超.具有老化机制的阿波罗网络模型[J].系统工程理论与实践,2008(09):92-97.
    [150]穆青.三种谢尔宾斯基网络演化模型及分形特征研究[D].大连:大连理工大学,2008.
    [151]Fu B B, Gao Z Y, Liu F S, et al. Express passenger transport system as a scale-free network[J]. Modern Physics Letters B,2006,20(27):1755-1761.
    [152]Yook S H, Jeong H, Barab'asi, A L. Weighted evolving networks [J]. Physical Review Letters,2001,86:5835-5838.
    [153]Barrat A, Barthelemy M, Vespignani A. Weighted evolving networks:Coupling topology and weight dynamics[J]. Physical Review Letters,2004,92:228701.
    [154]Zheng D F, Trimper S, Zheng B, et al. Weighted scale-free netowrks with stochastic weight assignments[J]. Physical Review E,2003,67:040102.
    [155]Li C G, Chen G R. A comprehensiv weighted evolving network model[J]. Physica A,2004,343:288-294.
    [156]Latora V, Marchiori M. Economic small world behavior in weighted networks[J]. The European Physical Journal B,2003,32:249-263.
    [157]Latora V, Marchiori M. How the science of the complex networks can help developing strategies against terrorism[J]. Chaos, Solutions and Fractals,2004,20:69-75.
    [158]Braunstein L, Buldyrev S, Cohen R, et al. Optimal paths in disordered complex networks[J]. Physical Review Letters,2003,91:168701.
    [159]Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks[J]. Physical Review E,2004,69:045104.
    [160]Park K, Lai Y, Ye N. Characterization of weighted complex networks [J]. Physical Review E,2004,70:026109.
    [161]Wang S J, Zhang C S. Weighted competition scale-free network[J]. Physical Review E,2004,70:066127.
    [162]邹勇鑫.遇袭有向复杂网络抗毁性修复策略研究[D].南京:南京理工大学,2012.
    [163]尹礼寿,赵治荣.有向复杂网络中的度分布[J].运城学院学报,2009(2):19-21.
    [164]王桂英.基于有向复杂网络的节点失效对网络状态影响的研究[D].合肥:合肥工业大学,2010.
    [165]汤浩锋,张琨,郁楠,等.有向加权复杂网络抗毁性测度研究[J].计算机工程,2013(01):23-28.
    [166]胡满玉.基于链接关系的有向加权复杂网络关键节点识别技术研究[D].南京:南京理工大学,2012.
    [167]刘翠梅,李俊卫.有向小世界网络上的随机共振行为[J].信阳师范学院学报(自然科学版),2007(02):154-158.
    [168]彭换新,戚国庆,盛安冬.基于有向小世界网络的加速分布式一致性收敛速度研究[J].信息与控制,2012(04):401-405.
    [169]夏秀峰,赵新萍,李晓明.基于加权小世界网络模型的用户聚类技术[J].计算机应用,2010(S2):142-144.
    [170]郭进利.有向复杂网络的Poisson模型[J].上海理工大学学报,2006(03):227-232.
    [171]王高峡,代建民,沈轶,等.有向无标度网络灾害扩散动力学行为研究[J].华中科技大学学报(自然科学版),2009(03):83-85.
    [172]叶焕玲.有向含权无标度网络的建模及其演化行为的研究[D].桂林:广西师范大学,2007.
    [173]Smythe R T, Mahmoud H. A survey of recursive trees [J]. Theory of Probability and Mathematical Statistics,1995,51:1-27.
    [174]Comellas F,Ozon J, Peters J G. Deterministic small-world communication networks[J]. Information Processing Letters,2000,76:83-90.
    [175]Pinheiro M R. Medium worlds theories I [J]. Applied Mathematics and Computation, 2007,188:1061-1070.
    [176]Boettcher S, Gongalves B, Guclu H. Hierarchical regular small-world networks [J]. Journal of Physics A:Mathematical and Theoretical,2008,41:252001.
    [177]Boettcher S, Gongalves B, Azaret J. Geometry and dynamics for hierarchical regular networks [J]. Journal of Physics A:Mathematical and Theoretical,2008,41:335003.
    [178]Fang J Q. On complex network pyramids and their generality and complexity[C]. Proceedings of "the Forth National Forum on Network Science and Graduate Student Summer School". Beijing:China Center of Advanced Science and Technology,2008, 191:204-221.
    [179]Comellas F, Sampels M. Deterministic small-world networks[J]. Physica A,2002,309: 231-235.
    [180]Corso G. Families and clustering in a natural numbers network[J]. Physical Review E,2004,69:03610632.
    [181]Achter J D. Comment on "Families and clustering in a natural numbers network"[J]. Physical Review E,2004,70:0581035.
    [182]Chandra A K, Dasgupta S. A small world network of prime numbers[J]. Physica A-Statistical Mechanics and its Applications,2005,357(3-4):436-446.
    [183]Barabasi A L, Ravasz E, Vicsek T. Deterministic scale-free networks[J].Physica A-Statistical Mechanics and its Applications,2001,299(3-4):559-564.
