嗜酸混合硫杆菌与铜绿假单胞菌对低品位磷矿的浸磷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了从湖北某矿的酸性坑水中分离到的嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,At. f)和嗜酸氧化硫硫杆菌(Acidithiobacillus thiooxidans, At. t)混合菌为浸磷菌进行低品位磷矿的浸磷实验。At. f和At. t混合菌浸磷率比同源单一At.f菌提高32%,浸出速度快,且对能源物质的消耗少。亚铁和黄铁矿的加入对At. f和At. t混合菌的浸磷有显著的助浸作用,最佳用量分别为7 g/100 mL和0.5 g/100 mL;适量表面活性剂吐温40、60和80的加入对混合菌浸磷也有一定的促进作用。以初始pH、接种量和矿浆浓度为正交试验因素得出最佳浸磷条件为初始pH =1.5;菌种量为15%;矿浆浓度为15 g/L;浸磷率达51.07%。
     诱变处理对黄铁矿存在条件下混合菌浸出磷矿粉中的磷的最佳工艺条件为:微波595 W辐射混合菌20 s,浸磷率提高了65%;30 W紫外灯下20 cm照射混合菌3 min,浸磷率提高了67%;超声波400 W处理混合菌工作次数30次(超声时间3 s/次,间歇时间7 s/次),浸磷率提高了一倍;浓度为0.2 mol/L的亚硝酸钠0.6 mL诱变处理20 min,浸磷率提高了17%;超声波400 W处理微波正突变菌工作次数30次,浸磷率提高了一倍;30 W紫外灯下20 cm照射微波正突变菌3 min,浸磷率提高了78%。混合菌在代谢过程分泌了有机酸如苹果酸,柠檬酸,草酸等与硫酸共同参与浸磷。
     本文从浸磷矿液中分离和纯化出一株浸磷菌LLJQ-1,研究了该菌的形态,生理生化特征,糖、醇利用研究,16S rDNA序列分析以及系统发育树分析,结果表明菌株LLJQ-1为铜绿假单胞菌(Pseudomonas aeruginosa,P. aeruginosa)。本文首次发现LLJQ-1为溶磷微生物。该菌在初始pH= 2.5、接种量10%和矿浆浓度为10 g/L的条件下,浸磷率达83.9%。在pH均为2.5的条件下,利用该菌溶解磷矿粉的浸磷率比稀硫酸直接溶解提高了45%。菌株LLJQ-1在代谢过程中分泌有机酸主要是柠檬酸,苹果酸和酒石酸,其中产生的柠檬酸含量最高,达74.815 mg/L。
The mixed bacteria of Acidithiobacillus ferrooxidans ( At.f ) and Acidithiobacillus thiooxidans(At. t), which were for phosphorus leached of low-grade phosphate rock, were isolated from acidic drainage from a mine in Hui Bei Province. Results showed that the mixed bacteria had higher rate of phosphorus leached, which increased 32%, faster leaching rate and lower consumption of energy sources , compared with Acidithiobacillus ferrooxidans. Ferrous and pyrite played a significant role in promoting the leaching of the ore and the optimal dosages were 7 g/100 mL and 0.5 g/100 mL. Appropriate amount of tween 40, 60 and 80 all could promote the interaction between the mixed bacteria and the ore and increase the rate of phosphate leached. The leaching conditions were defined as follows: initial pH was 1.5; inoculum concentration was 15% (v/v); phosphate concentration was 1.5 g per 100 mL;the phosphorus leached was up to 51.07%.
     The optimal technological parameters of bioleaching soluble phosphorus by mutated mixed bacteria were: radiating with 595 W microwave for 20 s, increased 65%; irradiating with 30 W ultraviolet ray lamp for 3 min, increased 67%; treating with 400 W ultrasound for 30 times(a time: cavitation time 3 s, interval time 7 s), increased one time ; mixing with 0.6 mL of 0.2 mol/L sodium nitrite for 20 min, increased 17%; treating with 400 W ultrasound for 30 times on the positive mutated strains by microwave, increased one time; irradiating with 30 W ultraviolet ray lamp for 3 min on the positive mutated strains by microwave, increased 78%. Organic acids including malic acid, citric acid and oxalic acid, which were released by the mixed bacteria, soluted the rock phosphate together with sulphuric acid.
     The strain LLJQ-1 was isolated from the low-grade rock phosphate leached Solution. It was characterized by the morphological observation, the physiological and biochemical analysis, the studies of nitrate and alcohol Utilization, 16S rDNA sequencing analysis and the morphological analysis. The result showed that the strain LLJQ-1 was identified as Pseudomonas Aeruginosa. It was the first time to report the strain as the phosphate solubilizing microorganism in this study. In the conditions that initial pH was 2.5, phosphate concentration was 1.0 g per 100 mL and inoculum concentration was 10% (v/v), the phosphorus leached of the strain LLJQ-1 was 83.90%. Under the same condition (pH was 2.5), the phosphorus leached of the strain LLJQ-1 increased 45% compared with the sulfuric acid leaching. The main organic acids which were released by the strain LLJQ-1 were citric acid, malic acid and tartaric acid, and the content of citric acid was up to 74.82 g/L.
