流化床中甲烷临氧自然重整的镍基催化剂及反应机理研究(附:甘油选择性催化氧化初探)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷催化转化制合成气是目前重要和高效的甲烷转化和利用途径,其中甲烷临氧二氧化碳重整制合成气是目前的研究热点和主攻方向。该过程通过将吸热反应与放热反应耦合,不仅可以节约能量、保证反应安全进行,而且还可以根据后续工艺的要求调控产物中的H2/CO比;同时02的加入可以完全消除C02重整过程中催化剂表面的积碳。
     本论文以机械强度高的工业微球硅胶为初载体,首先通过引入Ce02-ZrO2、La203等制备了一系列CeO2-ZrO2/SiO2和La203-Si02复合载体负载的Ni催化剂;另一方面通过选用Ni络合物前驱体制备了不同Ni粒径的Ni/SiO2催化剂;并对镍基催化剂上甲烷临氧二氧化碳重整制合成气反应的催化性能及反应失活机理进行了系统的研究。得到的主要结果如下:
     CeO2-ZrO2/SiO2复合载体负载的Ni催化剂在甲烷临氧二氧化碳重整制合成气反应中表现出较好的催化活性及稳定性。其中Ni/6CeO2-4ZrO2/SiO2催化剂在70℃、9,000 h-1空速下具有最高的甲烷初始转化率(30min时72.4%)和最好的稳定性;通过改变原料气中C02/02比可以实现产物中的H2/CO比从0.99调节到2.21。表征结果证明:Ce02-Zr02/Si02复合载体有效地结合了Si02和Ce02-ZrO2的优点,具有高的比表面积、强的表面酸碱性、较好的H2吸附和裂解能力,进而促进了Ni的分散。
     xLa2O3-SiO2(x=10,15,30)复合载体负载的Ni催化剂(Ni/xLa2O3-SiO2)在甲烷临氧CO2重整制合成气反应中表现出很好的活性和稳定性。在700℃、9,000h-1空速下,Ni/30La203-Si02催化剂在线反应100小时,甲烷的转化率只从78.1%缓慢降低到75.5%。表征结果证明:La203的添加增强了Ni金属与载体相互作用力、提高了Ni的分散度(Ni粒径从45.0 nm降低到6.0 nm以下);同时,La203的添加还有利于CO2的吸附和活化;脉冲实验结果表明:在Ni/30La203-SiO2催化剂上,重整反应中甲烷的比活性高达20.6 s-1。
     利用简单的浸渍方法以镍的络合物前驱体成功制备了不同镍粒径(4.5-45.0nm)的Ni/Si02催化剂。系列表征实验表明:由于Ni的络合物前驱体的热稳定性高、流动性低、与载体间相互作用强等特性可以保证浸渍在载体上的镍具有很好的锚定作用、可以防止干燥和焙烧过程中镍在载体表面的迁移、凝聚和再分配;因而可以制备出不同粒径的镍基催化剂。考评实验结果表明:Ni基催化剂在流化床中甲烷临氧二氧化碳重整过程中的活性和稳定性强烈依赖于Ni颗粒的大小和反应的空速。大粒径的催化剂(>16 nm)在高空速下(90,000 h-1)下没有活性,在低空速下(18,000 h-1)有活性但失活很快;而小粒径的催化剂(<9.5 nm)在低于54,000 h-1空速下表现出很好的活性和稳定性。在4.5 nm的Ni催化剂上,甲烷二氧化碳重整反应的速率十分接近甲烷的部分氧化速率(分别为20.6 s-1和22.5s-1),缩小了甲烷选择性氧化、甲烷重整之间的速率差,有可能实现部分氧化、重整反应的同步发生,从而有效提高反应的热量利用效率和催化剂的效率。这也是甲烷二氧化碳自热重整反应过程中,重整与部分氧化可以同步进行的第一次直接证明。
     利用原位红外、脉冲表面反应、甲烷和二氧化碳的程序升温反应以及TG、Raman、HRTEM等技术对镍粒径为4.5 nm和45.0 nm的Ni/Si02催化剂的反应机理和失活机理进行了研究。结果表明:镍粒径小的催化剂(4.5 nm)有利于甲烷的解离,700度时CH4裂解的比活性可达12.6 s-1;而在45.0 nm的镍催化剂上,CH4裂解的比活性仅为9.8 s-1。CO2和O2都可有效地促进CH4的转化。提出流化床甲烷临氧二氧化碳重整反应中Ni基催化剂失活的可能机理是:Ni粒径大的催化剂或在高空速(9,0000 h-1)的条件下,由于甲烷裂解的速率相对较慢,所生成的表面碳物种相对较少,原料气中的02除了将碳物种气化外,还将金属镍逐渐氧化。这可能是甲烷临氧二氧化碳重整反应中催化剂失活的主要原因:
     CH4+nNi→CHx-Nim+(4-x)H-Ni(x=0-3)(RDS)
     C-Nim+(1/2)O2→CO+Nim
     C-Nim+CO2→2CO+Nim
     Ni+(1/2)O2→NiO.
     进一步以[Ni(en)3]2+为前躯体、在不同含量的Zr02改性的Si02载体上制备了系列镍粒径较小、但结构不同的催化剂。结果发现:在超高空速(90,000h-1)下,具有较多Ni-Zr02界面的Ni/5Zr02-Si02催化剂表现出最高的活性和最好的稳定性。C02脉冲及原位XRD发现:C02可以在Ni-Zr02边界裂解形成Ni-O物种和CO:含较多Ni-Zr02界面的Ni/5Zr02-Si02催化剂具有更高的甲烷转化速率。
     根据课题的需要,本人在攻读博士学位的后期,还对甘油催化选择氧化反应进行了初步的探索。发现无碱条件下,由于甘油更易接触到沉积在MWNTs外表面上的Pt使得Pt/MWNTs比Pt/AC具有更好的甘油选择氧化活性和甘油酸收率,Raman结果进一步证实了无碱条件下甘油选择氧化反应中伯位C-H键较伯位CO-H更易活化。进一步研究发现:在Pt/MWNTs催化剂上甘油选择氧化反应对Pt的分散度和粒径大小很敏感。小粒径的Pt/S-MWNTs催化剂具有更高的甘油选择氧化活性。平均粒径为2.4 nm的Pt/S-MWNTs(60-100)催化剂上,60℃反应6h,甘油的转化率高达84.0%,甘油酸(GLYA)的收率达到58.0%。
Catalytic transformation of methane and carbon dioxide, the cheapest carbon-containing materials and the most problematic greenhouse gases, into more valuable compounds has attracted attentions of researchers. Combination of CO2 reforming and partial oxidation of methane, also called methane autothermal reforming [MATR] (Eq.(1)), has been substantial interest in recent years in alternative routes for the conversion of natural gas (methane) to syngas. This process has low-energy requirements due to the opposite contribution of the exothermic partial oxidation of methane (Eq. (2)) and the endothermic CO2 reforming on methane (Eq. (3)). By controlling the feed composition, H2/CO ratio in the product can be modified according to the need of the post processing. Oxygen in feed is helpful to avoid catalyst deactivation by carbon deposition.
     CH4+xCO2+(1-x)/2 O2→(1+x) CO+2H2,
     AH298=(285x-38)kJ/mol(0     CH4+CO2→2 CO+2 H2,ΔH298=247 kJ/mol (2)
     CH4+1/2 O2→CO+2 H2,ΔH298=-38 kJ/mol (3)
     Fluidization has a favorable effect on the inhibition of carbon deposition, which is probably because the catalyst particles are circulated between the oxidizing zone and reducing zone, and carbon gasification proceeds readily in the oxidizing zone. Moreover, catalyst can maintain a suitable level of reducibility during fluidization that enhances the conversion of methane. The aim of this work is to investigate the influence of promoters (e.g. CeO2-ZrO2 and La2O3) and the particle size of Ni on MATR in a fluidized bed reactor. Main conclusions are as follows:
     A series of combined CeO2-ZrO2/SiO2 supported Ni catalysts show higher activity and stability for MATR in a fluidized bed reactor. Ni/6CeO2-4ZrO2/SiO2 catalyst exhibits the best initial activity (72.4% at 30 min) and stability at 700℃, 9,000 h-1. H2/CO ratio in product gas could be controlled successfully in the range of 0.99-2.21 by manipulating the relative concentrations of CO2 and O2 in feed. Characterizations found that the combined supports integrated the advantages of SiO2 and CeO2, ZrO2. That is, they have bigger surface area (about 300 m2/g) than that of pure CeO2 and ZrO2, stronger acidity and alkalescence than that of pure SiO2, and enhanced the mobility of H adatoms. Ni species dispersed highly on these combined CeO2-ZrO2/SiO2 supports, and became more reducible. Ni catalysts on the combined supports possess higher CO2 adsorption ability, higher methane activation ability.
     Ni/xLa2O3-SiO2 (x=10,15,30) possessed high activity and excellent stability for MATR in a fluidized bed reactor. On Ni/30La2O3-SiO2, the conversion of CH4 reached 78.1%(at 700℃and 9,000 h-1) in initial 18 h, and only slightly decreased to 75.5% in the followed 100 h. Characterizations indicate that La2O3-modified SiO2 has higher surface area, strengthened interaction between Ni and support, and improved dispersion of Ni. La2O3 increased the alkalescence of SiO2 and improved the activation of CO2. Coking reaction (via both temperature-programmed surface reaction of CH4 (CH4-TPSR) and pulse decomposition of CH4) disclosed that La2O3 reduced the dehydrogenation ability of Ni. CO2-TPO, O2-TPO (followed after CH4-TPSR) confirmed that only part amount of carbon species derived from methane decomposition could be removed by CO2, and O2 in feed played a crucial role for the gasification of the inactive surface carbons.
     Different sized Ni catalysts (4.5-45.0 nm) were prepared by a simple impregnation of aqueous solutions of Ni(NO3)2 and Ni complexes. The combined use of UV-DRS, FT-IR and Raman suggested that all Ni complexes precursors remained their structure on the surface of SiO2 in as-synthesized samples and contacted strongly with the support, drying of the as-synthesized samples resulted in further stabilization of the isolated Ni centers by an additional link to a silanol group (Si-O(H)-Ni). This strong interaction inhibits the redistribution of impregnated metal ions during drying and calcination, and results in highly dispersed Ni catalysts. It was found that the activity and stability of Ni catalysts for MATR in fluidized reactor depend strongly on the particle size and the operating space velocity. Larger-particle Ni catalysts (>16 nm) had no activities at higher space velocity (90,000 h-1) and deactivated rapidly at lowe space velocity (18,000 h-1). While small sized Ni (<9.5 nm) is more active and stable at space velocity (<54,000 h-1).
