石墨插层化合物的可控合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨插层化合物种类众多,具有丰富的价态和价电子层构型,化学反应及晶体结构类型丰富。制备石墨插层化合物探索其生长机制,进而实现对阶数及物性的调控,对于深入研究结构与物性的关联、探索石墨插层化合物的一般形成机制,最终实现按照人们的意愿设计合成功能材料具有重要意义。石墨插层化合物因其独特的物理化学性质在催化、传感、光学、磁学和电池等领域具有广泛的应用前景。发展石墨插层化合物通用合成方法及形成机制是当前功能纳米材料研究领域的热点与难点。
     本论文主要探索了石墨插层化合物(金属氧化物、金属氯化物、稀土氧化物和三元金属氯化物)可控合成工艺,并对所制备的材料进行了详细的表征,对它们的形成机理进行了简单的探讨。主要内容归纳如下:
     (1)运用化学法将石墨,盐酸(12M)和三氧化铬按一定的比例混合,在常温常压下静置15天,合成了2阶的CrO3-石墨插层化合物。通过XPS证实了在插层化合物中存在CrⅥ化合物。
     (2)运用混合法合成了纯5阶Cr2O3-石墨插层化合物;7阶Bi2O3-石墨插层化合物;6、7阶混合态的ZrO2-石墨插层化合物;4、5阶混合态的MoO3-石墨插层化合物;纯6阶的FeCl3-石墨插层化合物。首次运用混合法合成了5阶CoCl2-石墨插层化合物;4、5、6阶混合态的PbCl2-石墨插层化合物;5、6阶混合态BiCl3-石墨插层化合物;。在插层化合物中能形成畴,在阶次转变过程中,这些畴发生部分折叠,形成新的阶次状态,这些折叠区域仍保持较高的有序性,并逐渐增大直至形成单一阶次的插层化合物。
     (3)首次提出了运用水下电弧放电法合成了纯7阶的FeCl3-石墨插层化合物;纯7阶的KCl-石墨插层化合物和纯6阶的NiCl2-石墨插层化合物,它是一种简单有效的合成石墨插层化合物的方法。运用XRD分析石墨插层化合物。结果表明,对网状层面结构的天然石墨,可以利用物理的方法使一些非碳反应物(原子、分子、离子、或粒子团)插入石墨层间,从而改变石墨的层面结构,使产物出现新的物理性质和化学性质。通过XRD、HRTEM和XPS对产物相的成份进行了分析。针对不同反应阶段产物SEM像的观察,提出了石墨插层化合物的形成机理。我们认为该合成工艺为其它石墨插层化合物的合成也提供了一个新的研究方向。
     (4)从稀土金属氧化物的结构特征出发,首次论述了稀土金属氧化物-石墨层间化合物的合成及它们的结构特点。通过研究稀土金属氧化物对GICs结构及性能的影响,指出了稀土金属氧化物-石墨层间化合物的发展趋势及应用前景。本论文给出了最佳的工艺参数,在加热速度20-30℃/min,保温时间1h,保温温度分别为1200℃和2000℃时合成了5阶的CeO2-石墨插层化合物和Eu2O3-石墨插层化合物。
     (5)采用熔盐法,以NiCl2(CuCl2)与FeCl3的混合物为插层剂合成三元FeCl3-NiCl2(CuCl2)-GICs。考察了石墨与氯化物的摩尔比、NiCl2(CuCl2)与FeCl3的摩尔比、反应温度和反应时间等工艺因素对产物阶结构的影响,探讨了NiCl2(CuCl2)与FeCl3在石墨层间的插层过程。研究结果表明,改变反应体系中石墨与氯化物的摩尔比、NiCl2(CuCl2)与FeCl3的摩尔比、反应温度和反应时间,可以得到阶结构不同的FeCl3-NiCl2(CuCl2)-GICs。当石墨与氯化物的摩尔比为4:10(3:10),NiCl2(CuCl2)与FeCl3的摩尔比为3:7(6:4),反应温度为450℃(550℃),反应时间为25h(30h)时,所得产物分别为一阶和二阶FeCl3-NiCl2-GICs和FeCl3-CuCl2-GICs。反应过程中存在FeCl3先插入石墨层间,然后NiCl2逐渐替换FeCl3的插层反应机制。
Graphite intercalation compounds(GICs) are a series of versatile materials with abundant chemical reactions, electronic and crystal structures. GICs have exhibited promising applications in catalysis, sensing, optics, magnetics and batteries. Developing novel synthesis methods and investigating general formation mechanism are one of the main challenges in this field. In this dissertation, systematic investigation was carried out on new synthesis strategies of GICs, their formation mechanisms and novel properties.
     The aim of this dissertation is to explore the controlled synthesis processes of GICs. The as-prepared nanomaterials were characterized in detail and their formation mechanism was briefly discussed. The main contents can be summarized as follows:
     (1) Chemical methods were used to synthesize CrO3-GICs at room temperature under atmospheric conditions. Stage-2 GICs was prepared by mixing predetermined amount of graphite, CrO3 and 12M HCl and keeping the mixture for 15 days. The presence of CrⅥin GICs synthesized was proved by X-ray photoelectron spectroscopy.