    [184]Ravasz E, Somera A L, Mongru D, et al. Hierarchical organization of modularity in metabolic networks[J]. Science,2002,297(5586):1551-1555.
    [185]Ravasz E, Barabasi A L. Hierarchical organization in complex networks[J]. Physical Review E,2003,67(02611222).
    [186]Nacher J C, Ueda N, Kanehisa M, et al. Flexible construction of hierarchical scale-free networks with general exponent [J]. Physical Review E,2005,71:0361323.
    [187]Zhou T, Yan G, Wang B H. Maximal planar networks with large clustering coefficient and power-law degree distribution [J]. Physical Review E,2005,72:0299052.
    [188]Majewski M. A tutorial on the realistic visualization of 3D Sierpinski fractals[J]. Computers & Graphics,1998,22(1):129-142.
    [189]Zhang Z Z, Rong L L, Comellas F. High-dimensional random Apollonian networks [J]. Physica A-Statistical Mechanics and its Applications,2006,364:610-618.
    [190]Zhang Z Z, Comellas F, Fertin G, et al. High-dimensional Apollonian networks[J]. Physics A-Mathematical and General,2006,39(8):1811-1818.
    [191]Zhang Z Z, Rong L L, Zhou S G. Evolving Apollonian networks with small-world scale-free topologies[J]. Physical Review E,2006,74(04610542).
    [192]Dorogovtsev S N, Goltsev A V, Mendes J F F. Pseudofractal scale-free web[J]. Physical Review E,2002,65:06612262.
    [193]Zhang Z Z, Rong L L, Zhou S G. A general geometric growth model for pseudofractal scale-free web[J]. Physica A-Statistical Mechanics and its Applications, 2007,377(1):329-339.
    [194]Hinczewski M, Berker A N. Inverted Berezinskii-Kosterlitz-Thouless singularity and high-temperature algebraic order in an Ising model on a scale-free hierarchical-lattice small-world network[J]. Physical Review E,2006,73: 06612662.
    [195]Zhang Z Z, Zhou S G, Zou T. Self-similarity, small-world, scale-free scaling, disassortativity, and robustness in hierarchical lattices[J]. European Physical Journal B,2007,56(3):259-271.
    [196]邢长明,刘方爱.基于Sierpinski分形垫的确定性复杂网络演化模型研究[J].物理学报,2010(03):1608-1614.
    [197]Zhang Z Z, Zhou S G, Chen LC, et al. Recursive weighted treelike networks[J]. European Physical Journal B,2007,59(1):99-107.
    [198]Zhang Z Z, Zhou S G, Fang L J, et al. Maximal planar scale-free Sierpinski networks with small-world effect and power law strength-degree correlation[J]. EPL, 2007,79(380073).
    [199]崔学伟.确定性复杂网络稳定性研究[D].武汉:华中科技大学,2009.
    [200]畅兴平.逐层打击对确定性复杂网络稳定性的影响[J].襄樊学院学报,2009(11):22-25.
    [201]畅兴平,夏清华.确定性复杂网络的稳定性受随机打击影响的研究[J].电信科学,2010(07):109-113.
    [202]郁伯铭,鲁芬,陈牧.加权确定性复杂网络某些特性研究[C].中国北京:2011.
    [203]Zhang Z Z, Zhou S G, Zhen S, et al. From regular to growing small-world networks [J]. Physica A:Statistical Mechanics and its Applications,2007,385(2):765-772.
    [204]吕金虎.复杂动力网络的数学模型与同步准则[J].系统工程理论与实践,2004(04):17-22.
    [205]顾前,杨旭华,王万良,等.基于复杂网络的城市公共交通网络研究[J].计算机工程,2008,34(20):266-8.
    [206]王冰.复杂网络的演化机制及若干动力学行为研究[D].大连:大连理工大学,2006.
    [207]王磊,戴华平,孙优贤.基于复杂网络模型的同步分析及控制[J].控制与决策,2008(01):8-12.
    [208]徐德刚.基于复杂网络理论的复杂系统同步控制研究[D].杭州:浙江大学,2007.
    [209]张书超.复杂网络演化模型及相关分形特征研究[D].大连:大连理工大学,2007.
    [210]曹继伟.复杂网络拓扑建模及模型优化研究[D].武汉:华中师范大学,2006.
    [211]郭天柱.复杂网络中心性及其对灾害传播影响的研究[D].大连:大连理工大学,2009.
    [212]Zhang Z Z, Fang L J, Zhou S G, et al. Effects of accelerating growth on the evolution of weighted complex networks[J]. Physica A,2009,388(2-3):225-232.
    [213]李勇.复杂网络理论与应用研究[D].广州:华南理工大学,2005.
    [214]Newman M E J. Scientific collaboration networks. Ⅰ. Network construction and fundamental results[J]. Physical Review E,2001,64:01613112.
    [215]Newman M E J. Scientific collaboration networks. Ⅱ. Shortest paths, weighted networks, and centrality[J]. Physical Review E,2001,64:01613212.
    [216]Barabasi A L, Jeong H, Neda Z, et al. Evolution of the social network of scientific collaborations[J].Physica A-Statistical Mechanics and its Applications,2002, 311(3-4):590-614.
