透氧膜反应器焦炉煤气重整制氢催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦炉煤气是炼焦过程的副产物,含有大量的H_2、CH_4和CO组份,是一种优良的制氢原料。我国焦炉煤气虽然资源丰富,但实际利用的数量和水平很低,造成了严重的资源浪费和环境污染。氢作为一种清洁能源,受到世界各国的普遍重视。如将焦炉煤气进行回收并用于制氢,不仅能够产生巨大的经济效益,同时也为环境保护做出重要的贡献。
     焦炉煤气中甲烷的部分氧化重整是获得H_2的有效途径,但常规甲烷部分氧化重整(POM)需要用纯氧作为反应原料气,这导致过程成本的增加。混合导体透氧膜构建的膜反应器应用于POM过程,使得制氧过程与催化氧化过程耦合在一个反应器内完成,不仅简化了操作,也降低了生产成本。本论文对焦炉煤气甲烷部分氧化重整热力学平衡进行了计算,实验考察了透氧膜反应器内不同催化剂催化性能,提出了透氧膜反应器中焦炉煤气部分氧化催化重整的反应机理,研究开发了焦炉煤气水蒸气重整反应的催化剂。
     论文对焦炉煤气甲烷部分氧化重整进行了热力学分析。考察焦炉煤气原始氢含量、CH_4/O_2摩尔比和反应温度及水蒸气加入量对焦炉煤气甲烷部分氧化重整效果的影响。计算表明,最佳的CH_4/O_2比应该在2左右。低于此值后,氢和一氧化碳的选择性会急剧变小;而高于此值时甲烷转化率略微减少,但固态碳生成或一氧化碳的选择性降低。反应温度的升高有利于甲烷转化率、氢和一氧化碳选择性的提高,也有利于减少固体碳的生产量。适量水蒸气的添加可以调节反应的热平衡,也可以少许增加反应气的氢含量。
     采用浸渍法制备碱金属氧化物(Li_2O)和稀土金属氧化物(La_2O_3或CeO_2)助剂改性的Ni/Li_2O/REOx/γ-Al_2O_3 (REOx为La_2O_3或CeO_2)催化剂,测定其在BaCo_(0.7)Fe_(0.2)Nb_(0.1)O_(3-δ) (BCFNO)透氧膜反应器中焦炉煤气甲烷部分氧化重整时的透氧性能。CeO_2助剂修饰Ni/Li_2O/γ-Al_2O_3催化剂,产生的透氧量随CeO_2增大而增大。而La_2O_3助剂修饰Ni/Li_2O/γ-Al_2O_3催化剂,适量La_2O_3有利于提高透氧量,La_2O_3过高反而会降低透氧量。Li_2O助剂修饰的Ni/La_2O_3/γ-Al_2O_3催化剂与La_2O_3修饰的催化剂效果相近。
     在BCFNO透氧膜反应器上对NiO/MgO固溶体催化剂进行了100小时的考察,结果表明该催化剂重整反应性能较好。在875°C下分别获得17.2 mL/cm2/min透氧量、94.1%甲烷转化率、75%氢和108%一氧化碳选择性。长时间实验过程中膜反应器和催化剂未出现异常,表明此NiO/MgO固溶体催化剂具有较好的催化活性和稳定性。论文还对比分析了钴镁固溶体催化剂和镍镁固溶体催化剂在BCFNO透氧膜反应器内焦炉煤气甲烷部分氧化重整性能。
     根据实验结果推断了膜反应器中焦炉煤气重整反应的机理:首先是焦炉煤气中的H_2在催化剂活性组分Ni颗粒上解离,解离后的氢向高活性位迁移(“三相界面”)并与膜表面侧晶格氧(或O~(2-))反应生成H_2O。同时CH_4也可能在催化剂表面活性位上裂解,裂解后的碳沉积在催化剂表面。甲烷裂解后形成的氢迁移到三相界面和膜表面侧晶格氧(或O~(2-))反应生成H_2O。三相界面处形成的H_2O与催化剂表面沉积的碳反应,生成H_2和CO。未反应完的H_2O和剩余CH_4在催化层重整段发生水蒸气重整反应,生成H_2和CO,致使H_2和CO选择性增大。
     透氧膜反应器中的催化剂功能分别在二个区域内实现:接近膜表面的催化区域使得氢解离而与膜透过的氧反应生成H_2O,氢可能是反应气体本身所带有的,或者是甲烷在催化剂上裂解所产生的。远离膜表面的催化区域实现了氧化反应产生的水与剩余甲烷的重整。
     采用镍镁固溶体催化剂研究了焦炉煤气中甲烷的水蒸气重整催化性能。考察Ni负载量、反应温度、水碳比等因素对催化活性的影响。结果表明:NiO/MgO固溶体催化剂具有良好的活性,重整过程中水碳比和反应温度对CH_4和CO_2转化率影响较大。在875oC,低水碳比(H_2O/CH_4=1)条件下进行了100 h稳定性实验,CH_4转化率保持在97%左右,产生的氢为原始氢2.5倍。镍镁固溶体催化剂具有良好的催化活性和稳定性,适合于焦炉煤气在远离膜表面的催化区域内的水蒸气重整。
Coke oven gas (COG), a byproduct in the coke-making process, which mainly containing H_2, CH_4, CO, and small amounts of other matters, is a good raw material of H_2 production. The production of COG is huge in China, however only part of produced COG is simply utilized as fuel. A large amount of COG is directly burnt at the end of an opened chimney and then directly discharged into atmospheres, thus resulting in a serious air pollution. Hydrogen as a clean energy has been received a widespread attention around the world. Production of hydrogen by converting COG not only resolves the environment pollution problem but also brings down the cost of the hydrogen production.