     Characterizations disclosed that methane decomposition rate decreases with the enlarging Ni particle size and the temperature of methane decomposition was lower on small sized Ni. CO2 can not dissociate on the Ni/SiO2. The results of pulse-MS illustrates that activity of CH4 decomposition was 9.8 s-1 on the 45.0 nm Ni catalyst, comparable with previously reported values. On the 4.5 nm Ni catalyst, the calculated activity of CH4 increased to 12.6 s-1. CO2 and O2 accelerated the conversion of methane, but the small particle Ni catalyst was more effective and stable. As the methane decomposition rate slows on larger Ni particles and at higher space velocity to ensure complete conversion of the oxygen, surface Ni will be gradually oxidized by remaining O2, leading to Ni deactivation:
     CH4+nNi→CHx-Nim+(4-x)H-Ni (x=0-3) (RDS) (4)
     C-Nim+(1/2)O2→CO+Nim (5)
     C-Nim+CO2→2CO+Nim (6)
     Ni+(1/2)O2→NiO (7)
     On the basis of above reaction mechanism, a series of different amount ZrO2-promoted SiO2 supported Ni catalysts prepared from [Ni(en)3]2+ were used for MATR to synthesis gas in a fluidized bed reactor in order to enhance the methane decomposition rate (RDS). It was found that Ni/5ZrO2-SiO2 with larger Ni-ZrO2 boundary exhibited the best activity and stability for MATR even at an extremely space velocity 90,000 h-1. Pulse-injected surface reactions and in situ XRD characterizations disclosed that CO2 dissociated exclusively at the boundary between Ni and ZrO2. The decomposition rate of CH4 was enhanced at the boundary between Ni and ZrO2.
     Catalytic oxidation of glycerol with molecular oxygen to glyceric acid was primarily studied in a base-free aqueous solution over Pt/MWNTs and Pt/AC catalysts at atmosphere. Pt/MWNTs was more active than Pt/AC for the easier accessibility of Pt on the external wall of MWNTs. Raman analysis confirmed the primary C-H was more active than the primary CO-H. It was found that the conversion of glycerol was effected strongly on the particle size of Pt on MWNTs. Smaller Pt particles are more active. On Pt/S-MWNTs(60-100) with 2.4 nm Pt particles, the conversion of glycerol and the yield of GLYA reached 84.0% and 58.0%, respectively.
引文
[1]J.R. Rostrup-Nielsen, J. Sehested. Hydrogen and Synthesis Gas by Steam- and CO2 Reforming. Adv. Catal.2002,47:65-139.
    [2]J.R. Rostrup-Nielsen. New aspects of syngas production and use, Catal. Today 2000,63: 159-164.
    [3]A.P.E. York, T. Xiao, M.L.H. Green, J.B. Claridge. Methane Oxyforming for Synthesis Gas Production. Catal. Rev.,2007,49:511-560.
    [4]F. Fischer, H. Tropsch, Brennstoff-Chem.,1928,9:39.
    [5]A.T. Ashcroft, A.K. Cheetham, M.L.H. Green, P.D.F. Vernon. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 1991,352:225-226.
    [6]M.M.V.M. Souza, M. Schmal. Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl. Catal. A:Gen.2005,281:19-24.
    [7]J.C. Escritori, S.C.Dantas, R.R. Soares, C.E. Hori. Methane autothermal reforming on nickel-ceria-zirconia based catalysts. Catal. Comm.2009,10:1090-1094.
    [8]M.R. Goldwasser, M.E. Rivas, M.L. Lugo, E. Pietri, J. Perez-Zurita, M.L. Cubeiro, A. Griboval-Constant, G. Leclercq. Combined methane reforming in presence of CO2 and O2 over LaFe1-xCoxO3 mixed-oxide perovskites as catalysts precursors. Catal. Today 2005, 107-108:106-113.
    [9]Q.S. Jing, X.M. Zheng. Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor. Energy 2006, 31:2184-2192.
    [10]J.Z. Guo, Z.Y. Hou, J. Gao, X.M. Zheng. Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor. Fuel 2008,87:1348-1354.
    [11]B. C. Enger, R, Loeng, A. Holmen. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal. A:Gen.2008.346:1-27.
    [12]D.A.Hickman, L.D. Schmidt. Production of syngas by direct oxidation of methane. Science, 1993,259:343-346.
    [13]Y. Ji, W. Li, H. Xu, Y. Chen, React. React. A Study of Carbon Deposition on Catalysts During the Catalytic Partial Oxidation of Methane to Syngas in a Fluidized bed. Kinet. Catal. Lett.2001,73:27-32.
    [14]H.Y. Wang, E. Ruckenstein, Partial Oxidation of Methane to Synthesis Gas over MgO- and SiO2-Supported Rhodium Catalysts, J. Catal.1999,186:181-187.
    [15]C. Mateos-Pedrero, C. Cellier, P. Eloy, P. Ruiz. Partial oxidation of methane towards hydrogen production over a promising class of catalysts:Rh supported on Ti-modified MgO. Catal. Today 2007,128:216-222.
    [16]R. Horn, K.A. Williams, N.J. Degenstein, L.D. Schmidt. Syngas by catalytic partial oxidation of methane on rhodium Mechanistic conclusions from spatially resolved measurements and numerical simulations. J. Catal.2006,242:92-102.
    [17]V.B. Mortola, J.A.C. Ruiz, L.V. Mattos, F.B. Noronha, C.E. Hori, Partial oxidation of methane using Pt/CeZrO2/Al2O3 catalyst—Effect of the thermal treatment of the support. Catal. Today 2008,133-135:906-912.
    [18]严前古远松月Pt/Al2O3和Pt/CeO2/Al2O3催化甲烷部分氧化制合成气反应.高等学校化学学报1998,19(80):1300-1303.
    [19]L.S.F. Feio, C.E. Hori, L.V. Mattos, D. Zanchet, F.B. Noronha, J.M.C. Bueno. Partial oxidation and autothermal reforming of methane on Pd/CeO2-Al2O3 catalysts Applied Catalysis A:Gen.2008,348:183-192
    [20]张杰,张青蔚,贾莉伟,王军,翁端,沈美庆.金属蜂窝负载Pd催化甲烷部分氧化制合成气.稀有金属材料与工程2006,35(7):1158-1161.
    [21]S. Tang, J. Lin, K.L. Tan. Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2 Catalysis Letters.1998,51:169-175.
    [22]J. Requies, M.A. Cabrero, V.L. Barrio, M.B. Guemez, J.F. Cambra, P.L. Arias, F.J. Perez-Alonso, M. Ojeda, Pena M.A., J.L.G. Fierro. Partial oxidation of methane to syngas over Ni/MgO and Ni/La2O3 catalysts. Appl. Catal. A:Gen.2005,289:214-223.
    [23]W.S. Dong, K.W. Jun, H.S. Roh, Z.W. Liu, S.E. Park. Comparative study on partial oxidation of methane over Ni/ZrO2,Ni/CeO2 and Ni/Ce-ZrO2 catalysts. Catal. Lett.2002, 78:,215-222.
    [24]Y.Q. Song, D.H. He, B.Q. Xu Effects of preparation methods of ZrO2 support on catalytic performances of Ni/ZrO2 catalysts in methane partial oxidation to syngas. Appl. Catal. A: Gen. 2008,337:19-28.
    [25]杨继海,王一平,郭翠梨,李榉.NiO/La2O3催化剂上甲烷催化部分氧化制合成气的研究.分子催化2006,20(6):530-534.
    [26]孙卫中,莫若飞,靳国强,郭向云.不同载体的镍基催化剂在甲烷部分氧化反应中的催化行为天然气化工2006,31(6):1-5.
    [27]N. Nichio, M. Casella, O. Ferretti, M. Gonzalez, C. Nicot, B. Moraweck, R. Frety, Partial oxidation of methane to synthesis gas. Behaviour of different Ni supported catalysts. Catal. Lett.1996,42:65-72.
    [28]Y. Zhang, G. Xiong, S. Sheng, W. Yang. Deactivation studies over NiO/y-Al2O3 catalysts for partial oxidation of methane to syngas. Catal. Today 2000,63:517-522.
    [29]J. Requies, M.A. Cabrero, V.L. Barrio, J.F. Cambra, M.B. Guemez, P.L. Arias, V. La Parola, M.A. Pena, J.L.G. Fierro. Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation. Catal. Today 2006,116:304-312.
    [30]J. Requies, V.L. Barrio, J.F. Cambra, M.B. Guemez, P.L. Arias, V. La Parola, M.A. Pena, J.L.G. Fierro. Effect of redox additives over Ni/Al2O3 catalysts on syngas production via methane catalytic partial oxidation. Fuel 2008,87:3223-3231.
    [31]刘盛林,熊国兴,缪清,张玉红,盛世善.锂和镧的添加对NiO/Al2O3甲烷部分氧化积碳的影响.1998,23(5):5-7.
    [32]Y. Qiu, J. Chen, J. Zhang,. A simple preparation method of eggshell Ni/MgO-Al2O3 catalyst for partial oxidation of methane. Reaction Kinetics and Catalysis Letters 2008,94: 149-155.
    [33]P.E.A. York, B.J. Claridge, A.J. Brungs. Molybdenum and tungsten carbides as catalysts for the conversion of methane to synthesis gas using stoichiometric feedstocks. Chem. Comm. 1997,1:39-40.
    [34]J.B. Claridge, A.P.E. York, A J. Brungs, C. Marquez-Alvarez, J. Sloan, S. Chi Tsang, M.L.H. Green. New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide. J. Catal.1998,180,85-100.
    [35]Q.L. Zhu, B. Zhang, J. Zhao. The effect of secondary metal on MoCe/Al2O3 catalyst for the partial oxidation of methane to syngas. J. Mol. Catal. A:Chem.2004,213:199-205.
    [36]K. Otsuka, T. Ushiyama, I.Yamanaka. Partial Oxidation of Methane using the Redox of Cerium Oxide. Chem. Lett.1993,10:1517-1520.
    [37]J.J. Zhu, J.G. van Ommen, H.J.M. Bouwmeester, L. Lefferts. Activation of O2 and CH4 on yttrium-stabilized zirconia for the partial oxidation of methane to synthesis gas. J. Catal. 2005,233:434-441.
    [38]H.J. Wei, Y. Cao, W.J. Ji, C.T. Au a,Lattice oxygen of La1-xSrxMO3 (M= Mn, Ni) and LaMnO3-αFβ perovskite oxides for the partial oxidation of methane to synthesis gas. Catal. Comm.2008,9:2509-2514.
    [39]孔繁华,景志刚,李然家,代小平,余长春,张志翔.钙钛矿型LaFe03-λ,催化剂焙烧条件对甲烷部分氧化性能的影响.石油化工2005,34:291-293.
    [40]李然家,余长春,代小平,沈师孔.以晶格氧为氧源的甲烷部分氧化制合成气.催化学报2002,23,381-387.
    [41]李孔斋,王华,魏永刚,.刘明春.铈基复合氧化物中晶格氧用于甲烷部分氧化制合成气.燃料化学学报2008,36(1)83-88.