     (2) By the mixing method, stage 7 Bi2O3-GICs, stages 6, 7 ZrO2-GICs, stages 4, 5 MoO3-GICs, stage 5 CrO3-GICs, stage 6 FeCl3-GICs were synthesized. Stage 5 CoCl2-GICs;stages 4, 5, 6 PbCl2-GICs;stages 5, 6 BiCl3-GICs were synthesized by the mixing method for the first time. The domains formed in these GICs were partly folded, forming new stage in the stage transformation. These folding regions remained highly ordered state and gradually increased until the formation of a single stage GICs.
     (3) A novel one-step synthesis method of pure stage 7 FeCl3-GICs (pure stage 7 KCl, pure stage 6 NiCl2) by an arc discharge in aqueous solution was reported for the first time, which presents a simple and controllable way to synthesize GICs. The structure of the GICs was characterized by X-ray diffraction. The analysis obtained of XRD patterns indicates that a number of non-carbon reactant (atom, molecule, ion or groups) physically intercalated the layers of graphite with reticulated layer structure. Consequently the layered structure of graphite was changed and new physical and chemical properties were thus obtained. The detailed microstructures of as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The morphology and phase of the products were found to be strongly dependent on reaction conditions. This technique may also have great potentials in preparing other GICs.
     (4) On the basis of the structural characteristics of rare earth metal oxides, the synthesis and structural characteristics of rare earth metal oxides-graphite intercalation compounds(REO-GICs) were discussed for the first time. In addition, by means of studying the effect of rare earth metal oxides on the structure and properties of GICs, we pointed out the developing trend and the application prospect of REO-GICs. The suitable intercalation conditions were as follows; heating rate 20-30℃/min, treatment time 1h, and temperature 1200℃(2000℃) for stage-5 CeO2 (Eu2O3)-GICs.
     (5) FeCl3-NiCl2 (CuCl2)-GICs were synthesized by molten salts method. Graphite powder was used as host material and the mixture of NiCl2 (CuCl2) and FeCl3 as intercalant. The influence of reaction conditions on stage structures was discussed such as temperature, time, and graphite-to- chloride molar ratio. The results show that with the change of molar ratio among graphite, NiCl2 (CuCl2) and FeCl3, reaction time and temperature, FeCl3-NiCl2 (CuCl2)-GICs with different stages were obtained. Under the conditions of C/chlorides=4:10(3:10),NiCl2(CuCl2)/FeCl3=3:7(6:4), 450℃(550℃), 25h(30h), the products were stage 1 and stage 2 FeCl3-NiCl2 -GICs and FeCl3-CuCl2-GICs. During the reaction process, NiCl2 partially took the place of preferentially intercalated FeCl3.
引文
[1]樊邦棠,一种新颖工程材料-膨胀石墨,化学通报, 1987, 1, 34-39.
    [2]刘国雄,林树均,李胜隆等,工程材料学,台北,全华科技图书股份有限公司, 1995, 433-496.
    [3]赖耿阳,碳材料化学与工学,台北,复汉出版社, 1990, 109-115.
    [4]宋克敏,路文义,高淑英等,低硫可膨胀石墨的制备,应用化学, 1995, 12(1), 94-95.
    [5] Oshima H, Wollam J A, Yavrouian A, et al, Electrical and Mechanical Properties of Copper Chloride-Intercalated Pitch-Based Carbon Fibers, Synthetic Metals, 1983, 5, 113-123.
    [6] Vogel F L, Changes in Electrical Resistivity and Mechanical Properties of Graphite Fibers after Nitration, Carbon, 1976, 14, 175-176.
    [7] Gaier J R, Slabe M E, Shaffer N, Stability of Electrical Reisitivity of Bromine, Iodine Monochloride, Copper(Ⅱ) Chloride, and Nickel(Ⅱ) Chloride Intercalation Pitch-Based Carbon Fibers, Carbon, 1988, 26, 381-387.
    [8] Endo M, Koyama T, Inagaki M, Preparation and Electronic Properties of Intercalated Compounds Carbon Fibers, Synthetic Metals, 1981, 35, 177-186.
    [9] Lee W D, Davis G P, Vogel F L, Electrical Resistivity and Magnetoresistance of Carbon/Graphite Fibers Intercalated with Nitric Acid and Arsenic Pentafluoride, Carbon, 1985, 23, 731-737.
    [10] Ho C T, Chung D L, Bromination of Graphite Pitch-Based Carbon Fibers, Carbon, 1990, 28, 831-837.
    [11] Jaworske D A, Gaier J R, Hung C, et al, Properties and Potential Applications of Brominateed P100 Carbon Fibers, Sampe Quarterly, 1986, 18, 9-14.
    [12] Dresselhaust M S, Kresselhals G, Intercalation compounds of graphite, Advances in physics, 1981, 30 (2), 139-326.
    [13] The Carbon Society of Japan, Elementary Course to New Carbon Materials, Specialized Commission of Carbon Materials Under the Chinese Metal Society trans.&edit, 1999, 156-160.
    [14]沈万慈,祝力,侯涛等,石墨层间化合物(GICs)材料的研究动向与展望(续),炭素技术, 1993, 6, 26-32.
    [15]沈万慈,祝力,侯涛等,石墨层间化合物(GICs)材料的研究动向与展望,炭素技术, 1993, 5, 22-28.