    [217]Price D. Networks of scientific papers[J]. Science,1965,149(3683):510.
    [218]Redner S. How popular is your paper? An empirical study of the citation distribution[J]. European Physical Journal B,1998,4(2):131-134.
    [219]Liljeros F, Edling C R, Amaral L, et al. The web of human sexual contacts[J]. Nature,2001,411(6840):907-908.
    [220]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology[J]. ACM Sigcomm'99 Conference:Applications, Technologies, Architectures, and Protocols for Computer Communications,1999,29(4):251-262.
    [221]Govindan R, Tangmunarunkit H. Heuristics for Internet map discovery[C]. Proceedings IEEE Infocom 2000. Conference On Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. OOCh37064),2000:1371-1380.
    [222]Yook S H, Jeong H, Barabasi A L. Modeling the Internet's large-scale topology [J]. Proc. Natl Acad. Sci. USA,2002,99(21):13382-13386.
    [223]Albert R, Jeong H, Barabasi A L. Internet-Diameter of the World-Wide Web[J]. Nature,1999,401(6749):130-131.
    [224]Huberman B A, Adamic L A. Internet-Growth dynamics of the World-Wide Web[J]. Nature,1999,401 (6749):131.
    [225]Williams R J, Berlow E L, Dunne J A, et al. Two degrees of separation in complex food webs[J]. Proc. Natl Acad. Sci. USA,2002,99(20):12913-12916.
    [226]Montoya J M, Sole R V. Small world patterns in food webs[J]. Jouranl of Theoretical Biology,2002,214(3):405-412.
    [227]Camacho J, Guimera R, Amaral L. Robust patterns in food web structure [J]. Physical Review Letters,2002,88:22810222.
    [228]Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[J]. Nature,2000,407(6804):651-654.
    [229]Fell D A, Wagner A. The small world of metabolism[J]. Nature Biotechnology, 2000,18(11):1121-1122.
    [230]Alon U, Surette M G, Barkai N., et al. Robustness in bacterial chemotaxis[J]. Nature,1999,397(6715):168-171.
    [231]Rain J C, Selig L, De Reuse H, et al. The protein-protein interaction map of Helicobacter pylori[J].Nature,2001,409(6821):743.
    [232]Jeong H, Mason S P, Barabasi A L, et al. Lethality and centrality in protein networks[J]. Nature,2001,411(6833):41-42.
    [233]Eldar A, Dorfman R, Weiss D, et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning[J]. Nature,2002,419(6904):304-308.
    [234]Stuart J M, Segal E, Koller D, et al. A gene-coexpression network for global discovery of conserved genetic modules[J]. Science,2003,302(5643):249-255.
    [235]Wuchty S, Oltvai Z N, Barabasi A L. Evolutionary conservation of motif constituents in the yeast protein interaction network[J]. Nature Genetics, 2003,35(2):176-179.
    [236]Guelzim N, Bottani S, Bourgine P, et al. Topological and causal structure of the yeast transcriptional regulatory network[J]. Nature Genetics,2002,31(1):60-63.
    [237]李方廷,吕莹,龙涛,等.酵母蛋白质网络的动力学性质[J].物理,2003(10):678-681.
    [238]He H, Sui J, Yu Q, et al. Altered Small-World Brain Networks in Schizophrenia Patients during Working Memory Performance[J]. PLoS ONE,2012,7:e38195.
    [239]Sporns 0, Honey C J. Small worlds inside big brains [J]. Proc. Natl Acad. Sci. USA, 2006,103(51):19219-19220.
    [240]Zalesky A, Fornito A, Harding I H, et al. Whole-brain anatomical networks:Does the choice of nodes matter?[J]. NeuroImage,2010,50(3):970-983.
    [241]Stam C J. Characterization of anatomical and functional connectivity in the brain: A complex networks perspective[J]. International Journal of Psychophysiology, 2010,77(3SI):186-194.
    [242]Reijneveld J C, Ponten S C, Berendse H W, et al. The application of graph theoretical analysis to complex networks in the brain[J]. Clinical Neurophysiology,2007,118(11):2317-2331.
    [243]Schinazi V R, Epstein R A. Neural correlates of real-world route learning[J]. NeuroImage,2010,53(2):725-735.
    [244]He Y, Chen Z, Gong G L, et al. Neuronal Networks in Alzheimer's Disease[J]. Neuroscientist.2009,15(4):333-350.
    [245]Fuchs E, Ayali A, Robinson A, et al. Coemergence of regularity and complexity during neural network development[J]. Developmental Neurobiology,2007,67(13): 1802-1814.
    [246]Eich E, Nelson A L, Leghari M A, et al. Neural systems mediating field and observer memories[J]. Neuropsychologia,2009,47(11):2239-2251.
    [247]Zalesky A, Fornito A, Bullmore E T. Network-based statistic:Identifying differences in brain networks[J]. NeuroImage,2010,53(4):1197-1207.
    [248]Power J D, Fair D A, Schlaggar B L, et al. The Development of Human Functional Brain Networks[J]. Neuron,2010,67(5):735-748.
    [249]Kuchaiev 0, Wang P T, Nenadic Z, et al. Structure of brain functional networks[C]. IEEE Engineering in Medicine and Biology Society:Conference proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2009.