     Partial oxidation of methane (POM) in COG is a promising technology and the most economic way to obtain hydrogen. However, the main difficulty with POM lied in the consumption of large quantities of expensive pure oxygen that was produced through cryogenic air separation process. Coupling POM with a mixed ionic and electronic conductor oxygen permeation membrane could allow for the separation of oxygen and the catalytic oxidation in one unit, therefore not only simplifing the operation unit, but also reducing the production cost. The thermodynamic analysis of the POM in COG is discussed in this paper. Then the performance of several catalysts packed on the BaCo0.7Fe0.2Nb0.1O3-δ(BCFNO) membrane reactor is investigated for catalytic partial oxidation reforming of COG. As well as the reaction pathways of the reforming of COG in BCFNO membrane reactor are proposed according to the investigations in different membrane reactor configurations and different kinds of gas. Finally a Ni-based catalyst for steam reforming of COG was reported.
     Firstly, the profound thermodynamic analysis of hydrogen production of COG by POM was presented in this paper. The effect of the original hydrogen, steam addition, reaction temperature, energy consumption of steam addition and the ratio of CH_4/O_2 on the conversion of CH_4 and the selectivity of H_2 or CO for COG reforming are carefully examined. The results show the optimization of CH_4/O_2 molar ratio should be 2. The H_2 and CO selectivity would decrease sharply, when the CH_4/O_2 molar ratio <2. However, when CH_4/O_2 molar ratio>2, CH_4 conversion would decrease slowly, while solid carbon would be generated, and CO selectivity would be decreased. With increase of reaction temperature, the CH_4 conversion, H_2 and CO selectivity would increase and the formation of solid carbon could be suppressed. The optimal steam addition could change the enthalpy of reaction, also could enhance the H_2 yields.
     Ni/Li_2O/REOx/γ-Al_2O_3 catalysts with different Li_2O contents and different REOx (La_2O_3 or CeO_2) contents were prepared by impregnation method and investigated the catalytic performance for POM in COG on BCFNO membrane reactor here. Results showed that the Ni/Li_2O/γ-Al_2O_3 catalysts modified by different CeO_2 contents were benefited to enhance oxygen permeation, and oxygen permeation increased with increasing the CeO_2 contents. For the Ni/Li_2O/γ-Al_2O_3 catalysts modified by different La_2O_3 contents, oxygen permeation increased firstly then decreased with increasing the La_2O_3 contents. And the effect of Li_2O on oxygen permeation was same to the Ni/Li_2O/γ-Al_2O_3 catalysts modified by La_2O_3.