    [16]康飞宇,石墨层间化合物的研究与应用前景,新型炭材料, 1991, 3(4), 89-97.
    [17] Michael V. Savoskin, Vadym N. Mochalin, Alexander P. Yaroshenko, Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds, Carbon, 2007, 45, 2797-2800.
    [18]稻垣道夫,石墨层间化合物,新型碳材料, 1987, 10 (4), 52-61.
    [19]刘洪波,肖谷雨,苏玉长等, FeCl3-GIC的结构稳定性与热稳定性研究,新型炭材料, 2000, 15(1), 18-21.
    [20] Lang H P, Thommen-Geiser V, Guntherodt H J, Atomic resolution surface imaging of binary and temary stage 1 alkali metal graphite intercalation compounds by scanning tunneling microscopy, Mol. Cryst. Lip. Cryst, 1994, 244, 385-390.
    [21]肖敏,刘静静,李赟等,三元型钾-四氢呋喃-GIC的制备及稳定性研究,新型碳材料, 2003, 18 (1), 53-59.
    [22]康飞宇,周洲,刘秀瀛,用盐溶法合成FeCl3-CuCl2三元石墨层间化合物的稳定性,碳素, 1992, 1, 6-12.
    [23]曹宏,刘奇,曾宪滨, CoCl2-FeCl3三元石墨层间化合物稳定性的初步研究,炭素, 1995, 3, 14-18.
    [24]传秀云,超微粉石墨层间化合物CuCl2-NiCl2-GICs合成及电学性能,材料科学与工程, 1998, 16 (2), 68-71.
    [25] Inagaki M, Wang Z D, Ohira M, et.al, The synthesis of NiCl2-FeCl3-graphite intercalation compounds, Synth. Met., 1987, 20, 9-13.
    [26]侯仰龙,韦永德,石建新, NdCl3-FeCl3-石墨层间化物化合物及结构模型,中国科学(B), 2002, 30, 550-556.
    [27] Nadi N E, Mcrae E, Mareche E J, et al, Synthesis, characterization and electrical resistivity of graphite bi-intercalation compounds G-FeCl3-MCl3 (M=Al, Ga, In) and the related binaries, Carbon, 1986, 24(6), 695-704.
    [28] Ohira M, Inagaki M, Synthesis and local analysis of temary FeCl3-PbCl2-Graphite intercalationcompounds, Carbon, 1992, 30(3), 477-482.
    [29]刘洪波,张宝庆,张红波等,三元FeCl3-AlCl3-GIC的制备及其插层反应过程的研究,新型碳材料, 2002, 17(1), 22-25.
    [30]稻垣道夫,石墨层间化合物,新型碳材料, 1990, 20(2), 16-19.
    [31]陈志刚,张勇,杨娟等,膨胀石墨的结构、制备和应用,江苏大学学报(自然科学版), 2005, 3 (26), 248-251.
    [32] Song Kemin, Dun Huijuan, On lower-nitrogen expandable graphite, Materials Research Bulletin, 2000, 35, 425-430.
    [33]宋克敏,李国山,冯玉玲等,混酸法制备低硫可膨胀石墨,无机化学材料学报, 1996, 11, 749-752.
    [34]靳通收,马艳然,李强,可膨胀石墨的制备,无机化学学报, 1997, 13(2), 231-233.
    [35] Chen XiLing, Song Kemin, Li JiHui, et al, Preparation of lower-sulfur content and expandable graphite, Carbon, 1996, 34(12), 599-1603.
    [36]宋克敏,陈希陵,路文义等,以乙酸酐为反应介质制备低硫可膨胀石墨,无机材料学报, 1995, 10(4), 478-482.
    [37]李冀辉,黎梅,扈海英等,制备低硫可膨胀石墨的新方法,新型碳材料, 1999, 14 (1),65-68.
    [38]黎梅,臧大乔,李冀辉,以重铬酸钾作氧化剂制备低硫可膨胀石墨,碳素, 1997, 4, 46-48.
    [39]王慎敏,周群,乔英杰,低硫可膨胀石墨制备新工艺,应用化学, 2008, 17(1), 93-95.
    [40]宋克敏,路文义,武风林等,制备低硫可膨胀石墨的研究,无机材料学报, 1994, 9(4), 455 - 460.
    [41]宋克敏,路文义,高淑英等,低硫可膨胀石墨的制备,应用化学, 1995, 12(1), 94-95.
    [42]郭惠娟,宋克敏,赵爱东,浸泡法和加入有机溶剂法降低可膨胀石墨中硫含量,非金属矿, 2000, 23(2), 13-14.
    [43]王慎敏,乔英杰,林茂青,柔性石墨的制备及降低硫含量方法的探讨,化工进展, 2000, 5, 40-42.
    [44]刘力,王昌惠,姚鼎文,双氧水-硫酸法低硫可膨胀石墨的研究,湖北化工, 1995, 4, 23– 24.
    [45]杨丽华,翟彤宇,冯硕等,以浓硝酸为插入剂制备无硫可膨胀石墨,河北农业大学学报, 2000, 23(3), 107-108.
    [46]宋克敏,刘金鹏,郭惠娟,混酸法制备无硫可膨胀石墨的研究,无机材料学报, 1997, 12(4), 632-636.