    [42]刘树强,宋月芹,贺德华,李展平.Cr203催化剂上甲烷部分氧化制备合成气.高等学校化学学报2009 30(1)106-112.
    [43]J.H Jun, T.J. Lee, T.H. Lim. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas:characterization and activation. J. Catal.2004,221:178-90.
    [44]F. Basile, P. Benito, G. Fornasari, D. Gazzoli, I. Pettiti, V. Rosetti, A. Vaccari. Ni-catalysts obtained from silicate intercalated HTlcs active in the catalytic partial oxidation of methane: Influence of the silicate content. Catal. Today 2009,142:78-84.
    [45]V.R. Choudhary, A.M. Rajput, B. Prabhakar. Nonequilibrium oxidative conversion of methane to CO and H2 with high selectivity and productivity over Ni/Al2O3 at low temperature. J. Catal.1993,139:326-328.
    [46]M. Prettre, C. Eichner, M. Perrin. Catalytic oxidation of methane to carbon monoxide and hydrogen.Trans. Faraday Soc.1946,42:335-340.
    [47]A.T. Ashcroft, A.K. Cheetham, J.S. Foord, M.L.H. Green, C.P. Grey, A.J. Murrell, P.D.F. Vernon. Selective oxidation of methane to synthesis gas using transition metal catalysts. Nature 1990,344:319-321.
    [48]K. Nakagawa, N. Ikenaga, Y.H. Teng, T. Kobayashi, T. Suzuki. Transient response of catalyst bed temperature in the pulsed reaction of partial oxidation of methane gas over supported rhodium and iridium catalysts. J. Catal.1999,186:405-413.
    [49]F.B. Passos, E.R. Oliveira, L.V. Mattos, F.B. Noronha. Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts. Catal. Lett.2006,110:1-2, 161-167.
    [50]Zhu, J., Zhang, D., and King, K.D. Reforming of CH4 by partial oxidation:thermodynamic and kinetic analyses. Fuel,2001,80:899-905.
    [51]D.A. Hickman, L.D. Schmidt. Synthesis gas formation by direct oxidation of methane over Pt monoliths. J. Catal.1992,138:267-82.
    [52]Y.H. Hu, E. Ruckenstein. Pulse-MS study of the partial oxidation of methane over Ni/La2O3 catalyst. Catal. Lett.,1995,34:41-50.
    [53]Y.H. Hu, E. Ruckenstein. Transient Kinetic Studies of Partial Oxidation of CH4. (1996) J. Catal.,158:260-266.
    [54]V.A. Tsipouriari, Z. Zhang, X.E. Verykios. Catalytic Partial Oxidation of Methane to Synthesis Gas over Ni-Based Catalysts I. Catalyst Performance Characteristics. J. Catal. 1998,179,283-291.
    [55]沈师孔,李春义,余长春.Ni/A1203催化剂上甲烷部分氧化制合成气反应机理.催化学报1998,19(4):309-314.
    [56]Rongchao Jin, Yanxin Chen, Wenzhao Li, Wei Cui, Yaying Ji, Chunying Yu, Yi Jiang. Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalystApplied Catalysis A:Gen.2000,201:71-80.
    [57]D. Wang, O. Dewaele, A.M. De Groote,,G.F. Froment. Reaction Mechanism and Role of the Support in the Partial Oxidation of Methane on Rh/Al2O3. J. Catal.1996,159:418-426.
    [58]Y.H. Hu, E. Ruckenstein. CH4/CD4 isotope effect and the mechanism of partial oxidation of methane to synthesis gas over Rh/Al2O3 catalyst. J. Phys. Chem. B.1999,103: 11327-11331.
    [59]C. Elmasides, X.E. Verykios. Mechanistic Study of Partial Oxidation of Methane to Synthesis Gas over Modified Ru/TiO2 Catalyst. J. Catal.2001,203:477-486.
    [60]翁维正,罗春容,李建梅,刘颖,林海强,黄传敬,万惠霖.Ir/Si02上甲烷部分氧化制合成气反应的原位时间分辨红外和原位Raman光谱表征.化学学报2004,62(18):1853-1857.
    [61]翁维正,万惠霖.负载型贵金属催化剂上甲烷部分氧化制合成气反应机理的原位红外和喇曼光谱表征.石油化工2004 z1:534-536.
    [62]Y. Liu, F.Y. Huang, J.M.Li, W.Z. Weng, C.R. Luo, M.L. Wang, W.S. Xia, C.J. Huang, H.L. Wan. In situ Raman study on the partial oxidation of methane to synthesis gas over Rh/Al2O3and Ru/Al2O3 catalysts. J. Catal.2008 256:192-203.
    [63]W.Z. Weng, M.S. Chen, Q.G.Yan, T.H. Wu, Z.S. Chao, Y.Y. Liao, H.L.Wan. Mechanistic study of partial oxidation of methane to synthesis gas over supported rhodium and ruthenium catalysts using in situ time-resolved FTIR spectroscopy. Catal. Today 2000.63: 317-326.
    [64]Q.G. Yan, T.H. Wu, W.Z. Weng, H. Toghiani, R.K.Toghiani, H.L. Wan, C.U. Pittman. Partial oxidation of methane to H2 and CO over Rh/SiO2 and Ru/SiO2 catalysts. J. Catal.2004,226: 247-259.
    [65]D. Dissanayake, M.P. Rosynek, J.H. Lunsford. Are the Equilibrium concentrations of CO and H2 Exceeded during the oxidation of CH4 over a Ni/Yb2O3 catalysts? J. Phys. Chem. 1993,97:3644-3646.
    [66]B. Li, K. Maruyama, M. Nurunnabi, K. Kunimori, K. Tomishige. Temperature profiles of alumina-supported noble metal catalysts in autothermal reforming of methane. Appl. Catal. A:Gen.2004,275:157-172.
    [67]M.C.J. Brandford, M.A. Nannice. CO2 reforming of CH4. Catal. Rev. Sci. Eng. 1999, 41:1-42.
    [68]R.N. Bhat, W.M.H. Sachtler. Potential of zeolite supported rhodium catalysts for the CO2 reforming of CH4. Appl. Catal. A:Gen.1997,150:279-296.
    [69]Chang J.S., S.E. Park, H. Chon. Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts. Appl. Catal. A: Gen.1996,145:111-124.
    [70]J.Z. Luo, Z.L. Yu, C.F. Ng, C.T. Au. CO2-CH4 reforming over Ni-La2O3/5A:an investigation on carbon deposition and reaction steps. J. Catal.2000,194:198-210.
    [71]H.Y. Wang, E. Ruckenstein. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts:the effect of support. Appl. Catal. A:Gen.204 (2000) 143-152.
    [72]王锐,刘雪斌,陈燕馨,李文钊,徐恒泳.金属-载体相互作用对CH4/CO2重整反应中Rh基催化剂抗积碳性能的影响.催化学报2007,28(10):865-869.
    [73]R. Wang, H.Y. Xu, X.B. Liu, Q.J. Ge, W.Z. Li. Role of redox couples of Rh0/Rhd+ and Ce4+/Ce3+ in CH4/CO2 reforming over Rh-CeO2/Al2O3 catalyst. Appl. Catal. A:Gen. 2006, 305:204-210.
    [74]M. Yang, H. Papp, CO2 reforming of methane to syngas over highly active and stable Pt/MgO catalysts. Catal. Today 2006,115:199-204.
    [75]K. Nagaoka, K. Seshan, K. Takanabe, K. Aika. Improvement of Pt/ZrO2 by CeO2 for high pressure CH4/CO2 reforming. Catal. Lett.2005,99:1-2,97-100.
    [76]A.D. Ballarini, S.R. de Miguel, E.L. Jablonski, O.A. Scelza, A.A. Castro. Reforming of CH4 with CO2 on Pt-supported catalysts Effect of the support on the catalytic behaviour. Catal. Today 2005,107-108,481-486.
    [77]Z.L. Zhang, X.E. Verykios, S.M. Macdonald, S. Affrossman. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conversional nickel-based catalysts. J. Phys. Chem.1996,100:744-754.
    [78]Z. Zhang, X.E. Verykios. Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts. Appl. Catal. A:Gen.1996,138:109-133.
    [79]V.A. Tsipouriari, X.E. Verykios. Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst. Catal. Today.2001,64:83-90.
    [80]李基涛,陈明旦,张伟德,严前古,万惠霖.载体对镍基催化剂CH4/CO2重整制合成气性能的影响.分子催化1999,13(4):277-281.
    [81]N. Laosiripojana, S. Assabumrungrat, Catalytic dry reforming of methane over high surface area ceria. Appl. Catal. B:Environ.2005,60:107-116.
    [82]Bo-Qing Xu, Jun-Mei Wei, Ying-Tao Yu, Yan Li, Jin-Lu Li, Qi-Ming Zhu. Size Limit of Support Particles in an Oxide-Supported Metal Catalyst:Nanocomposite Ni/ZrO2 for Utilization of Natural Gas.J. Phys. Chem. B 2003,107:5203-5207.
    [83]Y.H. Wang, H. Wang, Y. Li, Q.M. Zhu, B.Q. Xu, Performance of Ni/MgO-AN catalyst in high pressure CO2 reforming of methane. Top. Catal.2005,32:109-116.
    [84]许峥,张鎏,张继曼,陈吉祥.超细镍基催化剂的CH4-CO2重整反应性能Ⅲ制备方法对催化剂吸附CO性能的影响.分子催化2001,15(5):346-350.
    [85]T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido, K. Takehira. CO2 reforming of CH4 over Ni/perovakite catalysts prepared by solid phase crystallization method. Appl. Catal. A:Gen.1999,183:273-285.
    [86]G. Valderrama, M.R. Goldwasser, C. Urbina de Navarro, J.M. Tatibouet, J. Barrault, C. Batiot-Dupeyrat, F. Martinez. Dry reforming of methane over Ni perovskite type oxides Catal. Today 2005,107-108:785-791.
    [87]G.S. Gallego, C. Batiot-Dupeyrat, J.Barrault, E. Florez, F. Mondragon, Dry reforming of methane over LaNi1-yByO3±δ (B=Mg, Co) perovskites used as catalyst precursor. Appl. Catal. A:Gen.2008,334:251-258.
    [88]J. Juan-Juan, M.C. Roman-Martinez, M.J. Illan-Gomez. Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl. Catal. A: Gen.2006,301:9-15.
    [89]Z.X. Cheng, Q.L. Wu, J.L. Li, Q.M. Zhu. Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/Al2O3 catalyst. Catal. Today 1996,30: 147-155.
    [90]郭芳,储伟,黄丽琼,谢在库.载体酸碱性对CO2/CH4重整反应用镍基催化剂的影响.合成化学2008,16(5):495-498.
    [91]Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima. Characterization of Ca-promoted Ni/a-Al2O3 catalyst for CH4 reforming with CO2. Appl. Catal. A:Gen.2003,253:381-387.