引文
[1]高永峰.我国磷矿资源的特点及加工利用建议[J].化学工业, 2007, 25(11): 1-6.
    [2]柏中能.对云南中低品位磷矿选矿的认识和建议[J].云南化工, 2007, 34(5): 23-25.
    [3]卿黎,曾波,张宗华,等.云南中低品位磷矿资源利用的必要性[J].矿产综合利用, 2005, (6): 29-32.
    [4]李冬莲,张央,牛芳银.宜昌丁东磷矿选矿试验研究[J].化工矿物与加工, 2007, (10): 5-6.
    [5]刘乃富.湖北省中低品位磷矿合理利用的分析与建议[J].化工矿物与加工, 2005, (11): 1-4.
    [6]王松森等.细菌冶金[J].生物学通报, 1994, 29 (4): 2-3.
    [7]杨显万,邱定蕃.湿法冶金[M].冶金工业出版社, 1998.
    [8]温建康.生物冶金的现状与发展[J].中国有色金属, 2008, (10): 74-76.
    [9]李学亚,叶茜.微生物冶金技术及其应用[J].矿物工程, 2006, 4(2): 49-51.
    [10]李元锋,林莹,杨维涨.生物冶金资源化发展现状及前景[J].冶金丛刊, 2009, (6): 48-50.
    [11]晏露,伍开亮,高姣姣,等.硫酸和氧化亚铁硫杆菌浸出低品位磷矿[J].武汉化工学院学报, 2006, 28(4): 4-6.
    [12]龚文琪,边勋,陈伟,等.氧化硫硫杆菌的培养特性及低品位磷矿浸出[J].武汉理工大学学报, 2007, 29(5): 53-57.
    [13]刘俊,龚文琪,申求实,等.低品位磷矿的生物浸出研究[J].金属矿山, 2008, (7): 45-75.
    [14]龚文琪,陈伟,张晓峥,等.氧化亚铁硫杆菌的分离培养及其浸磷效果[J].过程工程学报, 2007, 7(3): 584-588.
    [15]刘代俊,蒋绍志,罗洪波等.中国磷矿资源贫化危机与挑战[J].无机盐工业, 2005, 5: 3-6.
    [16]龚贵生.云南中低品位磷矿开发利用与问题探讨[J].中国工程科学, 2005, 7(9): 169-172.
    [17]周洪波,邱冠周,邬长斌等.嗜酸微生物生态学与矿物生物浸出技术[J].应用与环境生物学报, 2005, 11(6): 784-788.
    [18]周吉奎,钮因健.硫化矿生物冶金研究进展[J].金属矿山, 2005, 4: 24-30.
    [19]龚文琪,张晓峥,袁昊,等.低品位磷矿废石的细菌浸出试验研究[J].上海第二工业大学学报, 2007, 24(2): 125-130.
    [20]余静,刘代俊.微波场对磷酸分解低品位磷矿反应的影响研究[J].四川化工, 2005, 8(1): 4-6.
    [21]张东艳,张通.细菌浸出黄铜矿过程中黄铁矿的影响行为[J].内蒙古工业大学学报, 1997, 16(1): 16-21.
    [22] Ghosh, R, Banik, A. K. Optimisation of Different Physical Parameters for Bioleaching of Phosphate by Aspergillus niger from India Rock Phosphate[J]. India Journal of Experimental Biology, 1998, 36(7): 688-692.
    [23] Narsion V, Patel H. H. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biology Biochemistry, 2000, 32(7): 559-565.
    [24]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料, 2001, (3): 7-11.
    [25]林启美,赵海英,赵小蓉. 4株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物学通报,2002, 29(6): 24-28.
    [26]肖春桥,高洪,张娴,等.两株芽孢杆菌对磷矿粉中磷的浸出能力研究[J].武汉化工学院学报, 2004, 26(4): 1-4.
    [27] R. Chi, C. Xiao and H. Gao. Bioleaching of Phosphorus from Rock Phosphate Containing Pyrites by Acidithiobacillus ferrooxidans[J]. Minerals Engineering, 2006, 19(9): 979-981.
    [28]张永奎,王安,陈茂春,等.细菌分解磷矿石探索性研究[J].矿产综合利用, 2000, (6): 32-35.
    [29] Chung H, Park M, Madhaiyan M, et al. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea[J]. Soil Biol. Biochem., 2005, 37: 1970-1974.
    [30] Chen Y P, Rekha P D, Arun A B, et al. Phosphate solubilizing bacteria from subrtopical soil and their tricalcium phosphate solubilizing abilities[J]. Appl. Soil Ecol., 2006, 34: 33-41.
    [31] Costa, Medronho. Phosphate rock bioleaching[J]. Biotechnol Letters, 1990, 52(2): 233-238.
    [32]池汝安,肖春桥,高洪,等.细菌和真菌分解低品位磷矿[J].过程工程学报, 2005, 5(6): 636-639.
    [33] HALDER AK, MISHRA AK, BATTACHARYA P, et al. Solubilistiaon of rock phosphate by Rhizobium and Brady Rhizobium[J]. J.Gen. and Appl. Microbiol., 1900,36(2): 81-92
    [34] Narlslan, V., et. al., Indian J. M icrobiol., 1995, 35(2): 127-132.