    [250]Honey C J, Thivierge J P, Sporns 0. Can structure predict function in the human brain?[J]. NeuroImage,2010,52(3):766-776.
    [251]Fan Y, Shi F, Smith J K, et al. Brain anatomical networks in early human brain development[J]. NeuroImage,2011,54(3):1862-1871.
    [252]Deco G., Jirsa V. K., Robinson P. A., et al. The Dynamic Brain:From Spiking Neurons to Neural Masses and Cortical Fields[J]. PLOS Computational Biology,2008,4: e10000928.
    [253]Burdette J H, Laurienti P J, Espeland M A, et al. Using network science to evaluate exercise-associated brain changes in older adults[J]. Frontiers in Aging NeuroScience,2010,2:23:1-10.
    [254]Armstrong J D, van Hemert J I. Towards a virtual fly brain[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2009,367(1896):2387-2397.
    [255]Etzel J A, Gazzola V, Keysers C. An introduction to anatomical ROI-based fMRI classification analysis[J]. Brain Research,2009,1282:114-125.
    [256]Freeman W J, Ahlfors S P, Menon V. Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition[J]. International Journal of Psychophysiology,2009,73(1):43-52.
    [257]Rogers B P, Morgan V L, Newton A T, et al. Assessing functional connectivity in the human brain by fMRI[J]. Magnetic Resonance Imaging,2008,26(1):146.
    [258]Lago-Fernandez L F, Huerta R., Corbacho F, et al. Fast response and temporal coherent oscillations in small-world networks[J]. Physical Review Letters, 2000,84(12):2758-2761.
    [259]Sotelo C. Viewing the brain through the master hand of Ramon y Cajal[J]. Nature Reviews Neuroscience,2003,4(1):71-77.
    [260]Felleman D J, Van Essen D C. Distributed Hierarchical Processing in the Primate Cerebral Cortex[J]. Cerebral Cortex,1991,1(1):1-47.
    [261]Young M P. Objective analysis of the topological organization of the primate cortical visual-system[J]. Nature,1992,358(6382):152-155.
    [262]Young M P. The organization of neural systems in the primate cerebral-cortex[J]. Proceedings of the Royal Society B-Biological Sciences, 1993,252(1333):13.
    [263]Hilgetag C C, Burns G, O'Neill M A, et al. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat[J]. Philosophical Transactions of The Royal Society of London Series B-Biological Sciences,2000,355(1393):91-110.
    [264]Sporns 0, Zwi J D. The small world of the Cerebral Cortex[J].Neuroinformatics, 2004,2(2):145-162.
    [265]He Y, Chen Z, Evans A C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI[J].Cerebral Cortex,2007,17(10): 2407-2419.
    [266]Hagmann P, Kurant M, Gigandet X, et al. Mapping Human Whole-Brain Structural Networks with Diffusion MRI[J].PLoS ONE,2007,2:e5977.
    [267]Gong G L, He Y, Concha L, et al. Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography[J]. Cerebral Cortex,2009,19(3):524-536.
    [268]Li Y, Liu Y, Li J, et al. Brain anatomical network and intelligence[J].PLoS computational biology,2009,5(5):e1000395.
    [269]Stam C. J. Functional connectivity patterns of human magnetoencephalographic recordings:a'small-world'network?[J].Neuroscience Letters,2004,355(1-2): 25-28.
    [270]Micheloyannis S., Pachou E., Stam C. J., et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis [J]. Neuroscience Letters,2006,402(3):273-277.
    [271]Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep[J]. Clinical Neurophysiology,2007,118-(2):449-456.
    [272]Friston K J, Josephs O, Rees G, et al. Nonlinear event-related responses in fMRI[J]. Magnetic Resonance in Medicine,1998,39(1):41-52.
    [273]Chialvo D R. Critical brain networks[J].Physica A-Statistical Mechanics and its Applications,2004,340(4):756-765.
    [274]Eguiluz V M, Chialvo D R, Cecchi G A, et al. Scale-free brain functional networks[J].Physical Review Letters,2005,94:0181021.
    [275]Bassett D S, Bullmore E. Small-world brain networks[J]. Neruoscientist,2006,12 (6):512-523.
    [276]Salvador R, Suckling J, Schwarzbauer C, et al. Undirected graphs of frequency-dependent functional connectivity in whole brain networks[J]. Philosophical Transactions of the Royal Society B-Biological Sciences,2005,360(1457):937-946.
    [277]Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs[J]. Joural of NeuroScience,2006,26(1):63-72.
    [278]Kaiser M, Hilgetag C C. Modelling the development of cortical systems networks [J]. NEUROCOMPUTING,2004,58:297-302.
    [279]Kaiser M, Hilgetag C C. Spatial growth of real-world networks[J] Physical Review E,2004,69:03610332.
    [280]Micheloyannis S, Pachou E, Stam C J,et al. Small-world networks and disturbed functional connectivity in schizophrenia[J]. Schizophrenia Research, 2006,87(1-3):60-66.
    [281]Stam C J, Jones B F, Nolte G, et al. Small-world networks and functional connectivity in Alzheimer's disease[J]. Cerebral Cortex,2007,17(1):92-99.