    [92]S. Therdthianwonga, C. Siangchin, A. Therdthianwong. Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition. Fuel Processing Technology. 2008,89:160-168.
    [93]A. Nandini, K.K. Pant, S.C. Dhingra. K-, CeO2-, and Mn-promoted Ni/Al2O3 catalysts for stable CO2 reforming of methane. Appl. Catal. A:Gen.2005,290:166-174.
    [94]陈吉祥,邱业君,张继炎,苏万华.La2O3和CeO2对CH4-CO2重整Ni/MgO催化剂结构和性能的影响.物理化学学报2004,20(1):76-80.
    [95]K. Takanabe, K. Nagaoka, K. Nariai, K. Aika, Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure. J. Catal.2005,230:75-85.
    [96]K.C. Mondal, V.R. Choudhary, U.A. Joshi. CO2 reforming of methane to syngas over highly active and stable supported CoOx (accompanied with MgO, ZrO2 or CeO2) catalysts. Appl. Catal. A:Gen.2007,316:47-52.
    [97]黄传敬,王冬杰,费金华,郑小明.载体对负载钴催化剂CH4/CO2重整反应的影响.应用化学,2000,17:121-125.
    [98]黄传敬,郑小明,费金华,莫流业.载体硅铝比及助剂对Co/HZSM-5催化剂CH4/CO2重整反应性能的影响.燃料化学学报2001,29:169-173.
    [99]黄传敬,郑小明,费金华.用不同前驱体制备的Co/SiO2催化剂的结构及其CO2/CH4重整反应性能.催化学报2001,22:138-142.
    [100]T. Osaki, T. Horiuchi, K. Suzuki, T. Mori. Catalyst performance of MoS2 and WS2 for the CO2-reforming of CH4 Suppression of carbon deposition. Appl. Catal. A:Gen.1997,155: 229-238.
    [101]J.B. Claridge, A.P.E. York, A.J. Brungs, C. Marquez-Alvarez, J. Sloan, S.C.Tsang, M.L.H. Green New Catalysts for the Conversion of Methane to Synthesis Gas:Molybdenum and Tungsten Carbide. J. Catal.1998,180:85-100.
    [102]A.J. Brungs, A.P.E. York, L.H. Green. Comparison of the group V and VI transition metal carbides for methane dry reforming and thermodynamic prediction of their relative stabilities, Catal. Lett.1999,57:65-69.
    [103]M.L. Pritchard, R.L. McCauley, B.N. Gallaher, W.J. Thomson. The effects of sulfur and oxygen on the catalytic activity of molybdenum carbide during dry methane reforming. Appl. Catal. A:Gen.2004,275:213-220.
    [104]J. Sehested, C.J.H. Jacobsen, S. Rokni, J.R. Rostrup-Nielsen. Activity and Stability of Molybdenum Carbide as a Catalyst for CO2 Reforming. J. Catal.2001,201,206-212.
    [105]O.V. Krylov, A.K. Mamedov, S.R. Mirzabekova. Interaction of carbon dioxide with methane on oxide catalysts. Catal. Today 1998,42:211-215.
    [106]叶青,徐柏庆.Ce1-xZrxO2的氧化还原性能及其对CO2重整CH4反应的影响.催化学报2006,27(2):151-156.
    [107]M.F. Mark, W.F. Maier. CO2-Reforming of Methane on Supported Rh and Ir Catalysts. J. Catal.1996,164:122-130.
    [108]V.C.H. Kroll, H.M. Swaan, S. Lacombe, C. Mirodatos. Methane Reforming Reaction with Carbon Dioxide over Ni/SiO2Catalyst:Ⅱ. A Mechanistic Study. J. Catal.1996,164: 387-398.
    [109]Kroll V.C.H, G.J. Tjatjopoulos, C. Mirodatos. Kinetics of methane reforming over Ni/SiO2 catalysts based on a step-wise mechanistic model. Stud. Surf. Sci. Catal.1998,119: 753-758.
    [110]G.S. Gallego, C. Batiot-Dupeyrat, J. Barrault, F. Mondragon. Dual Active-Site Mechanism for Dry Methane Reforming over Ni/La2O3 Produced from LaNiO3 Perovskite. Ind. Eng. Chem. Res.2008,47:9272-9278.
    [111]A. Erdohelyi, J. Cerenyi, F. Solymosi. Activation of CH4 and its reaction with CO2 over supported Rh catalysts. J. Catal.1993,141:287-299.
    [112]M.C.J. Bradford, M.A. Vannice. Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Appl. Catal. A:Gen.1996,142:97-122.
    [113]M.C.J. Bradford, M.A. Vannice. CO2 reforming of CH4 over supported Pt catalysts. J. Catal.1998,173:157-171.
    [114]Y.H. Cui, H.D. Zhang, H.Y. Xu, W.Z. Li. Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/a-Al2O3 catalyst:The effect of temperature on the reforming mechanism. Appl. Catal. A:Gen.2007,318:79-88.
    [115]J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel. Catal. Today 2000,63:71-85.
    [116]F. Frusteri, F. Arena, G. Calogero, T. Torre, A. Parmaliana. Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane. Catal. Comm.2001,2:49.
    [117]F. Frusteri, L. Spadaro, F. Arena, A. Chuvilin. TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane. Carbon 2002,40:1063-1070.
    [118]J.J. Guo, H. Lou, H. Zhao, D.F. Chai, X.M. Zheng. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl. Catal. A:Gen.2004,273: 75-82.
    [119]A. Sacco, Jr., F. W. A. H. Geurts, G. A. Jablonski, S. Lee, and R. A. Gatell, Carbon deposition and filament growth on Fe, Co, and Ni foils using CH4---H2---H2O---CO---O2 gas mixtures. J. Catal.1989,119:322-341.
    [120]A.M. Gadalla, B. Bower. The role of catalyst support on the activity of nickel for reforming methane with CO2. Chem. Eng. Sci.1988,42,3049-3062.
    [121]V.A. Tsipouriari, A.M. Efstathioh, Z.L. Zhang, X.E. Verykios. Reforming of methane with carbon dioxide to synthesis gas over supported Ru catalysts. Catal. Today,1994, 21(2-3):579-587.
    [122]J.B. Claridge, M.L.H. Green, S.C. Tsang, A.P.E. York, A.T. Ashcroft, P.D. Battle, A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas. Catal. Lett.1993,22:299-305.
    [123]Hu, Y.H., and Ruckenstein, E., Binary MgO-Based sold solution catlysis for methane conversion to syngas. Catal. rev.-Sci. Eng.2002,44:423-453.
    [124]Rostrup-Nielsen, J.R., and Hansen, J.H.B.,CO2-Reforming of Methane over Transition Metals J. Catal.1993,144:38..
    [125]Y.H. Hu, E. Ruckenstein. Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming. Adv. Catal.2004,48:297-345.
    [126]Bartholomew, C.H., Carbon Deposition in Steam Reforming and Methanation. Catal. Rev.—Sci. Eng 24,67 (1982).
    [127]J.R Rostrup-Nielsen. Promotion by Poisoning. Stud. Surf. Sci. Catal.199168:85.
    [128]S. Therdthianwong, A. Therdthianwong, C. Siangchin, S. Yongprapat. Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2. Int. J. Hydrogen Energy 2008,33:991-999.
    [129]A.E. Castro Luna, M.E. Iriarte. Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst. Appl. Catal. A:Gen.2008,343:10-15.
    [130]A. Djaidja, S. Libs, A. Kiennemann, A. Barama. Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts. Catal. Today 2006,113: 194-200.
    [131]S.B. Wang, G.Q. Lu. Reforming of methane with carbon dioxide over Ni/Al2O3 catalysts: Effect of nickel precursor. Appl Catal,1998,169(2):271-280.
    [132]余长春,沈师孔.Ni/A1203催化剂上CH4/CO2重整反应积碳的研究.化学物理学报1997,10(3):233-236.
    [133]K. Nagaoka, A. Jentys, J.A. Lercher. Methane autothermal reforming with and without ethane over mono- and bimetal catalysts prepared from hydrotalcite precursors. J. Catal. 2005,229:185-96.
    [134]V.R. Choudhary, K.C. Mondal, A.S. Mamman. High-temperature stable and highly active/selective supported NiCoMgCeOx catalyst suitable for autothermal reforming of methane to syngas. J. Catal.2005,233:36-40.
    [135]V.R. Choudhary, B.S. Uphade, A.S. Mamman. Simultaneous steam and CO2 reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen. Appl. Catal. A:Gen.1998,168:33-461.
    [136]V.R. Choudhary, A.M. Rajput, B. Prabhakar. Energy efficient methane-to-syngas conversion with low H2/CO ratio by simulataneous catalytic reactions of methane with carbon dioxide and oxygen. Catal. Lett.1995,32:391-396.
    [137]V.R. Choudhary, A.S. Mamman, Energy efficient conversion of methane to syngas over NiO-MgO solid solution. Appl. Energy 2000,66:161-175.
    [138]V.R. Choudhary, B.S. Uphade, A.A. Belhekar. Oxidative Conversion of Methane to Syngas over LaNiO3 Perovskite with or without Simultaneous Steam and CO2 Reforming Reactions: Influence of Partial Substitution of La and Ni. J. Catal.1996,163,312-318.
    [139]V.R. Choudhary, K.C. Mondal, T.V. Choudhary. Oxy-CO2 reforming of methane to syngas over CoOx/MgO/SA-5205 catalyst. Fuel 2006,85:2484-2488.
    [140]V.R. Choudhary, K.C. Mondal, T.V. Choudhary. Partial oxidation of methane to syngas with or without simultaneous steam or CO2 reforming over a high-temperature stable-NiCoMgCeOx supported on zirconia-hafnia catalyst Appl. Catal. A:Gen.2006,306:45-50.
    [141]E. Ruckenstein, Y.H. Hu. Combination of CO2 reforming and partial oxidation of methane over NiO/MgO solution catalysts. Ind. Eng. Chem. Res.1998,37:1744-1747.
    [142]E. Ruckenstein, Y.H. Hu. Combined catalytic partial oxidation and CO2 reforming of methane over supported cobalt catalysts. Catal. Lett.2001,73:99-105.
    [143]Y.H. Wang, Ruckenstein E. Conversion of methane to synthesis gas over CO/Al2O3 by CO2 and O2. Catal. Lett.2001,75:13-18.
    [144]A.L. Larentis, N.S. Resende, V.M.M. Salim, J.C. Pinto. Modeling and optimization of the combined carbon dioxide reforming and partial oxidation of natural gas. Appl. Catal. A: Gen.2001,215:211-224.
    [145]M.M.V.M.Souza, M. Schmal. Combination of carbon dioxide reforming and partial oxidation of methane over supported platinum catalysts. Appl. Catal A:Gen.2003,255: 83-92.