    [47]宋克敏,翟彤宇,杨丽华,无硫可膨胀石墨的制备,河北农业大学学报, 1999, 22(1), 93-95.
    [48]金为群,权新军,蒋引珊等,用磷酸酐制备无硫可膨胀石墨的研究,非金属矿, 2000, 23(1),17-18.
    [49]伍文斌,徐子刚,吴清洲,低硫可膨胀石墨的制备,非金属矿, 1999, 22(5), 8-9.
    [50]陈祖耀,朱继平,张增辉等,可膨胀石墨的化学氧化法制备及其表征,中国科学技术大学学报, 1998, 2, 205-210.
    [51]涂文懋,曾宪滨,混合氧化法生产可膨胀石墨,中国非金属矿工业导刊, 2005, 5, 62-63.
    [52] Kang F, Leng Y, Zhang T Y, Electrochemical synthesis and characterization of formic-graphite intercalation compound, Carbon, 1997, 35(8), 1089-1096.
    [53]樊邦棠,一种新颖工程材料,膨胀石墨,化学通报, 1987, 1, 34-39.
    [54] Rudorff W, Hoffman U, Preparation of hydrogen sulfate graphite intercalation compound, J Anorg Chem, 1938, 1, 238-240.
    [55]张礼英,刘民彦,赵金海,电化学法生产可膨胀石墨,河北化工, 1996, 3, 23-25.
    [56]罗佑初,柔性石墨生产工艺浅探,非金属矿, 1993, 2, 56-59.
    [57]任京成,沈万慈,杨赞中等,柔性石墨材料和膨胀石墨材料的现状及发展趋势,非金属矿, 1999, 22(5), 5-9.
    [58]孟宪光,无硫高抗氧化膨胀石墨及制品的生产,非金属矿, 1996, 3, 22-24.
    [59]陈陆一,用电化学方法在LiClO4丙烯碳酸盐电解液中制备石墨层间化合物,炭素译丛, 1985, 2, 29-31.
    [60]朱继平,陈祖耀,韩德宏, KMnO4-H2O2联合氧化法制备可膨胀石墨,合肥工业大学学报(自然科学版), 1998, 21(1), 131-134.
    [61]杨晓燕,关明,夏云生等,电化学法膨胀石墨的改进,精细化工, 2000, 17, 72-74.
    [62] Dunaeva A.V., Arkhangelskya I.V., Zubavichusb Ya.V., Preparation, structure and reduction of graphite intercalation compounds with hexachloroplatinic acid, Carbon, 46, 2008, 788-795.
    [63] Guerard D, Herid A, Intercalation of lithium into graphite and other carbon, Carbon, 1975, 13(4), 337-345.
    [64] EI Makrini M, Guérard D, Lagrange P, et.al, Intercalation of rare-earth-metals in graphite, Physica B&C, 1980, 99, 481-485.
    [65] EI Makrini M, Guérard D, Lagrange P, et.al. Intercalation of lanthanides in graphite, Carbon, 1980, 18(3), 203-209.
    [66]中山大学金属系主编,稀土物理化学常数手册,北京,北京冶金出版社, 1978, 12-18.
    [67] Wang Zhengde, Establishment of molten slat method for synthesis of graphite intercalation compounds with metal chlorides, Dissertation, Janpan, Toyohohashi University of Technology, 1989, 1-8.
    [68] Nicolas Emerya, Claire Hérolda, Philippe Lagrange, The synthesis of binary metal-graphite intercalation compounds using molten lithium alloys, Carbon, 2008, 46, 72-75.
    [69] Herold A, Crystallochemistry of Carbon Intercalation Compound, Holland, D. Reidel Puh Co, 1979, 323-421.
    [70] Sayers D E, Stern E A, Lytle F W, New Technique for Investigating the Noncrystalline Structures: Fourier Analysis of the Extended X-ray-Absorption Fine Structure, Phys Rev Lett, 1971, 27, 1204-1207.
    [71] Inagaki M, Wang Z D, Host effect for intercalation of CuCl2 in molten salt, Carbon, 1992, 30(6), 869-872.
    [72] Millman S E, Microscopic analysis of stage dependent intercalant in-plane density in graphite-FeCl3, Physics Letters A, 1982, 92(9), 441-444.
    [73]祝力,电化学合成金属氧化物GICs,学位论文,北京,清华大学, 1992.
    [74]大谷杉郎,对新型碳材料的期待,新型碳材料, 1992, 1, 1-6.
    [75] Dorothy E, Wessbecher, William C, Synthesis and stability of Br2, ICI and IBr intercalated pitch-based graphite fibers, Synthetic Metals, 1988, 26(2), 185-194.
    [76] Chung D D L, Woychik C G, Searching the evidence for the intercalation of bromine in high-rank coal, Fuel, 1987, 66(6), 799-802.
    [77] Misenheimer M E, Zabel H, Stage Transformation and Staging Disorder in Graphite Intercalation Compounds, Phys. Rev. Lett., 54, 1985, 2521-2524.
    [78] Mastalirá, Notheisz F, Bartók M,et al, Investigation of the morphology and the active site distribution of Rh-graphimet, Applied Catalysis A, 2002, 229(1-2), 155-163.