    [282]Ponten S C, Bartolomei F, Stam CJ. Small-world networks and epilepsy:Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures[J]. Clinical Neurophysiology,2007,118(4):918-927.
    [283]Bartolomei F, Bosma I, Klein M, et al. Disturbed functional connectivity in brain tumour patients:Evaluation by graph analysis of synchronization matrices[J]. Clinal Neurophysiology,2006,117(9):2039-2049.
    [284]王亮,于春水.静息状态脑功能连接磁共振成像的分析方法及应用[J].中国医学影像技术,2008(08):1277-1280.
    [285]Shu S Y, Wu Y M, Bao X M, et al. A new area in the human brain associated with learning and memory:immunohistochemical and functional MRI analysis[J]. Molecular Psychiatry,2002,7(9):1018-1022.
    [286]Renart A, Parga N, Rolls E T. Associative memory properties of multiple cortical modules[J]. Network:Computer Neural System,1999,10:237-255.
    [287]Livingstone D J. Artificial Neural Networks:Methods and Applications[M]. New York:Humana Press Inc.2008.
    [288]Hasselmo M E, Wyble B P. Free recall and recognition in a network model of the hippocampus:simulating effects of scopolamine on human memory function[J]. Behavioural Brain Research,1997,89(1-2):1-34.
    [289]Blumenfeld R S, Ranganath C. Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging[J]. Neuroscientist,2007,13(3):280-291.
    [290]Grady C L, McIntosh A R, Craik F I M. Age-related differences in the functional connectivity of the hippocampus during memory encoding[J]. Hippocampus,2003, 13(5):572-586.
    [291]Reas E T, Brewer J B. Effortful retrieval reduces hippocampal activity and impairs incidental encoding[J]. Hippocampus,2013,23(5):367-379.
    [292]Takeuchi H, Sekiguchi A, Taki Y, et al. Training of Working Memory Impacts Structural Connectivity[J]. Journal of Neuroscience,2010,30(9):3297-3303.
    [293]Barch D M, Csernansky J G, Conturo T, et al. Working and long-term memory deficits in Schizophrenia:Is there a common prefrontal mechanism?[J]. Journal of Abnormal Psychology,2002,111(3):478-494.
    [294]Baddeley A. Working memory:Looking back and looking forward[J]. Nature Reviews NeuroScience,2003,4(10):829-839.
    [295]D'Esposito M. Prefrontal cortical contributions to working memory:Evidence from event-related fMRl studies[J]. Brain and Cognition,2001,47(1-2):10-11.
    [296]Skudlarski P, Jagannathan K, Anderson K, et al. Brain connectivity is not only lower but different in schizophrenia:a combined anatomical and functional approach[J]. Biological Psychiatry,2010,68(1):61-69.
    [297]Rattenborg N C, Martinez-Gonzalez D, Roth T C, et al. Hippocampal memory consolidation during sleep:a comparison of mammals and birds[J].Biological Reviews,2011,86(3):658-691.
    [298]Shiffrin R M, Steyvers M. Model for recognition memory:REM-Retrieving effectively from memory[J].Psychonomic Bulletin & Review,1997,4(2):145-166.
    [299]Xue S W, Tang Y Y, Posner M I. Short-term meditation increases network efficiency of the anterior cingulate cortex[J].Neuroreport,2011,22(12):570-574.
    [300]O'Reilly R C, Frank M J. Making working memory work:A computational model of learning in the prefrontal cortex and basal ganglia[J]. Neural Computation,2006,18(2):283-328.
    [301]Zurowski B, Gostomzyk J, Gron G, et al. Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing[J]. NeuroImage,2002,15(1):45-57.
    [302]Danielle S. Bassett N F. Wymbs M A. et al. Dynamic reconfiguration of human brain networks during learning[M]. Proc. Natl. Acad. Sci. USA.2011,108:7641-7646.
    [303]Tsonis P A, Tsonis A A. A "small-world" network hypothesis for memory and dreams [J]. Perspectives in Biology and Medicine,2004,47(2):176-180.
    [304]He G G, Chen L N, Aihara K. Associative memory with a controlled chaotic neural network[J]. Neurocomputing,2008,71:2794-2805.
    [305]Cartling B. Dynamics control of semantic processes in a hierarchical associative memory[M]. Biological cybernetics,1996,74:63-71.
    [306]Camperi M, Wang X J. A Model of Visuospatial Working Memory in Prefrontal Cortex: Recurrent Network and Cellular Bistability[J]. Journal of Computational NeuroScience,1998,5:383-405.
    [307]Burianova H, McIntosh A R, Grady C L. A common functional brain network for autobiographical, episodic, and semantic memory retrieval[J]. NeuroImage,2010, 49:865-874.
    [308]Corbetta M, Akbudak E, Conturo T E., et al. A common network of functional areas for attention and eye movements[J]. Neuron,1998,21(4):761-773.
    [309]Ranganath C. A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory[J]. Hippocampus,2010, 20(11):1263-1290.
    [310]Bohland J W, Minai A A. Efficient associative memory using small-world architecture[J]. Neurocomputing,2001,38-40:489-496.