    [146]M.R. Goldwasser, M.E. Rivas, M.L. Lugo, E. Pietri, J. Perez-Zurita, M.L. Cubeiro, A. Griboval-Constant, G. Leclercq. Combined methane reforming in presence of CO2 and O2 over LaFe1-xCoxO3 mixed-oxide perovskites as catalysts precursors. Catal. Today 2005, 107-108:106-113.
    [147]纪红兵,黄莉,谢俊锋,陈清林.耦合甲烷部分氧化与二氧化,碳重整用镍系催化剂碱金属与碱土金属改性研究.天然气化工2006,31(6):5-10.
    [148]陈章淼,陈清林,纪红兵,高学农,张正国.钌和锡对耦合CH4部分氧化与CO2重整镍催化剂活性和稳定性的影响.天然气化工2006,31(5):17-23.
    [149]姬涛,董新法等.CH4、CO2与O2制合成气的气的研究Ⅳ.助剂Cu和Li的作用.天然气化工:Cl化学与化工2001,26(3):27-29.
    [150]傅利勇,吕绍洁等.添加过渡金属氧化物对CH4、CO2和O2制合成气催化剂性能的影响.石油化工2000,29(12):900-903.
    [151]K. Tomishige, S. Kanazawa, K. Suzuki, M. Asadullah, M. Sato, K. Ikushima, K. Kunimori. Effective heat supply from combustion to reforming in methane reforming with CO2 and O2: comparison between Ni and Pt catalysts. Appl. Catal. A:Gen.2002,233:35-44.
    [152]K. Tomishige, Y. Matsuo, Y. Sekine, K. Fujimoto. Effective methane reforming with CO2 and O2 under pressurized condition using NiO-MgO and fluidized bed reactor. Catal. Comm.2001,2:11-15.
    [153]K. Tomishige, Y. Matsuo, Y. Yoshinaga, Y. Sekine, M. Asadullah, K. Fujimoto. Comparative study between fluidized bed and fixed bed reactors in methane reforming combined with methane combustion for the internal heat supply under pressurized condition. Appl. Catal. A: Gen.2002,223:225-238.
    [154]K. Tomishige. Syngas production from methane reforming with CO2/H2O and O2 over NiO-MgO solid solution catalyst in fluidized bed reactors. Catal. Today 2004,89:405-418.
    [155]Q.S.Jing, H. Lou, L.Y. Mo, X.M. Zheng. Comparative study between fluidized bed and fixed bed reactors in methane reforming with CO2 and O2 to produce syngas. Energ. Convers. Manage.2006,47:459-469.
    [156]L.Y. Mo, X.M. Zheng, C.J. Huang, J.H. Jin. A novel catalyst Pt-CoAl2O4/Al2O3 for combination CO2 reforming of and partial oxidation of CH4. Catal Lett,2002,80:165-167.
    [157]L.Y. Mo, X.M. Zheng. Reforming of methane with Oxygen and carbon dioxide to produce syngas over a novel Pt-CoAl2O4/Al2O3 catalyst. J. Mol. Catal. A:Chem.2003,193: 177-184.
    [158]Q.S. Jing, H. Lou, X.M. Zheng. Syngas production from reforming of methane with CO2 and O2 over Ni/SrO-SiO2 catalysts in a fluidized bed reactor. Int. J. Hydrogen Energ.2004, 29:1245-1251.
    [159]Q.S.Jing, H. Lou, L.Y. Mo, J.H. Fei, X.M. Zheng. Reforming of CH4 with CO2 and O2 to produce syngas over CaO modified Ni/SiO2 catalysts in a fluidized bed reactor. React. Kinet. Catal. L.2004,83:291-298.
    [160]Q.S.Jing, H. Lou, X.M. Zheng. Combination of CO2 reforming and partial oxidation of methane over Ni/BaO-SiO2 catalysts to produce low H2/CO- ratio syngas using fluidized bed reactor. J. Mol. Catal. A:Chem.2004,212:211-217.
    [161]Q.S. Jing, J.H. Fei, L.Y. Mo, H. Lou, X.M Zheng. Effective reforming of methane with CO2 and O2 to low H2/CO ratio syngas over Ni/MgO-SiO2 using fluidized bed reactor. Energy conversion and management.2004,45(20):3127-3137.
    [162]J.Z. Guo, Z.Y. Hou, J. Gao, X.M. Zheng. Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor. Fuel,2008,87:1348-1354.
    [163]J.R. Rostrup-Nielsen, J.H.B. Hansen. CO2-reforming of methane over transition metals. J. Catal.1993,144:38-39.
    [164]Q. Miao, G.X. Xiong, L.S. Sheng. Acid-base properties and the directions of oxidative transformation of methane over nickel-based catalysts. Catal. Lett.1996,41:165-169.
    [165]J.M. Wei, E. Iglesia. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J. Catal.,2004,225:116-127.
    [166]J.M. Wei, E. Iglesia, Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters and Turnover Rate Comparisons among Noble Metals, J. Phys. Chem. B 2004,108:4094-4103.
    [167]J.M. Wei, E. Iglesia, Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts, Phys. Chem. Chem. Phys.2004,6:3754-3759.
    [168]J.M. Wei, E. Iglesia, Structural and Mechanistic Requirements for Methane Activation and Chemical Conversion on Supported Iridium Clusters, Angew. Chem. Int. Ed.2004,43: 3685-3688.
    [169]K. Ostuka, Y. Wang, M. Nakamura. Direction conversion of methane to synthesis gas through gas-solid reaction using CeO2-ZrO2 solid solution at moderate temperature. Appl Catal. A:Gen.1999,183:317-324.
    [170]R. Bloml, I.M. Dahl, A. Slagtem, B. Sortland, A. Spjelkavik, E. Tangstad. Carbon dioxide reforming of methane over lanthanum-modified catalysts in a fluidized-bed reactor. Catal Today 1994,21:535-543.
    [171]R. Bouarab, O. Cherifi, A. Auroux. Effect of the basicity created by La2O3 addition on the catalytic properties of Co(O)/SiO2 in CH4 + CO2 reaction. Thermochim. Acta 2005,434: 69-73.
    [172]M.E. Farago, J.M. James, V.C.G. Trew, J. Chem. Soc. A. (1967) 820.
    [173]J. Y. Carriat, M. Che, M. Kermarec, M. Verdaguer, A. Michalowicz, J. Am. Chem. Soc.120 (1998) 2059.
    [174]C. M. Cook, F. A. Long, J. Am. Chem. Soc.73 (1951) 4119.
    [175]D.G. Mustard, C.H. Bartholomew. Determination of metal crystallite size and morphology in supported nickel catalysts. J. Catal.1981,67:186-206.
    [1]V.R. Choudhary, K.C. Mondal, A.S. Mamman. High-temperature stable and highly active/selective supported NiCoMgCeOx catalyst suitable for autothermal reforming of methane to syngas, J. Catal.2005,233:36-40.
    [2]M.M.V.M. Souza, M. Schma. Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts, Appl. Catal. A:Gen.2005,281:19-24.
    [3]M. Simeone, L. Salemme, D. Scognamiglio, C. Allouis, G. Volpicelli. Effect of water addition and stoichiometry variations on temperature profiles in an autothermal methane reforming reactor with Ni catalyst, Int. J. Hydrogen Energy 2008,33:1252-1261.
    [4]K. Nagaoka, A. Jentys, J.A. Lercher. Methane autothermal reforming with and without ethane over mono- and bimetal catalysts prepared from hydrotalcite precursors, J. Catal. 2005,229:185-196.
    [5]V.L. Barrio, G. Schaub, M. Rohde, S. Rabe, F. Vogel, J.F. Cambra, P.L. Arias, M.B. Guemez. Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane:Comparison of temperature profiles and strategies for hot spot minimization, Int. J. Hydrogen Energy 2007,32:1421-1428.
    [6]X. Chen, K. Honda, Z.G. Zhang. A comprehensive comparison of CH4-CO2 reforming activities of NiO/Al2O3 catalysts under fixed- and fluidized-bed operations, Appl. Catal. A: Gen.2005,288:86-97.
    [7]Q.S. Jing, H. Lou, J.H. Fei, Z.Y. Hou, X.M. Zheng, Syngas production from reforming of methane with CO2 and O2 over Ni/SrO-SiO2 catalysts in a fuidized bed reactor, Int. J. Hydrogen Energy 2004,29:1245-1251.
    [8]Z.Y. Hou, J. Gao, J.Z. Guo, D. Liang, H. Lou, X.M. Zheng. Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized bed reactor, J. Catal. 2007,250:331-341.
    [9]K. Tomishige, Y. Matsuo, Y. Yoshinaga, Y. Sekine, M. Asadullah, K. Fujimoto. Comparative study between fluidized bed and fixed bed reactors in methane reforming combined with methane combustion for the internal heat supply under pressurized condition, Appl. Catal. A:Gen.2002,223:225-238.
    [10]K. Tomishige, Y. Matsuo, Y. Sekine, K. Fujimoto. Effective methane reforming with CO2 and O2 under pressurized condition using NiO-MgO and fluidized bed reactor, Catal. Commun.2001,2:11-15.
    [11]B.Q. Xu, J.M. Wei, Y.T. Yu, J.L. Li, Q.M. Zhu. Carbon dioxide reforming of methane over nanocomposite Ni/ZrO2 catalysts, Top. Catal.2003,22:77-85.
    [12]E. Ruckenstein, H.Y. Wang. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts, J. Catal.2002,205:289-293.
    [13]H.S. Roh, H.S. Potdar, K.W. Jun. Carbon dioxide reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 catalysts. Catal. Today 2004,93-95:39-44.
    [14]N. Laosiripojana, S. Assabumrungrat. Methane steam reforming over Ni/Ce-ZrO2 catalyst: Influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics, Appl. Catal. A:Gen.2005,290:200-211.
    [15]N. Laosiripojana, S. Assabumrungrat. Catalytic dry reforming of methane over high surface area ceria, Appl. Catal. B:Environ.2005,60:107-116.
    [16]S. Xu, X.L. Wang. Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane, Fuel 2005,84:563-567.
    [17]S. Therdthianwong, A. Therdthianwong, C. Siangchin, S. Yongprapat. Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2, Int. J. Hydrogen Energy 2008,33:991-999.
    [18]A.C.S.F. Santos, S. Damyanova, G.N.R. Teixeira, L.V. Mattos, F.B. Noronha, F.B. Passos. J.M.C. Bueno. The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane. Appl. Catal. A:Gen.2005,290:123-132.
    [19]D.G. Mustard, C.H. Bartholomew. Determination of metal crystallite size and morphology in supported nickel catalysts, J. Catal.1981,67:186-206.
    [20]Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima. Investigation of CH4 reforming with CO2 on meso-porous Al2O3-supported Ni catalyst. Catal. Lett.2003,89:121-127.
    [21]Z.Y. Hou, T. Yashima. Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2, Appl. Catal. A:Gen.2004,261:205-209.