    [79] Syassen K, Sonnenschein R, Hanfland M, Graphite and graphite intercalation compounds under pressure: Raman modes, optical reflectivity, and phase changes, Synthetic Metals, 34(1-3), 1990, 293-306.
    [80] Dresselhaus M S, Opportunities and challenges of research on graphite intercalation compounds, Synth. Met., 1985, 12, 5-l0.
    [81] Speck S J, Dresselhaus M S, Structure of stage-1 and stage-2 MCl2 GICs, Synthetic Metals, 34(1-3), 1989, 211-216.
    [82] Dresselhaus M S, Lusnikov A, Ion implantation in graphite as a precursor for intercalation, Synthetic Metals, 23(1-4), 1988, 401-406.
    [83] Inagaki M, Intercalation reactions in molten salt systems, Synthetic Metals, 1990, 34(1-3), 15-20.
    [84]邬长斌,石墨层间化合物的研究与应用,北京矿冶研究总院学报, 1993, 2(4), 96-102.
    [85]米国民,刘奇,曾宪滨等, H2SO4石墨层间化合物稳定性分析研究,炭素, 1994, (4), 17-21.
    [86]张秀兰,栗印环,余国忠, X射线粉末衍射法分析石墨插层化合物的结构,信阳师范学院学报(自然科学版), 2004, 17(2), 183-185.
    [87]李冀辉,刘巧云,刘占荣,计算机程序在标定GIC阶结构中的应用,河北省科学院学报2002, 19(2), 74-77,
    [88]张瑞军,刘建华,沈万慈,石墨层间化合物阶结构的标定方法,炭素, 1982, 2, 5-8.
    [89]白新德,蔡俊,尤引娟等,纳米复合材料-石墨层间化合物(GICs)的结构分析,复合材料学报, 1996, 13(3), 53-59.
    [90] Presis H, Elemental distribution in CrO3-graphite and CrO3-Br2-graphite, Carbon, 1989, 27(4), 561-565.
    [91] Krapchev T, Ogilvie R, Dresselhaus M S, The effect of intercalation on the lattice constants of graphite, Carbon, 1982, 20 (4), 331-337.
    [92] Skowroński J M, Jurewicz K, Anodic oxidation of CrO3-graphite intercalation compounds in sulfuric acid, Synth Met., 1991, 40, 161-172.
    [93] Skaf D W, Edwards J K, Electrochemical graphite intercalation with nitric acid solutions, Synth Met., 1992, 46, 137-145.
    [94] Levy F, Intercalated Layered Materals, Holland, D. Reidel Puh Co, 1979, 323-339.
    [95] Shioyama H, Crespin M, Seron A, et al, Electrochemical oxidation of graphite in an aqueous medium: intercalation of FeCl4, Carbon, 1993, 31(1), 223-226.
    [96] Nakajima T, Okahara K, Matsui T, Structural factors on stability of fluoride- or fluorine-graphite intercalation compounds, Synthetic Metals. 1989, 34, 237-242.
    [97] Nakajima T, Ino T, Watanabe N, Preparation, structure, and electrical conductivity of fluorine-graphite intercalation compound, Carbon, 1988, 26(3), 397-401.
    [98] Nakajima T, Kawaguchi M, Watanabe N, Graphite intercalation compound of fluorine with lithium fluoride, Syn. Met., 1983, 7, 117-124.
    [99] Jan M. Skowron′ski, Piotr Krawczyk, Tomasz Rozmanowski, Electrochemical behavior of exfoliated NiCl2-graphite intercalation compound affected by hydrogen sorption, Energy Conversion and Management 2008, 49, 2440-2446.
    [100] Vogel F. L., Some potential applications for intercalation compounds of graphite with high electrical conductivity, Synthetic Metals, 1980, 1(3), 279-286.
    [101]康飞宇,祝力,沈万慈,影响石墨层间化合物导电性与稳定性的因素,炭素技术,1991, 4, 8-12.
    [102] Gokon N, Hasegawa N, Kaneko H, A high magnetic field effect on the M(II)-substituted magnetite formation (M=Ni, Mn, Co) in the wet process, Journal of Magnetism and Magnetic Materials, 2003, 256(1-3), 293-300.
    [103] Inagaki M, Wang Z D, Synthesis of cupric chloride-graphite intercalation compounds by the molten salt method, Synthetic Metals, 1987, 20(1), 1-8.
    [104] Kobayashi K, Sugihara K, Oshima H, c-Axis thermoelectric power of graphite intercalation compounds, Journal of Physics and Chemistry of Solids, 1996, 5(6-8), 931-933.
    [105]刘建东,石墨层间化合物的利用,碳素译丛, 1986, 3, 39-42.
    [106] Kawai N.F., Hiroshi Fukuyama, Anisotropic superconductivity in graphite intercalation compound YbC6, Physica C, 2008, 468, 2403-2407.
    [107]康飞宇,关于GIC研究的几点见解,炭素技术, 2000, 109 (4), 17-20
    [108] Skowron′ski JM, Krawczyk P, Improved electrooxidation of phenol at exfoliated graphite electrode, J Solid State Electrochem, 2007, 11, 223-230.
    [109] Ohta N, Sogabe T, Kuroda K, A novel binder for the graphite anode of rechargeable lithium ion batteries for the improvement of reversible capacity, Carbon, 2001, 39, 1434-1436.