    [311]Haase L, Wang M R, Green R, et al. Functional connectivity during recognition memory in individuals genetically at risk for Alzheimer's disease[J]. Human Brain Mapping,2013,34(3):530-542.
    [312]Sperling G Negative afterimage without prior positive image[J]. Science, 1960,131(3413):1613-1614.
    [313]Condar R, Hull A J. Information, acoustic confusion and memory span[J].British Journal of Psychology,1964,55(4):429-432.
    [314]Baddeley A. Short-term memory for word sequences as a function of acoustic semantic and formal similarity[J]. Quarterly Journal of Experimental Psychology, 1966,18(4):362.
    [315]Warringt E K, Weiskran L. New method of testing long-term retention with special reference to amnesic patients[J]. Nature,1968,217(5132):972.
    [316]Craik F. Depth of processing ad a predictor of memory performance[J].Psychonomic Science,1972,29(4B):268.
    [317]朱滢.在包含多种提取内容时加工层次对自由回忆和再认的影响[J].心理学报,1982(01):99-103.
    [318]莫雷.关于短时记忆编码方式的实验研究[J].心理学报,1986(02):166-173.
    [319]Tulving E. Murdock ben and complexity of memory[J]. Relating Theory and Data: Essays on Human Memory in Honor of Bennet B Murdock,1991:387-396.
    [320]Peleg S, Sananbenesi F, Zovoilis A, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice[J]. Science, 2010,328(5979):753-756.
    [321]Berger T W, Song D, Chan R, et al. Role of the hippocampus in memory formation [J]. IEEE Pulse,2012,3(5):17-22.
    [322]Richard Y, Martiny N, Rouault M, et al. Multi-month memory effects on early summer vegetative activity in semi-arid south africa and their spatial heterogeneity [J]. International Journal of Remote Sensing,2012,33(21):6763-6782.
    [323]Song M, Zhou Y, Li J, et al. Brain spontaneous functional connectivity and intelligence[J]. NeuroImage,2008,41 (3):1168-1176.
    [324]陈绍荣.脑的高级功能研究及脑信息处理建模[D].长沙:国防科学技术大学,2003.
    [325]Shu S Y, Qing D, Wang B, et al. Comparison of microrna expression in hippocampus and the marginal division (mrd) of the neostriatum in rats[J]. Journal of Bilmedical Science,2013,20(9).
    [326]Anishchenko A., Treves A. Autoassociative memory retrieval and spontaneous activity bumps in small-world networks of integrate-and-f ire neurons[J]. JOURNAL OF PHYSIOLOGY-PARIS,2006,100(4):225-236.
    [327]Yu Q, Sui J, Rachakonda S, et al. Altered topological properties of functional network connectivity in Schizophrenia during resting state:A small-world brain network study, PLoS ONE,2011,6:e25423.
    [328]Aiello W, Chung F, Lu L. A random graph model for massive graphs[C]. Proceedings of the thirty-second annual ACM symposium on theory of computing,2000:171-179.
    [329]高自友,吴建军,毛保华,等.交通运输网络复杂性及其相关问题的研究[J].交通运输系统工程与信息,2005(02):79-84.
    [330]莫辉辉,王姣娥,金凤君.交通运输网络的复杂性研究[J].地理科学进展,2008(06):112-120.
    [331]Kuby M, Tierney S, Roberts T, et al. A comparison of geographic information systems, complex networks, and other models for analyzing transportation network topologies[P]:US,2005, NASA/CR-2005-213522.
    [332]卢守峰,杨兆升,刘喜敏.基于复杂性理论的城市交通系统研究[J].吉林大学学报(工学版),2006(S1):153-156.
    [333]Nagel K, Paczuski M. Emergent traffic jams [J]. Physical Review E, 1995,51(4A):2909-2918.
    [334]Chi L P, Wang R, Su H, et al. Structural properties of us flight network [J]. Chinese Physics Letters,2003,20(8):1393-1396.
    [335]Bagler G. Analysis of the airport network of india as a complex weighted network [J]. Physica A-Statistical Mechanics and its Applications,2008,387(12):2972-2980.
    [336]Guimera R, Amaral L. Modeling the world-wide airport network[J]. European Physical Journal B,2004,38(2):381-385.
    [337]俞桂杰,彭语冰,褚衍昌.复杂网络理论及其在航空网络中的应用[J].复杂系统与复杂性科学,2006(01):79-84.
    [338]刘宏鲲,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007(01):106-112.
    [339]王姣娥,莫辉辉,金凤君.中国航空网络空间结构的复杂性[J].地理学报,2009(08):899-910.
    [340]曾小舟,江可申,程凯.我国航空网络枢纽机场中心化水平比较分析[J].系统工程,2010(09):39-45.
    [341]Latora V, Marchiori M. Is the boston subway a small-world network?[J]. Physica A-Statistical Mechanics and its Applications,2002,314(1-4):109-113.
    [342]Seaton K A, Hackett LM. Stations, trains and small-world networks[J]. Physica A-Statistical Mechanics and its Applications,2004,339(3-4):635-644.