    [22]D.L. Trimm. Catalysts for the control of coking during steam reforming, Catal Today 1999, 49:3-10.
    [23]M. Watanabe, Y. Aizawa, T. Iida, R. Nishimura, H. Inomata. Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K:Relationship between reactivity and acid-base property determined by TPD measurement, Appl. Catal. A:Gen.2005,295: 150-156.
    [24](a) T. Yamaguchi. Zirconium dioxide as a catalyst and catalyst support, Gakkaishi Sekiyu. 1993,36:250-267. (b) K. Tomishige, T. Sakaihori, Y. Ikeda, K. Fujimoto. A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia, Catal. Lett. 1999,58:225-229.
    [25]V.R. Choudhary, V.H. Rane. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons, J. Catal.1991,130:411-422.
    [26]T. Yamaguchi, N. Ikeda, H. Hattori, K. Tanabe. Surface and catalytic properties of cerium oxide, J. Catal.1981,67:324-330.
    [27]S. Damyanova, J.M.C. Bueno. Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts, Appl. Catal. A:Gen.2003,253:135-150.
    [28]T. Onishi, H. Abe, K. Maruya, K. Domen. IR spectra of hydrogen adsorbed on zirconium oxide, Chem. Commun.1985:617-618.
    [29]J. Kondo, Y. Sakata, K. Domen, K. Maruya, T. Onishi. Infrared study of hydrogen adsorbed on ZrO2, J. Chem. Soc. Faraday Trans.1990,86:397-401.
    [30]P. Fornasiero, G. Balducci, R. D. Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani. Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2, J Catal 1996,164:173-183.
    [31]C.D. Baertsch, S.L. Soled, E. Iglesia. Isotopic and Chemical Titration of Acid Sites in Tungsten Oxide Domains Supported on Zirconia, J. Phys. Chem. B 2001,105:1320-1330.
    [32]K. Otsuka, Y. Wang, M. Nakamura. Direct conversion of methane to synthesis gas through gas-solid reaction using CeO2-ZrO2 solid solution at moderate temperature, Appl. Catal. A: Gen.1999,183:317-324.
    [33]S. Larrondo, M.A. Vidal, B. Irigoyen, A.F. Craievichc, D.G. Lamas, I.O. Fabregas, G.E. Lascalea, N.E. W. de Reca, N. Amadeo. Preparation and characterization of Ce/Zr mixed oxides and their use as catalysts for the direct oxidation of dry CH4, Catal. Today 2005, 107-108:53-59.
    [1]Y.H. Hu, E. Ruckenstein. Binary MgO-based solid solution catalysts for methane conversion to syngas, Catal. Rev.2002,44(3):423-453.
    [2]Y.H. Hu, E. Ruckenstein. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming, Adv. Catal.2004,48:297-345.
    [3]N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat. Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3:Influence of the doping ceria on the resistance toward carbon formation, Chem. Eng. J.2005,112:13-22.
    [4]A. Nandini, K.K. Pant, S.C. Dhingra. K-, CeO2-, and Mn-promoted Ni/Al2O3 catalysts for stable CO2 reforming of methane, Appl. Catal. A:Gen.2005,290:166-174.
    [5]R.G. Ding, Z.F. Yan. Structure characterization of the Co and Ni catalysts for carbon dioxide reforming of methane, Catal. Today 2001,68:135-143.
    [6]R. Bloml, I.M. Dahl, A. Slagtem, B. Sortland, A. Spjelkavik, E. Tangstad. Carbon dioxide reforming of methane over lanthanum-modified catalysts in a fluidized-bed reactor, Catal. Today 1994,21:535-543.
    [7]J.Z. Guo, Z.Y. Hou, J. Gao, X.M. Zheng. Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor, Fuel 2008,87:1348-1354.
    [8]A.N. Pour, Y. Zamani, K.J. Jozani, J.Y. Mehr. The influence of La2O3 and TiO2 on NiO/MgO/a-Al2O3 catalyst in CO2-steam reforming of methane to syngas, React. Kinet. Catal. Lett.2005,86:157-162.
    [9]V.A. Sadykov, Y.V. Frolova, G.M. Alikina, A.I. Lukashevich, S. Neophytides. Performance of Pr-doped ceria promoted by Pt in syngas generation from methane at short contact times, React. Kinet. Catal. Lett.2005,86:29-36.
    [10]D. Li, F. Li, J. Ren, and Y.H. Sun. Rare earth-modified bifunctional Ni/HY catalysts, Appl. Catal. A:Gen.2003,241:15-24.
    [11]R. Bouarab, O. Cherifi, A. Auroux. Effect of the basicity created by La2O3 addition on the catalytic properties of Co(O)/SiO2 in CH4 + CO2 reaction, Thermochim. Acta 2005,434: 69-73.
    [12]Z.L. Zhang, X.E. Verykios, S.M. MacDonald, S. Affrossman. Comparative Study of Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts, J. Phys. Chem.1996,100:744-754.
    [13]V.A. Tsipouriari, X.E. Verykios. Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst, Catal. Today 2001,64:83-90.
    [14]A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios, C. Mirodatos. Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3Catalyst, J. Catal.1997,172:118-126.
    [15]V.A. Tsipouriari, Z. Zhang, X.E. Verykios. Catalytic Partial Oxidation of Methane to Synthesis Gas over Ni-Based Catalysts:I. Catalyst Performance Characteristics, J. Catal. 1998,179:283-291.
    [16]Z.L. Zhang, X.E. Verykios, Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts, Appl. Catal. A:Gen.1996,138:109-133.
    [17]Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima. Investigation of CH4 reforming with CO2 on meso-porous Al2O3-supported Ni catalyst, Catal. Lett.2003,89:121-127.
    [18]S. Wang, G.Q. Lu. Catalytic Activities and Coking Characteristics of Oxides-Supported Ni Catalysts for CH4 Reforming with Carbon Dioxide, Energy Fuels 1998,12:248-256.
    [19]E. Ruckenstein. Interactions between Ni and La2O3in Ni/La2O3Catalysts Prepared Using Different Ni Precursors, Y.H. Hu, J. Catal.1996,161:55-61.
    [20]Q.S. Jing, H. Lou, L.Y. Mo, J.H. Fei, X.M. Zheng. Combination of CO2 reforming and partial oxidation of methane over Ni/BaO-SiO2 catalysts to produce low H2/CO ratio syngas using a fluidized bed reactor, J. Mol. Catal. A:Chem.2004,212:211-217.
    [21]G. Sewell, C. O'Connor, E. Steen. Reductive amination of ethanol with silica-supported cobalt and nickel catalysts, Appl. Catal. A:Gen.1995,125:99-112.
    [22]F. Pompeo, N.N. Nichio, M.G. Gonzalez, M. Montes. Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming, Catal. Today 2005,107-108:856-862.
    [23]B.Q. Xu, J.M.Wei, Y.T. Yu, Y. Li, J.L. Li, Q.M. Zhu. Size Limit of Support Particles in an Oxide-Supported Metal Catalyst:Nanocomposite Ni/ZrO2 for Utilization of Natural Gas, J. Phys. Chem. B 2003,107:5203-5207.
    [24]M.C.J. Bradford, M.A. Vannice. CO2 reforming of CH4. Catal. Rev. Sci. Eng.1999,41: 1-42.
    [25]C.N. Triantafyllopoulos, S.G. Neophytides. Dissociative adsorption of CH4 on NiAu/YSZ: The nature of adsorbed carbonaceous species and the inhibition of graphitic C formation, J. Catal.2006,239:187-199.
    [26]D.L. Trimm. Catalysts for the control of coking during steam reforming, Catal. Today 1999, 49:3-10.
    [27]Z.Y. Hou, T. Yashima. Small Amounts of Rh-Promoted Ni Catalysts for Methane Reforming with CO2, Catal. Lett.2003,89:193-197.
    [28]Z.Y. Hou, T. Yashima, Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl. Catal. A:Gen.261 (2004) 205-209.
    [29](a) P. Chen, Z.Y. Hou, X.M. Zheng, Production of Synthesis Gas via Methane Reforming with CO2 on Ni/SiO2 Catalysts Promoted by Alkali and Alkaline Earth Metals,2005,32: 847-851; (b) T. Yashima. High coke-resistance of K-Ca-promoted Ni/a-Al2O3 catalyst for CH4 reforming with CO2, React. Kinet. Catal. Lett.2005,84:229-235.
    [30]V.C.H. Kroll, H.M. Swaan, C. Mirodatos. Methane Reforming Reaction with Carbon Dioxide Over Ni/SiO2Catalyst:Ⅰ. Deactivation Studies, J. Catal.1996,161:409-422.
    [31]V.C.H. Kroll, H.M. Swaan, S. Lacombe, C. Mirodatos. Methane Reforming Reaction with Carbon Dioxide over Ni/SiO2Catalyst:Ⅱ. A Mechanistic Study, J. Catal.1996,164: 387-398.
    [32]S. Wang, G.Q. Lu. A comprehensive study on carbon dioxide reforming of methane over Ni/g-Al2O3 catalysts, Ind. Eng. Chem. Res.1999,38:2615-2625.
    [33]J.H. Lee, E.G. Lee, O.S. Joo, K.D. Jung. Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming of methane, Appl. Catal. A:Gen.2004,269:1-6.
    [34]A. Santos, M. Menendez, A. Monzon, J. Santamaria, E.E. Miro, E.A. Lombardo. Oxidation of Methane to Synthesis Gas in a Fluidized Bed Reactor Using MgO-Based Catalysts, J. Catal.1996,158:83-91.
    [35]G.S. Gallego, F. Mondragon, J. Barrault, J.M. Tatibouet, C. Batiot-Dupeyrat. CO2 reforming of CH4 over La-Ni based perovskite precursors, Appl. Catal. A:Gen.2006,311: 164-171.
    [1]M.C.J. Bradford, M.A. Vannice,CO2 Reforming of CH4,Catal. Rev.-Sci. Eng.,1999,41(1): 1-42.
    [2]Y. H. Hu and E. Ruckenstein, Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming, Adv. Catal.2004,48:297-345.
    [3]J.B. Claridge, M.L.H. Green, S.C. Tsang, A.P.E. York, A.T. Ashcroft, P.D. Battle, A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas. Catal. Lett.1993,22:299-305.
    [4](a) J.M. Wei, E. Iglesia, Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters and Turnover Rate Comparisons among Noble Metals, J. Phys. Chem. B 2004,108:4094-4103. (b) J.M. Wei, E. Iglesia, Reaction Pathways and Site Requirements for the Activation and Chemical Conversion of Methane on Ru-Based Catalysts, J. Phys. Chem. B 2004,108: 7253-7262.
    [5](a) J.M. Wei, E. Iglesia, Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts, J. Catal.2004, 224:370-383. (b) J.M. Wei, E. Iglesia, Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium, J. Catal.2004,225:116-127.