     The catalytic performance for POM of COG of NiO/MgO solid solution catalyst packed on BCFNO membrane reactor is also investigated here. The reforming process is performed successfully: 94.1% of CH_4 conversion, 75% of H_2 selectivity, 108% of CO selectivity and 17.2 mL/cm2/min of oxygen permeation flux are achieved at 875 oC. The reaction has been steadily carried out for more than 100 h. The results showed that the NiO/MgO solid solution catalyst had a good catalytic activity and stability. Comparison over CoO/MgO solid solution and NiO/MgO solid solution catalyst for the performance of POM in BCFNO membrane reactor are also analyzed.
     According to the results of the reforming of COG in BCFNO membrane reactor, the reaction scheme was proposed that H_2 could be dissociated on the active Ni surface to H. Then H migrated to the“triphase boundary”reacted with lattice oxygen or oxygen ionic to form H_2O. The cracking of CH_4 also might be existed formed surface Ni ??? Cspecies and H. The H repeated former again. The oxidized product, H_2O can further react with the Ni ??? Cspecies, forming the metal Ni0, H_2 and CO. And also the H_2O formed could react with the residual CH_4 on the catalyst-bed to form H_2 and CO.
     The catalyst function was achieved in two regions in an oxygen permeation membrane reactor: H_2 dissociated and reacted with lattice oxygen or oxygen ionic to form H_2O near the membrane surface, The Hydrogen might come from the reaction gas or the cracking of CH_4 on catalyst. The H_2O formed could react with the residual CH_4 away from the membrane surface area.
     At last the steam reforming of COG for hydrogen production was investigated over the NiO/MgO solid solution catalysts reduced at high temperature. It was found that the NiO/MgO catalyst possessed good catalytic activity, and the conversions of CH_4 and CO_2 were greatly affected by the reaction temperature and water to methane (S/C) mole ratio. During the tested period of 100 h under a low S/C ratio of 1.0 at 875 oC, the conversions of CH_4 kept constant values around 97% and the hydrogen volume content was enhanced from 58.2% in the original COG to 77.7% by 1.5 times. These results show that the NiO/MgO catalyst was efficient and stable for the steam reforming of COG to amplify hydrogen in COG.
引文
[1] Yao R M, Li B Z, Steemer Koen. Energy policy and standard for built environment in china [J]. Renewable Energy, 2005, 30: 1973-1988.
    [2] Fukasaku Y. Energy and environment policy integration: the case of energy conservation policies and technologies in Japan [J]. Energy policy, 1995, 23(12): 1063-1076.
    [3] DovìV G, Friedler F, Huisingh D, Kleme? J J. Cleaner energy for sustainable future [J]. J.Cleaner Production., 2009, 17(10): 889-895.
    [4] Stambouli A B, Traversa E. Solid oxide fuel cells(SOFCs):a review of an environmentally clean and efficient source of energy [J]. Renewable and sustainable energy reviews, 2002, 6(5): 433-455.
    [5] Lai B-K, Xiong H, Tsuchiya M, Johnson A C, Ramanathan S. Microstructure and Microfabrication Considerations for Self-Supported On-Chip Ultra-Thin Microsolid Oxide Fuel Cell Membranes [J]. Fuel Cells, 2009, 9(5): 699-710.
    [6] Ahmed S, Krumpelt M. Hydrogen from hydrocarbon fuels for fuel cells [J]. Int. J. Hydrogen Energy., 2001, 26: 291-301.
    [7] Freni S, Calogero G, Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions [J]. J. Power Sources., 2000, 87:28-38
    [8] Meng Ni, Michael K H Leung, Sumathy K, Dennis Y C Leung. Potential of renewable hydrogen production for energy supply in Hong Kong [J]. Int. J. Hydrogen Energy., 2006, 31(10): 1401-1412.
    [9] Iwasaki W. A consideration of power density and hydrogen production and utilization technologies [J]. Int. J. Hydrogen Energy., 2003, 28: 1325-1332.
    [10] Midilli A, Dincer I. Key strategies of hydrogen energy systems for sustainability [J]. Int. J. Hydrogen Energy., 2007, 32: 511-524.
    [11] Forsberg C W. Future hydrogen markets for large-scale hydrogen production systems [J]. Int. J. Hydrogen Energy., 2007, 32: 431-439.
    [12] McLellan B, Shoko E, Dicks A L, Diniz da Costa J C. Hydrogen production and utilisation opportunities for Australia [J]. Int. J. Hydrogen Energy., 2005, 30(6): 669-679.