    [35] NAHAS E, BANZATTO D A, ASSIS L C. Fluorapatite solubilization by Aspergillus niger in vinase medium[J]. Soil Biol Biochem, 1990, 22: 1097-1101.
    [36] Vassilev, N., M. T. Baca, M. Vassileva, et al. Rock phosohate solubilization by Aspergillus niger grown on sugar-beet wastemedium[J]. Appl. M icrobiol. Biotechnol., 1995, 44(3-4): 546-549.
    [37] R. E.布坎南, N. E.吉本斯等.伯杰氏细菌鉴定手册(第8版)[M].北京:科学出版社, 1984.
    [38] F. Battaglia-Brunet, M. Clarens, et. al. Monitoring of a pyrite-oxidizing bacterial population using DNA single-strand conformation polymorphism and microscopic techniques, Appl Microbiol Biotechnol[J]. 2002, 60: 206-211.
    [39] S. F. Battaglia-Brunet, et. al. Evolution of the bacterial population during the batch bioleaching of cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor. Hydrometallurgy[J]. 2003, 71: 5-12.
    [40] Temple K L,Colmer A R . The autotrophie oxidation of iron by a new bacterium:Thiobacillusferrooxidans[J].J.Bacteriol., 1951, 62: 605-611.
    [41]魏德州.资源微生物技术[M].北京:冶金工业出版社, 1996.
    [42]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社, 1997.
    [43]魏以和,王军,钟康年.矿物生物技术的微生物学基本方法[J].国外金属矿选矿, 1996, 1: 14-27.
    [44]沈萍.微生物学[M].北京:高等教育出版社, 2000.
    [45]焦迎晖,张惟材,谢莉.维生素C发酵中伴生菌对氧化葡萄杆菌的影响[J].微生物学通报, 2002, 29(5): 35-38.
    [46]周建琴,高荣梅.康乐霉素C产生菌的微波诱变[J].生物学杂志, 2002, 19(4): 12-13.
    [47]袁易全,陈思忠.近代超声原理与应用[M].南京:南京大学出版社, 1996.
    [48]微生物诱变育种编写组.微生物诱变育种[M].北京:北京科学出版社,1973.
    [49]徐晓军,宫磊,赵丙辰,等.氧化亚铁硫杆菌的亚硝酸化学诱变及对黄铁矿的生物浸出[J].有色金属(选矿部分), 2004, (6): 20-24.
    [50]黄礼煌.化学选矿[M].北京:冶金工业出版社, 1990.
    [51]李秀艳.金属硫化物矿物生物浸出过程中细菌吸附作用的研究[D].中南大学博士学位论文, 2001.
    [52]钱存柔,黄仪秀.微生物学实验教程[M].北京:北京大学出版社, 1999.
    [53] Biswas D R, Narayanasamy G. Rock phosphate enriched compost; An approach to improve low-grade Indian rock phosphate[J]. Bioresour: Technol., 2006, 97: 2243-2251.
    [54]姚国成,阮仁满,温建康,等.高效中等嗜热菌自然界选育方法探索研究[J].矿产综合利用, 2004, (2): 18-22.
    [55]周吉奎.三类生物冶金微生物菌种的选育及其与矿物作用研究[D].中南大学博士学位论文, 2004, 4.
    [56]王恩文,龚文琪,申秋实,等.物理诱变对嗜酸氧化亚铁硫杆菌浸磷的影响[J].武汉理工大学学报, 2008, 30(6): 44-47.
    [57] Jiang L H, Zhap S L, Zhu J H. Fast destination of P2O5 in Melamine phosphate[J]. Chemical Engineer, 2001, 85(4): 50-51.
    [58] Schaeffer W I , Holbert P E , Holbreit W W .Attachment of Thiobocillus ferrooxidans to sulfur crystals [J] . Journal Bacteri ol ogy, 1963, 8 (5): 132-137.
    [59]刘金辉,吴为荣,刘亚洁,等.浸铀过程中氧化硫硫杆菌的耐氟性实验研究[J].金属矿山, 2009(5): 50-52, 66.
    [60] Douglas E Rawlings. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories, 2005, 4: 13-27.
    [61] Robert C. Blake II, Elizabeth A. Shute, and Gary T. Howard. Solubilization of Minerals by Bacteria: Electrophoretic Mobility of Thiobacillus ferrooxidans in the Presence of Iron, Pyrite, and Sulfur[J]. Applied and Environmental Microbiology, 1994, 9: 3349-3357.
    [62] Pablo Ramirez, Nicolas Guiliani, Lissette Valenzuela, Simon Beard, and Carlos A. Jerez. Differential Protein Expression during Growth of Acidithiobacillus ferrooxidans on Ferrous Iron, Sulfur Compounds, or Metal Sulfides[J].Applied and Environmental Microbiology, 2004, 8: 4491-4498.
    [63] Lesia Harahuc, Hector M. Lizama, and Isamu Suzuki. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 2000, 3: 1031-1037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700