    [6]J.M. Wei, E. Iglesia, Structural and Mechanistic Requirements for Methane Activation and Chemical Conversion on Supported Iridium Clusters, Angew. Chem. Int. Ed.2004,43: 3685-3688.
    [7]J.M. Wei, E. Iglesia, Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts, Phys. Chem. Chem. Phys.2004, 6:3754-3759.
    [8]A.J. Dillen, R.J.A.M. Terorde, DJ. Lensveld, J.W. Geus, K.P. de Jong, Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes, J. Catal.2003,216:257-264.
    [9]H.H. Kung, M.C. Kung, En route to complete design of heterogeneous catalysts, Top.Catal. 2005,34:77-83.
    [10]R. Molina, G. Poncelet, a-Alumina-Supported Nickel Catalysts Prepared from Nickel Acetylacetonate:A TPR Study, J. Catal.1998,173:257-267.
    [11]R. Molina, M.A. Centeno, G. Poncelet, a-Alumina-Supported Nickel Catalysts Prepared with Nickel Acetylacetonate.1. Adsorption in the Liquid Phase, J. Phys. Chem. B 1999,103: 6036-6046.
    [12](a) R. Molina, G. Poncelet, a-Alumina-Supported Nickel Catalysts Prepared with Nickel Acetylacetonate.2. A Study of the Thermolysis.of the Metal Precursor, J. Phys. Chem. B 1999,103:11290-11296. (b) R. Molina, G. Poncelet, Hydrogenation of Benzene over Alumina-Supported Nickel Catalysts Prepared from Ni(II) Acetylacetonate, J. Catal.2001,199:162-170.
    [13]D. Brulhwiler, H. Frei, Structure of Ni(II) and Ru(III) Ammine Complexes Grafted onto Mesoporous Silicate Sieve. J. Phys. Chem. B 2003,107:8547-8556.
    [14]L. Medici, R. Prins,Structure of Oxidic NiMo/SiO2 Hydrotreating Catalyst Precursors, J. Catal.1996,163:28-37.
    [15](a) N.F. Curtis, Y.M. Curtis, Some Nitrato-Amine Nickel(II) Compounds with Monodentate and Bidentate Nitrate Ions, Inorg. Chem.1965,4:804-809. (b) M. Salavati-Niasari, Nanoscale microreactor-encapsulation 14-membered nickel(II) hexamethyl tetraaza:synthesis, characterization and catalytic activity, J. Mol. Catal. A.2005, 229:159-164.
    [16]R. Cattaneo, T. Shido, R. Prins, The Relationship between the Structure of NiMo/SiO2 Catalyst Precursors Prepared in the Presence of Chelating Ligands and the Hydrodesulfurization Activity of the Final Sulfided Catalysts, J. Catal.1999,185:199-212.
    [17]J.F. Lambert, M. Hoogland, M. Che, Control of the NiⅡ/Surface Interaction in the First Steps of Supported Catalyst Preparation:The Interfacial Coordination Chemistry of [Ni(en)2(H2O)2]2+, J. Phys. Chem. B 1997,101:10347-10355.
    [18]K.A. Tarasov, D. O'Hare, Solid-State Chelation of Metal Ions by Ethylenediaminetetraacetate Intercalated in a Layered Double Hydroxide, Inorg. Chem.2003,42:1919-1927.
    [19]R. Takahashi, S. Sato, T. Sodesawa, M. Kato, S. Takenaka, S. Yoshida, Structural and Catalytic Properties of Ni/SiO2 Prepared by Solution Exchange of Wet Silica Gel, J. Catal. 2001,204:259-271.
    [20]L. Stievanoa, N. Kemachea, N. Chakrounea, J.F. Lambert, Synthesis and characterisation of highly dispersed Ni/SiO2 catalysts prepared by gas-phase impregnation/decomposition (GPI/D) of a Ni(Ⅱ) (3-diketonate precursor complex, Catal. Lett.2005,100:169-176.
    [21]C. K. Jorgensen, Comparative crystal field studies of some ligands and the lowest singlet state of paramagnetic nickel(II) complexes, Acta Chem. Scand.1955,9:1362-1377.
    [22]N. Ye, G. Park, A.M. Przyborowska, P. E. Sloan, T. Clifford, C. B. Bauer, G.A. Broker, R. D. Rogers, R. Ma, S.V. Torti, M.W. Brechbiel, R.P. Planalp, Nickel(Ⅱ), copper(Ⅱ) and zinc(Ⅱ) binding properties and cytotoxicity of tripodal, hexadentate tris(ethylenediamine)-analogue chelators, Dalton Trans.2004,512:1304-1311.
    [23]P. Burattin, M. Che, C. Luis, Characterization of the Ni(Ⅱ) Phase Formed on Silica Upon Deposition-Precipitation, J. Phys. Chem. B 1997,101:7060-7074.
    [24]P. Burattin, M. Che, C. Luis, Molecular Approach to the Mechanism of Deposition-Precipitation of the Ni(II) Phase on Silica, J. Phys. Chem. B 1998,102: 2722-2732.
    [25]F. Negrier, E. Marceau, M. Che, D. de Caro, Role of ethylenediamine in the preparation of alumina-supported Ni catalysts from [Ni(en)2(H2O)2] (NO3)2:from solution properties tonickel particles, C. R. Chimie 2003,6:231-240.
    [26]I.V. Babich, Y.V. Plyuto, A.D.V. Langeveld, J.A. Moulijin, Role of the support nature in chemisorption of Ni(acac)2 on the surface of silica and alumina, Appl. Surf. Sci.1997,115: 267-272.
    [27]J. Ryczkowski, IR spectroscopy in catalysis, Catal. Today 2001,68:263-381.
    [28]O. Clause, M. Kermarec, L. Bonneviot, F. Villain, M. Che, Nickel(II) ion-support interactions as a function of preparation method of silica-supported nickel materials. J. Am. Chem. Soc. 1992,114:4709-4717.
    [29](a) W. Wang, Y. Liu, C. Xu, C. Zheng, G. Wang, Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach, Chem. Phys. Lett.2002,362:119-122. (b) S. Takenaka, S. Kobayashi, H. Ogihara, K. Otsuka, Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber, J. Catal.2003,217:79-87.
    [30]J. Zielinski,. Morphology of nickel/alumina catalysts, J. Catal 1982,76:157-163.
    [31]R. Molina, G. Poncelet, α-Alumina-Supported Nickel Catalysts Prepared from Nickel Acetylacetonate:A TPR Study, J. Catal.1998,173:257-267.
    [32](a) Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima, A Novel KCaNi/a-Al2O3 Catalyst for CH4 Reforming with CO2, Catal. Lett.2003,87:37-42. (b) Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima, Investigation of CH4 reforming with CO2 on meso-porous Al203-supported Ni catalyst. Catal. Lett.2003,89:121-127. (c) Z.Y. Hou, T. Yashima, Small Amounts of Rh-Promoted Ni Catalysts for Methane Reforming with CO2, Catal. Lett.2003,89:193-197.
    [33](a) Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima, Characterization of Ca-promoted Ni/a-Al2O3 catalyst for CH4 reforming with CO2. Appl. Catal. A:. Gen.2003,253:381-387. (b) Z.Y. Hou, T. Yashima, Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2, Appl. Catal. A:Gen.2004,261:205-209. (c) Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima, Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane, Appl. Surf. Sci.2004,233:58-63.
    [34]K. Tomishige, Syngas production from methane reforming with CO2/H2O and O2 over NiO-MgO solid solution catalyst in fluidized bed reactors, Catal. Today 2004,89:405-418.
    [1]R. Bouarab, O. Akdim, A. Auroux, O. Cherifi, C. Mirodatos. Effect of MgO additive on catalytic properties of Co/SiO2 in the dry reforming of methane, Appl. Catal. A:Gen.2004, 264:161-168.
    [2]Y.Q. Chen, C.W. Hu, M.C. Gong, X.H. Zhu, Y. Chen, A.M. Tian. Chemisorption of methane over Ni/Al2O3 catalysts, J. Mol. Catal. A:Chem.2000,152:237-244.
    [3]E.M. Wilcox, G.W. Roberts, J.J. Spivey. Direct catalytic formation of acetic acid from CO2 and methane, Catal. Today 2003,88:83-90.
    [4]O. Demoulin, M. Navez, P. Ruiz. Origin of transient species present on the surface of a PdO/γ-Al2O3 catalyst during the methane combustion reaction, Catal. Today 2006,112: 153-156.
    [5]V.C.H. Kroll, H.M. Swaan, S. Lacombe, C. Mirodatos. Methane reforming Reaction with carbon dioxide over Ni/SiO2 Catalyst:Ⅱ. A mechanistic study, J. Catal.1997,164:387-398.
    [6]L.Y. Chen, L.W. Lin, Z.S. Xu, T. Zhang, Q. Xin, P.L. Ying, G.Q. Li, C. Li. Fourier transform-infrared investigation of adsorption of methane and carbon monoxide on HZSM-5 and Mo/HZSM-5 zeolites at low temperature, J. Catal.1996,161:107-114.
    [7]V.B. Kazansky, A.I. Serykh, E.A. Pidko. DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions:methane adsorption, J. Catal.2004,225:369-373.
    [8]F. Solymosi, T.S. Zakar. FT-IR study on the interaction of CO2 with H2 and hydrocarbons over supported Re, J. Mol. Catal. A:Chem.2005,235:260-266.
    [9]C.N. Triantafyllopoulos, S.G. Neophytides. Dissociative adsorption of CH4 on NiAu/YSZ:The nature of adsorbed carbonaceous species and the inhibition of graphitic C formation, J. Catal. 239(2006)187-199.
    [10]Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima. Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2 Appl. Catal. A:Gen.2003,253:381-387.
    [11]Z.Y. Hou, T. Yashima. Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl. Catal. A:Gen.2004,261:205-209.
    [12]H.L. Chiang, Y.S. Ho, K.H. Lin, C.H. Leu. Carbon fiber formation on Pd and Ni catalysts by acetylene decomposition, J. Alloy. Compd.2007,434-435:846-849.
    [13]H. Darmstadt, L. Summchen, J.M. Ting, U. Roland, S. Kaliaguine, C. Roy. Effects of surface treatment of the bulk chemistry and structure of vapor grown carbon fibers, Carbon 1997,35:1581-1585.
    [14]A. Bottcher, F. Hennrich, H. Rosner, S. Malik, M.M. Kappes, S. Lichtenberg, G. Schoch, O. Deutschmann. Growth of novel phases by methane infiltration of free-standing single-walled carbon babotube films, Carbon 2007,45:1085-1096.
    [15]D.L. Trimm. Catalysts for the control of coking during steam reforming, Catal. Today 1999, 49:3-10.
    [16]Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima. Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane, Appl. Surf. Sci.2004,233:58-68.
    [17]Y.H. Hu, E. Ruckenstein. Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming, Adv. Catal.48 (2004) 297-345.