    [110] Shima R, Chakk Y, Hoffman A, Influence of Ti, Fe, and Cu metal submicron-particles on diamond CVD on Si substrates, Carbon, 2000, 38, 1839-1843.
    [111]宾晓蓓,涂文懋,曾宪滨, Fe-KCl石墨层间化合物磁学性能研究,硅酸盐学报, 1999, 27(2), 253-256.
    [112] Masatasugu Suzuki, Louis J. Santodonato, Mildred Yeh, et al, Structural and magnetic properties of random mixture graphite intercalation compounds, J. Mater. Res., 1996, 5(2), 422-427.
    [113]黄启恩,谢有赞,颗粒膨胀石墨在干电池中的应用研究,炭素, 1993, 3, 45-49.
    [114] Jin T S, Ma Y R, Zhang Z H, et al, An efficient and facile procedure for the catalysed by expansive graphite, Synthetic Communications, 1997, 27, 19-25.
    [115]时虎,胡源,石墨层间化合物的合成和应用,炭素技术, 2002, 119(2), 29-32.
    [116]孟宪光,无硫高抗氧化膨胀石墨及其制品的生产,非金属矿, 1996, 110(2), 22-24.
    [117]徐淑云,由碱金属-石墨-四氢呋喃三元层间化合物合成膨胀石墨,碳素译丛, 1989, 3, 27-31.
    [118]康飞宇,石墨层间化合物和膨胀石墨,新型炭材料, 2000, 15(4), 80-85.
    [119]廖劲鸿,膨胀热解石墨的生产方法,碳素译丛, 1987, 1, 42-48.
    [120]宋克敏,陈希陵,路文义等,以乙酸酐为反应介质制备低硫可膨胀石墨,无机材料学报, 1995, 10(4), 478-482.
    [121] Flandrois S, Masson J M, Rouillon J C, et al, Intercalation compounds of graphite with nickel chloride: synthesis, structure, and mechanism of intercalation, Synthetic Metals, 1981, 3(1-2), 1-13.
    [1]康飞宇,石墨层间化合物的研究与应用前景,新型炭材料, 1991, 3(4), 89-97.
    [2] Shima R, Chakk Y, Hoffman A, Influence of Ti, Fe, and Cu metal submicron-particles on diamond CVD on Si substrates, Carbon, 2000, 38, 1839-1843.
    [3] Gaultier J, Hauw C, Masson J M, et al, Crystal structure of insertion compounds of graphite with nickel chloride, C R Acad Sc Ser C, 1979; 289(2), 45-47.
    [4] Nakajima T, Ino T, Watanabe N, Preparation, structure, and electrical conductivity of fluorine-graphite intercalation compound, Carbon, 26(3), 1988, 397-401.
    [5]宾晓蓓,涂文懋,曾宪滨, Fe-KCl石墨层间化合物磁学性能研究,硅酸盐学报, 1999, 27(2), 253- 256.
    [6] Masatasugu Suzuki, Louis J Santodonato, Mildred Yeh, et al, Structural and magnetic properties of random mixture graphite intercalation compounds, J. Mater. Res., 1996, 5(2), 422-427.
    [7]沈万慈,祝力,侯涛等,石墨层间化合物(GICs)材料的研究动向与展望(续),炭素技术, 1993, 6, 26-32.
    [8]康飞宇,周洲,刘秀瀛,用盐溶法合成FeCl3-CuCl2三元石墨层间化合物的稳定性,碳素, 1992, 1, 6-12.
    [9]稻垣道夫,石墨层间化合物,新型碳材料, 1990, 20 (2), 16-19.
    [10]刘建东,石墨层间化合物的利用,碳素译丛, 1986, 3, 39-42.
    [11]稻垣道夫,前田康久,石墨层间化合物-它的生成和应用,新型材料, 1985, 2, 18-23.
    [12] Janse A M C, Westerhout R W J, Prins W, Modelling of flash pyrolysis of a single particle, Chemical Engineering and Processing, 2000, 39, 239-252.
    [13] Inagaki M, Ohira M, Intercalation of AlCl3 into FeCl3 graphite intercalation compounds and occurrence of Bi intercalation, Carbon, 1993, 31(5), 777-781.
    [14] Chen X H, Yang H S, Wu G T, et al, Generation of curved or closed-shell carbon nanostructured by ball-milling of graphite, Journal of Crystal Growth, 2000, 218, 57-61.
    [15] Huang Y J, Yasuda H, Mori H, Highly curved carbon nanostructures produced by ball milling, Chem. Phys. Lett., 1999, 303, 130-134.
    [16]沈万慈,祝力,侯涛等,石墨层间化合物(GICs)材料的研究动向与展望,炭素技术, 1993, 5, 22-28.
    [17] Herol A, Crystallochemistry of Carbon Intercalation Compound, Holland D. Reidel Puh Co, 1978, 63-78.
    [18]康飞宇,关于GIC研究的几点见解,碳素技术, 2000, 4, 17-20.
    [19]肖谷雨,刘洪波,熔盐法制备FeCl3石墨层间化合物的初步研究,新型炭材料, 1999, 14(1), 37-41.