    [343]Angeloudis P, Fisk D. Large subway systems as complex networks[J]. Physica A-Statistical Mechanics and its Applications,2006,367:553-558.
    [344]Keumsook L, Woo S J, Jong S P, et al. Statistical analysis of the metropolitan seoul subway system:network structure and passenger flows[J]. Physica A, 2008,387(24):6231-6234.
    [345]汪涛,许乐,张继,等.城市公交网络的拓扑结构及其演化模型研究[J].公路交通科技,2009(11):108-112.
    [346]李进,马军海.城市地铁网络复杂性研究[J].西安电子科技大学学报(社会科学版),2009(02):51-55.
    [347]张铁岩,宋瑞,郑锂,等.基于复杂网络理论的国内地铁网络特性分析[J].交通信息与安全2012(05):50-54.
    [348]Benguigui L, Daoud M. Is the suburban railway system a fractal[J].Geographical Analysis,1991,23(4):362-368.
    [349]Sen P, Dasgupta S, Chatterjee A, et al. Small-world properties of the Indian railway network[J]. Physical Review E,2003,67:03610632.
    [350]Kurant M, Thiran P. Extraction and analysis of traffic and topologies of transportation networks[J]. Physical Review E,2006,74:03611432.
    [351]赵伟,何红生,林中材,等.中国铁路客运网网络性质的研究[J].物理学报,2006(08):3906-3911.
    [352]周波.基于复杂网络理论的铁路货运量预测[J].铁道货运,2008(03):20-22.
    [353]唐芙蓉,杨先清,唐刚,等.中国铁路交通网络的拓扑研究及客流分析[J].中国矿业大学学报,2010(06):935-940.
    [354]王伟,刘军,蒋熙,等.中国铁路网的拓扑特性[J].北京交通大学学报,2010(03):148-152.
    [355]李莎,冯澍,马明姣,等.基于复杂网络的高速铁路网特征研究[J].全国商情(理论研究),2013(03):15-17.
    [356]Jiang B, Claramunt C. Topological analysis of urban street networks[J]. Environment and Planning B-Planning & Design,2004,31(1):151-162.
    [357]Porta S, Crucitti P, Latora V. The network analysis of urban streets:a dual approach[J].Physica A-Statistical Mechanics and its Applications,2006,369(2): 853-866.
    [358]Crucitti P, Latora V, Porta S. Centrality measures in spatial networks of urban streets[J]. Physical Review E,2006,73:03612532.
    [359]Lammer S., Gehlsen B., Helbing D. Scaling laws in the spatial structure of urban road networks[J]. Physica A-Statistical Mechanics and its Applications,2006, 363(1):89-95.
    [360]周宏达,陈守刚,杨德刚.主城区公路网的复杂网络特征分析[J].成都大学学报(自然科学版),2009(04):342-345.
    [361]田炜,邓贵仕,武佩剑,等.世界航运网络复杂性分析[J].大连理工大学学报,2007(04):605-609.
    [362]熊文海.世界航运网络的结构特性及其动力学行为研究[D].青岛:青岛大学,2009.
    [363]吕康娟,张蓉蓉.基于复杂网络的世界航运中心网络结构与特征[J].系统管理学报,2012(01):87-92.
    [364]Sienkiewicz J, Janusz A. Statistical Analysis of 22 Public Transport Networks in Poland[J]. Physical Review E,2005,72(4):46-50.
    [365]张欣.公交网络的复杂性研究[D].大连:大连理工大学,2006.
    [366]李岸巍.太原市公交网络的复杂网络特性分析[J].中北大学学报(自然科学版),2007(04):314-318.
    [367]刘霞霞.太原市公交网络优化研究[D].太原:山西大学,2008.
    [368]李国峰.基于复杂网络的太原公交网络模型研究[D].太原:太原科技大学,2012.
    [369]张君超.基于复杂网络的城市公交网络特性分析与演化研究[D].成都:西南交通大学,2010.
    [370]翁敏,毋河海,杜清运,等.基于公交网络模型的最优出行路径选择的研究[J].武汉大学学报(信息科学版),2004(06):500-503.
    [371]Porter M. A., Mucha P. J., Newman M., et al. A network analysis of committees in the US House of Representatives[J]. Proc. Natl Acad. Sci. USA,2005,102(20): 7057-7062.
    [372]Schneider J J, Hirtreiter C. The impact of election results on the member numbers of the large parties in Bavaria and Germany[J]. International Journal of Modern Physics C,2005,16(8):1165-1215.
    [373]Sznajd-Weron K, Sznajd J. Opinion evolution in closed community[J]. International Journal of MODERN PHYSICS C,2000,11(6):1157-1165.
    [374]Pastor-Satorras R, Vespignani A. Immunization of complex networks[J].Physical Review E,2002,65(3):36101-36104.
    [375]Gomez-Gardenes J, Echenique P, Moreno Y. Immunization of real complex communication networks[J]. European Physical Journal B,2006,49(2):259-264.
    [376]Dorogovstsev S N, Mendes J F F. Language as an evolving word web [J]. Proceedings of the Royal Society B-Biological Sciences,2001,268(1485):2603-2606.
    [377]Costa L. Learning about knowledge:A complex network approach[J]. Physical Review E,2006,74:02610322.