    [18]M. Aresta. Carbon dioxide recovery and utilization, ACS Symp. Ser. (Utilization of Greenhouse Gases) 2003,852:2-39.
    [19]Y.H. Hu, E. Ruckenstein. Binary MgO-based solid solution catalysts for CH4 conversion to syngas, Catal. Rev.2002,44:423-453.
    [20]R.M. Watwe, H.S. Bengaard, J.R. Rostrup-Nielsen, J.A. Dumesic, J.K. N(?)rskov. Theoretical Studies of Stability and Reactivity of CHx Species on Ni(111), J. Catal.2000,189:16-30.
    [21]H.S. Bengaard, J.K. Norskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, J.R. Rostrup-Nielsen, Steam Reforming and Graphite Formation on Ni Catalysts, J. Catal.2002, 209:365-384.
    [22]E. Ruckenstein, H.Y. Wang. Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/γ-Al2O3 Catalysts, J. Catal.2002,205:289-293.
    [23]Z.Y. Hou, T. Yashima. Small Amounts of Rh-Promoted Ni Catalysts for Methane Reforming with CO2, Catal. Lett.2003,89:193-197.
    [1]Q.S. Jing, H. Lou, L.Y. Mo, J.H. Fei, X.M. Zheng. Combination of CO2 reforming and partial oxidation of methane over Ni/BaO-SiO2 catalysts to produce low H2/CO ratio syngas using a fluidized bed reactor. J Mol Catal A 2004;212(1-2):211-217.
    [2]Q.S. Jing, H. Lou, J.H. Fei, Z.Y. Hou, X.M. Zheng. Syngas production from reforming of methane with CO2 and O2 over Ni/SrO-SiO2 catalysts in a fluidized bed reactor. Int J Hydrogen Energy 2004;29(12):1245-1251.
    [3]J. Gao, Z.Y. Hou, J.Z. Guo, Y.H. Zhu, X.M. Zheng. Catalytic conversion of methane and CO2 to synthesis gas over a La2O3-modified SiO2 supported Ni catalyst in fluidized-bed reactor. Catal Today 2008;131(1-4):278-284.
    [4]J. Gao, J.Z. Guo, D. Liang, Z.Y. Hou, J.H. Fei, X.M. Zheng. Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2-ZrO2/SiO2 supported Ni catalysts. Int J Hydrogen Energy 2008;33(20):5493-5500.
    [5]J.Z. Guo, Z.Y. Hou, J. Gao, X.M. Zheng. Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor. Fuel 2008;87(7):1348-1354.
    [6]B.Q. Xu, J.M. Wei, Y.T. Yu, Y. Li, J.L. Li, Q.M. Zhu. Size Limit of Support Particles in an Oxide-Supported Metal Catalyst:Nanocomposite Ni/ZrO2 for Utilization of Natural Gas J Phys Chem B 2003;107(22):5203-5207.
    [7]Q.H. Zhang, Y. Li, B.Q. Xu. Reforming of methane and coalbed methane over nanocomposite Ni/ZrO2 catalyst. Catal Today 2004;98(4):601-605.
    [8]Z.Y. Hou, J. Gao, J.Z. Guo, D. Liang, H. Lou, X.M. Zheng. Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor. J Catal 2007;250(2):331-341.
    [9]Z.Y. Hou, T. Yashima. Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl Catal A 2004;261(2):205-209.
    [10]Z.Y. Hou, O. Yokota, T. Tanaka, T. Yashima. A novel supported KCaNi catalyst for CH4 reforming with CO2. Catal Lett 2003;87(1):37-42.
    [11]J.H. Bitter, K. Seshan. Lercher JA. Mono and Bifunctional Pathways of CO2/CH4Reforming over Pt and Rh Based Catalysts. J Catal 1998;176(1):93-101.
    [12]J.Z. Guo, Z.Y. Hou, J. Gao, X.M. Zheng. DRIFT Study of Adsorption and Activation of Methane and Carbon Dioxide over Different Sized Ni Catalysts. Chin J Catal 2007;28(1):22-26.
    [13]H.Y. Wang, H.M. Liu, B.Q. Xu. Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal-support interaction. J Mol Catalo A 2009;299(1-2):45-52.
    [1]D. Mohan, C. U. Pittman, Jr., P. H. Steele, Pyrolysis of Wood/Biomass for Bio-oil:A Critical Review. Energy & Fuels,2006,20:848-889.
    [2]F. Maa, M.A. Hannab. Bio-diesel as an alternative fuel for diesel engines—A review. Renewable and Sustainable Energy Reviews 2009,13:653-662.
    [3]J. Van Gerpen, Biodiesel processing and production. Fuel Processing Technology 2005,86: 1097-1107.
    [4]G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science 2005,308: 1446-1450.
    [5]http://beag.ag.utk.edu/pp/biodiesel.pdf.
    [6]A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner. Improved utilisation of renewable resources:New important derivatives of glycerol. Green Chem.,2008,10:13-30.
    [7]C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. (Max) Lu. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev.,2008, 37,527-549.
    [8]S. Demirel, P. Kern, M. Lucas, P. Claus, Oxidation of mono- and polyalcohols with gold: Comparison of carbon and ceria supported catalysts. Catal. Today 2007,122:292-300.
    [9]S. Demirel-Gulen, M. Lucas, P. Claus, Liquid phase oxidation of glycerol over carbon supported gold catalysts.Catal. Today 2005,102-103:166-172.
    [10]R. Garcia, M. Besson, P. Gallezot, Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A Gen.1995,127:165-176.
    [11]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. J. Hutchings, Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys. Chem. Chem. Phys.2003,5: 1329-1336.
    [12]H. Kimura, K. Tsuto, T. Wakisaka, Y. Kazumi, Y. Inaya, Selective oxidation of glycerol on platinum-bismuth catalyst. Appl. Catal. A Gen.1993,96:217-228.
    [13]C.L. Bianchi, P. Canton, N. Dimitratos, F. Porta, L. Prati, Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal. Today 2005, 102-103:203-212.
    [14]N. Dimitratos, C. Messi, F. Porta, L. Prati, A. Villa, Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water. J. Mol. Catal. A.2006,256:21-28.
    [15]N. Dimitratos, F. Porta, L. Prati, Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method Synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl. Catal. A Gen.2005,291:210-214.
    [16]N. Dimitratos, J.A. Lopez-Sanchez, D. Lennon, F. Porta, L. Prati, A. Villa, Effect of particle size on monometallic and bimetallic (Au,Pd)/C on the liquid phase oxidation of glycerol. Catal. Lett.2006,108:147-153.
    [17]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, G. J. Hutchings, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem. Commun. 2002,696-697.
    [18]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. A. Attard, G. J. Hutchings, Oxidation of glycerol using supported gold catalysts. Top. Catal.27 (2004) 131-136.
    [19]F. Porta, L. Prati, Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:an insight into reaction selectivity. J. Catal.2004,224:397-403.
    [20]W.C. Ketchie, Y.L. Fang, M.S. Wong, M. Murayama, R.J. Davis, Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J. Catal.2007,250: 94-101.
    [21]D. Wang, A. Villa, F. Porta, D. Su and L. Prati, Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. Chem. Commun.2006,1956-1958.
    [22]A. Villa, C. Campione, L. Prati. Bimetallic gold/palladium catalysts for the selective liquid phase oxidation of glycerol. Catal. Lett.2007,115:133-136.
    [23]L. Prati, A. Villa, C. Campione, P. Spontoni, Effect of gold addition on Pt and Pd catalysts in liquid phase oxidations. Top. Catal.2007,44:319-324.
    [24]W.C. Ketchie, M. Murayama, R.J. Davis, Selective oxidation of glycerol over carbon-supported AuPd catalysts.J. Catal.2007,250:264-273.
    [25]S. Demirel, K. Lehnert, M. Lucas, P. Claus, Use of renewables for the production of chemicals:Glycerol oxidation over carbon supported gold catalysts. Appl. Catal. B.2007,70: 637-643.
    [26]A. Abbadi, H. van Bekkum, Selective chemo-catalytic routes for the preparation of β-hydroxypyruvic acid. Appl. Catal., A,1996,148:113-122.
    [27]P. McMorn, G. Roberts and G. J. Hutchings. Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts. Catal. Lett.,1999,63:193-197.
    [28]P. Gallezot, R. De Mdsanstoume, Y. Christidis, G. Mattioda, A. Schouteeten, Catalytic oxidation of glyoxal to glyoxylic acid on platinum metals. J. Catal.1992,133,479-485.
    [29]L. Lemus-Yegres, I. Such-Basanez, C. Salinas-Martinez de Lecea, P. Serp, M.C. Roman-Martinez. Carbon 2006,44:587-610.
    [30]A. Mudalige, J.E. Pemberton. Raman spectroscopy of glycerol/D2O solutions. Vib Spectrosc 2007,45:27-35.
    [31]E. Mendelovici, R.L. Frost, T. Klooprogge. Cryogenic Raman spectroscopy of glycerol. J Raman Spectrosc.2000,31:1121-1126.
    [32]Kojima S. Anomalous behaviour of the O-H stretching vibrational mode in the liquid-glass transition of glycerol. J Mol Struct 1993,294:193-195.
    [33]M.H. Liu, Y.L. Yang, T. Zhu, Z.F. Liu, Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon 2005,43:1470-1478.
    [34]J.L. Lim, W.S. Yun, M.H. Yoon, S.K. Lee, S.K. Kim, Selective thiolation of single-walled carbon nanotubes. Synth. Met.2003,139:521-527.
    [35]Y. Peng, H. Liu, Effects of Oxidation by Hydrogen Peroxide on the Structures of Multiwalled Carbon Nanotubes. Ind. Eng. Chem. Res.45 (2006) 6483-6488.
    [36]A. L. M. Reddy, S. Ramaprabhu, Hydrogen storage properties of nanocrystalline Pt dispersed multi-walled carbon nanotubes. Int. J. Hyd. Energy,2007,32:3998-4004.
    [37]C.M. Chen, Y. M. Dai, J. G. Huang, J. M. Jehng, Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon,2006,44:1808-1820.
    [38]J. Zhang, H. L. Zou, Q. Qing, Y. L. Yang, Q. W. Li, Z. F. Liu, X. Y. Guo, Z. L. Du, Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. J. Phys. Chem. B, 2003,107:3712-3718.
    [39]M. K. Kumar, S. Ramaprabhu. Nanostructured Pt Functionlized Multiwalled Carbon Nanotube Based Hydrogen Sensor. J. Phys. Chem. B.2006,11:11291-11298.
    [40]D.J. Guo, H. L. Li, High Dispersion and Electrocatalytic Properties of Platinum on Functional Multi-Walled Carbon Nanotubes. Electroanalysis.2005,17,869-872.
    [41]R. Q. Yu, L. W. Chen, Q. P. Liu, J. Y. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G. Q. Xu, T. S. Andy Hor, Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chem. Mater.1998,10,718-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700