    [20] Ohira M, Inagaki M, Nakagomi N, Analysis of ternary FeCl3-PbCl2-graphite intercalation compounds, Carbon, 1992, 30(3), 477-482.
    [21] Inagaki M, Intercalation reactions in moltersalt systems, Synthetic Metals, 1989, 34, 15-20.
    [22] Lee G H, Huh S H, Jeong J W, et al, Excellent magnetic properties of fullerenes encapsulated ferromagnetic nanoclusters, Journal of Magnetism and Magnetic Materials, 2002, 246, 404-411.
    [23] Okotrub A V, Bulusheva L G, Gusel’nikov A. V., et al, Field emission from products of nanodiamond annealing, Carbon, 2004, 42, 1099-1102.
    [24] Whittingham M S, Intercalation chemistry and energy storage, Journal of Solid State Chemistry, 1979, 29(3), 303-310.
    [25] Wagner C D, Practical Surface Analysis, New York, Wiley, 1990, 595-602.
    [26] Levi-Setti P, Crow G, Y. Wang L, et al, High-Reslution Scanning-Ion-Microprobe Study and its Intercalation Compounds, Phys. Rev. Lett., 1985, 50 (24), 2615-2618.
    [1] Bayot V, Piraux L, Michenaud J P, et al, Evidence for weak localization in the thermal conductivity of a quasi-two-dimensional electron system, Phys. Rev. Lett., 1990, 65, 2579-2582.
    [2] Piraux L, Issi J P, Michenaud J P, et al, Evidence for hole localization in a low stage acceptor graphite intercalation compound, Solid State Commun, 1985 56(7), 567-569.
    [3] Piraus L, Bayot V, Michenaud J P, et al, The effect of disorder on weak localization and electron-electron interaction in low stage graphite intercalation compounds, Solid State Commun., 1986, 59(11), 711-715.
    [4] Masatsugu S; Itsuko S. S, Keiko M et al, Two-Dimensional Weak Localization Effect in Stage-4 MoCl5 Graphite Intercalation Compound, Molecular Crystals and Liquid Crystals, 2000, 340, 217-222.
    [5] Berman R, Thermal Conduction in Solids, Oxford, Clarendon Press, 1976, 104-112.
    [6] Kelly B T , Phisics of Graphite, London, Applied Sciencs Publishers , 1981,477-485.
    [7] Nysten B, Piraux L, Issi J P, Thermal Conductivity ,New York, Pleum Press, 1985, 341-355.
    [8] Issi J P, Heremans J, G. Dresselhaust, et al, Comparison of transport properties in various semimetals systems, Physics of Narrow Gap Semiconductors, 1982, 152, 363-367
    [9] Ubbelhode A R, Structual, thermodynamic and electronic aspects of the lambda transformation in graphite nitrates, Carbon, 1968, 6, 177-182.
    [10] Heremans J, Issi J P, Zabala M I, et al, Thermoelectric properties of a dilute graphite donor intercalation compound, Phys. Lett.A, 1981, 84, 387-389.
    [11] Kurata H, Kobayashi T , Uyeda N, Structure of Potassium-Benzene-Graphite Intercalation Compound, Synthetic Metals, 1987, 20, 109-118.
    [12] Sugiura T, T Iijima, Sato M, et al, Stabilities of metal-halide intercalated graphite, Synthetic Metals, 1988, 23, 449-455.
    [13] Wessbecher, Dorothy E, Forsman, et al, Graphite intercalation by mixtures of CuCl2 and AlCl3,Synthetic Metals, 1991, 40, 219-229.
    [14] Inagaki Michio , Ohira Masahiko, Intercalation of AlCl3 into FeCl3-Graphite Intercalation Compound and Occurrence of Bi-Intercalation , Carbon, 1993, l31(5), 777-781.
    [15] Inagaki M, Wang Z D, Okamoto Y, et al, The Synthesis of NiCl2-FeCl3-Graphite Intercalation Compound, Synthetic Metals, 1991, 20, 9-13.
    [16] Clarke R, Uher C, High pressure properties of graphite and its intercalation compounds, Adv Phys, 1984, 33(5), 469-566.
    [17]高林,徐仲榆,钾-石墨层间化合物3阶向2阶转化的理想模型,新型炭材料, 2000, 15(2), 48-52.
    [18] Safran S A, Phases diagrams for staged intercalation compounds, Phys Rev lett, 1980, 44(14), 937- 940.
    [19] Chuan XiuYun, Chen DaiZhang, Zhou Xun-Ruo, Intercalation of CuCl2 into expanded graphite, Carbon, 1997, 35(2), 311-313.
    [20]传秀云, CuCl2-NiCl2膨胀石墨层间化合物合成、结构、传导性能研究,学位论文,北京,中国地质大学, 1997, 6.
    [21]饶东生,硅酸盐物理化学,北京,冶金工业出版社, 1980. 59-64, 196-218, 260-307.
    [22]康飞宇,稻垣道夫教授和他的研究活动,新型炭材料, 1998, 13(3), 65-66.
    [23]传秀云,石墨层间化合物GICs的形成机理探讨,新型炭材料, 2000, 15(1), 52-56.
    [1]冯大鹏,刘近朱,毛绍兰等,耐高温无机固体润滑剂的发展,润滑与密封, 1997, 6, 2-6.