    [378]Schulze C. Advertising in the Sznajd marketing model[J]. International Journal of Modern Physics C,2003,14(1):95-98.
    [379]Huang L, Park K, Lai Y C. Information propagation on modular networks[J]. Physical Review E,2006,73:03510332.
    [380]Elgazzar A S. Applications of small-world networks to some socio-economic systems[J]. Physica A-Statistical Mechanics and its Applications,2003,324(1-2): 402-407.
    [381]Tsonis A A, Roebber P J. The architecture of the climate network [J]. Physica A-Statistical Mechanics and its Applications,2004,333:497-504.
    [382]Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms[M]. Second Edition. London:The MIT Press,2002.
    [383]严蔚敏,吴伟民编著.数据结构[M].北京:清华大学出版社,1996.
    [384]Newman M E J. Finding community structure in networks using the eigenvectors of matrices[J].Phys. Rev. E,2006,74:036104.
    [385]Zachary W W. An information flow model for conflict and fission in small groups [J]. Journal of Anthropological Research,1977,33:452-473.
    [386]Milo R, Shen-orr S, Itzkovitz S, et al. Network motifs:Simple building blocks of complex networks[J]. Science,2002,298(5594):824-827.
    [387]苏磊,张宁,马良.一种新的大规模网络最短路径的近似算法[J].复杂系统与复杂性科学,2008(02):51-54.
    [388]Seyed-allaei H, Bianconi G, Marsili M:Scale-free networks with an exponent less than two[J]. Physical Review E,2005,73:046113.
    [389]吴俊,谭跃进,邓宏钟,等.标度指数不大于2的无标度网络的若干性质[J].系统科学与数学,2008(07):811-821.
    [390]封宁.基于神经生物学的神经元真实感仿真[D].杭州:浙江大学,2005.
    [391]Sweatt J D. Mechanisms of Memory[M].London:Academic Press Inc.2003.
    [392]Martinelli P, Sperduti M, Piolino P. Neural substrates of the self-memory system: New insights from a meta-analysis[J]. Human Brain Mapping,2013,34(7):1515-1529.
    [393]人体的司令部--脑及周边神经的构造.[EB/OL]. http://www.kszyxx.net.cn/kexue/ kexue-2/co5-2/52-2/061. htm.
    [394]中央电教馆.脑和脑神经.[EB/OL]. [2006,04,29]. http://www.nyq.cn/xkbk_view.asp? xk=6&id=1158&xkjx=3.
    [395]人脑简介[EB/OL]. [2011,05,25]. http://www.360doc.com/content/11/0525/20/56668 67_119363398.shtml.
    [396]Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system:an approach to cerebral imaging[M]. New York: Georg Thieme Verlag Stuttgart,1988.
    [397]Bassett D S, Meyer-Lindenberg A, Achard S, et al. Adaptive reconfiguration of fractal small-world human brain functional networks[J]. Proc. Natl. Acad. Sci. USA,2006,103(51):19518-19523.
    [398]Desikan R S, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human Cerebral Cortex on MRI scans into gyral based regions of interest[J]. NeuroImage,2006,31 (3):968-980.
    [399]Schleicher A, Morosan P, Amunts K, et al. Quantitative Architectural Analysis: A New Approach to Cortical Mapping[J]. Journal of Autism and Developmental Disorders,2009,39(11):1568-1581.
    [400]Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage,2002,15(1):273-289.
    [401]Honey C J, Sporns 0, Cammoun L, et al. Predicting human resting-state functional connectivity from structural connectivity[J]. Proc. Natl Acad. Sci. USA, 2009,106(6):2035-2040.
    [402]Simpson D. Phrenology and the neurosciences:Contributions of FJ Gall and JG Spurzheim[J]. ANZ journal of surgery,2005,75(6):475-482.
    [403]Sporns 0, Kotter R. Motifs in brain networks[J]. Plos Biology,2004,2(e36911): 1910-1918.
    [404]Miller K, Wittek A, Joldes G, et al. Modelling brain deformations for computer-integrated neurosurgery[J]. Communications in Numerical Methods in Engineering,2010,26(1):117-138.
    [405]Courcoubetis C, Vardi M, Wolper P, et al. Memory-efficient algorithms for the verification of temporal properties[J]. Formal Methods in System Design, 1992,1(2/3):275-288.
    [406]Zylberberg A, Slezak D F A N, Roelfsema P R, et al. The brain's router:a cortical network model of serial processing in the primate brain[J]. PLoS computational biology,2010,6(4):e1000765.
    [407]Flavell J H. First discussants comments:What is memory development development of?. Human Development,1971,14(4):272-278.
    [408]朱春伟.大脑的记忆:关于大脑记忆功能的探索[M].吉林大学出版社,2010.
    [409]左孝凌.离散数学[M].上海:上海科技文献出版社,2001.
    [410]Aho A V, Hopcroft J E, Ulman J D. Data Structures and Algorithms[M].New York: Addison-Wesley Publishing Company Inc.,1983.
    [411]Hillier F S, Lieberman G J.. Introduction to operations research[M]. Seventh Edition. New York:McGraw-Hill Higher Education,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700