    [2]康飞宇,石墨层间化合物研究的新进展,第四届全国新型炭材料学术研讨会议论文集,湖南, 1999, 23-29.
    [3] Zhang Zefu, Liu Weimin, Xue Qunji, Tribological properties and lubricating mechanisms of the rare earth complex as a grease additive , Wear, 1996, 194, 80-85.
    [4] Zhang Zefu, Su Chengyong, Liu Weimin et al, Study on tribological properties of the complex of rare earth dialkyldith iocarbamate and phenanthroline in lubricating grease, Wear, 1996, 192, 6-10.
    [5] Zhang Zefu,Liu Weimin,Xue Qunji, Friction and wear behaviors of the complexes of rare earth hexadecylate as grease additive, Wear, 1998, 215, 40-45.
    [6]连亚峰,聂明德,常鸿辛,一种铈(Ⅲ)配合物对含石墨粘结涂层耐蚀性的影响,摩擦学学报, 1994, 14(1), 1-8.
    [7]传秀云, GICs结构、性能及应用研究分析,新型碳材料, 1996, 11(2), 36-41.
    [8]传秀云,石墨层间化合物的合成技术及应用前景,非金属矿, 1997, 4, 18-21.
    [9] Suematsu H, Ohmatsu K, Sakakibara T, et al. Magnetic properties of europium-graphite intercalation compound C6Eu, Synth Met, 1983, 8, 23-30.
    [1] Hiroshi S, The interactions of two chemical species in the interlayer spacing of graphite, Synthetic Metals, 2000, 114(2), 1-15.
    [2] Hou Yanglong, Wei Yongde, Progress in structure and properties of metal halides-graphite intercalation compounds, Function Material, 2000, 31(3), 237-240.
    [3] Xiao Guyu, Liu Hongbo, Preliminary study of preparing FeCl3-GIC by mixing method, New Carbon Material, 1999, 14(1), 37-41.
    [4]稻垣道夫,前田康久,石墨层间化合物,新型炭材料, 1987, 10(4), 52-61.
    [5]曹茂盛,黄龙男,陈铮,材料现代设计理论与方法,哈尔滨工业大学出版社,哈尔滨, 2002.
    [6]任慧,焦清介,乔小晶等,三元石墨插层化合物的合成与表征,北京理工大学学报, 2003, 2, 248-251.
    [7]任慧,焦清介,沈万慈等, FeCl3-CuCl2-石墨层间化合物工艺参数研究,材料科学与工程学报, 2004, 6, 783-787.
    [8]康飞宇,周洲,刘秀瀛,用熔盐法合成FeCl3-CuCl2-三元石墨层间化合物,碳素, 1991, 2, 11-17.
    [9] Anderson Axdal S H, Chung D D L, A theory for the kinetics of intercalation of graphite, Carbon, 1987, 25(3), 377-389.
    [10] Herold A, Furdin G, Cuerard D, et al., New biinercalation compounds, Synth Met., 1985, 12, 11-17.
    [11]蔡爱军,三元FeCl3-NiCl2-GICs合成与还原工艺的研究,学位论文,湖南,湖南大学, 2004.
    [12]宾晓蓓,曾宪滨, FeCl3石墨层间化合物合成工艺再探,西南工学院学报, 1998, 3, 16-22
    [13] Wang Z D, Establishment of moten salt method for synthesis of graphite intercalation compounds with metal chlorides, Dissertation, Toyohashi, Toyohashi University of Technology,1987
    [14] Chuan Xiuyun, Formation mechanisms of graphite intercalation compounds, New Carbon Material, 2000, 15(3), 52- 56.
    [15]传秀云,李贺军, CuCl2石墨层间化合物原子存在状态的XPS-ESCA研究,硅酸盐学报, 1999, 27(3), 282-286.
    [16] Wang Jianqi, Wu Wenhui and Feng Daming, Electro Spectroscopy(XPS/XAES/UPS)Introduction, Peking, National Defense Industry Publishing Company, 1992, 47-57,519-559.
    [17] Lang H P, Wiesendanger R, Thommen-Geiser V, et al. Atomic Resolution Surface Studies of Binary and Ternary Alkali-Metal-Graphite Intercalation Compounds by Scanning Tunneling Microscopy, Phys. Rev, 1992, 45, 1829-1838.
    [18] Inagaki M, Wang Z D, Ohira M, et.al. The synthesis of NiCl2-FeCl3-graphite intercalation compounds, Synth. Met., 1987, 20, 9-13.
    [19]稻垣道夫,石墨层间化合物,新型炭材料, 1990, 20 (2), 16-19.
    [20]桂琳琳,黄慧忠, X射线与紫外光电子能谱,北京,北京大学出版社, 1984, 168-171.
    [21] Millman S E, Corson M R, Hoy G R, M?ssbauer study of magnetic properties in low-stage FeCl3 intercalated graphite, Phys Rew B, 1982, 25(11), 6595~6601.
    [22] Schlogl R, Electron spectroscopy of graphite intercalation compounds. In, Zabel S A S, Graphite Intercalation Compounds II, Berlin, 1992, 53~ 103.
    [23]传秀云, CuCl2-NiCl2膨胀石墨层间化合物合成、结构、传导性能研究,学位论文,北京,中国地质大学, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700