    [13] Thomas C E, James B D, LomaxJr F D, KuhnJr I F. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline? [J]. Int. J. Hydrogen Energy., 2000, 25: 551-567.
    [14] Li Z, Gao D, Chang L, Liu P, Pistikopoulos E N. Coal-derived methanol for hydrogen vehicles in china: energy, environment and economic analysis for distributed reforming [J]. Chemical Engineering research and design, 2010, 88: 73-80.
    [15] Nishikawa H, Sasou H, Kurihara R, Nakamura S, Kano A, Tanaka K, Aoki T, Ogami Y. High fuel utilization operation of pure hydrogen fuel cells [J]. Int. J. Hydrogen Energy, 2008, 33: 6262-6269.
    [16] Granovskii M, Dincer I, Rosen M A. Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles [J]. J. Power Sources., 2006, 157: 411-421.
    [17]张学镭.焦炉煤气合成甲醇和发电系统关键技术研究:学位论文,北京:华北电力大学, 2007.
    [18] Joseck F, Wang M, Wu Y. Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills [J]. Int. J. Hydrogen Energy., 2008, 33: 1445-1454.
    [19]张建隽.剩余焦炉煤气利用途径[J].河北化工, 2009, 32(6):25-27.
    [20] Cormos C C, Starr F, Tzimas E. Use of lower grade coals in IGCC plants with carbon capture for the co-production of hydrogen and electricity [J]. Int. J. Hydrogen Energy., 2010, 35: 556-567.
    [21] Onozaki M, Watanabe K, Hashimoto T, Saegusa H, Katayama Y. Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas [J]. Fuel, 2006, 85(2):143-9.
    [22] Cormos C C, Starr F, Tzimas E, Peteves S. Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture [J]. Int. J. Hydrogen Energy., 2008, 33: 1286-1294.
    [23]殷瑞钰.节能、清洁生产、绿色制造与钢铁工业的可持续发展[J].钢铁, 2002, 37(8): 1.
    [24]徐匡迪.中国钢铁工业的发展和技术创新[J].钢铁, 2008, 43(2): 1.
    [25]殷瑞钰,张春霞.钢铁企业功能拓展是实现循环经济的有效途径[J].钢铁, 2005, 40(7):
    [26]殷瑞钰.关于新一代钢铁制造流程的命题[J].上海金属, 2006, 28(4): 1.
    [27]汪家铭.制合成气焦炉煤气的净化及转化技术[J].煤质技术, 2007, 6(3-4):53-55.
    [28]高志军,张瑞刚,杜然,张志海.焦炉煤气制取氢气后的利用[J].燃料与化工, 2007, 38(5): 41-43.
    [29] Zhang Y Y, Li Q, Shen P J, Liu Y, Yang Z B, Ding W Z, Lu X G. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. Int. J. Hydrogen Energy., 2008, 33: 3311-3319.
    [30] Yang Z B, Ding W Z, Zhang Y Y, Lu X G, Zhang Y W, Shen P J. Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst [J]. Int. J. Hydrogen Energy, 2010, 35(12):6239-6247.
    [31] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics [J]. Energy&Fuels, 2009, 23: 414-421.
    [32] Yang Z B, Zhang Y Y, Ding W Z, Zhang Y W, Shen P J, Zhou Y D, Liu Y, Huang S Q, Lu X G. Hydrogen production from coke oven gas over LiNiREOx/γ-Al2O3 catalyst modified by rare earth metal in a membrane reactor [J]. J .Natural Gas Chemistry, 2009, (18):407-414.
    [33] Yang Z B, Zhang Y Y, Wang X G, Zhang Y W, Lu X G, Ding W Z. Steam Reforming of Coke Oven Gas for Hydrogen Production over NiO/MgO Solid Solution Catalyst [J]. Energy&Fuels, 2010, 24(2):785-788.
    [34] Peńa M A, Gómez J P, Fierro J L. Review: New catalytic routes for syngas and hydrogen production [J]. Appl. Catal. A: Gen., 1996, 144:7-57.
    [35]马迪. Ni基整体式催化剂上甲烷部分氧化制合成气的研究:学位论文,成都:四川大学, 2006.
    [36] Corbo P, Migliardini F. Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts [J]. Int. J. Hydrogen Energy., 2007, 32: 55-66.
    [37] Heitens K, Lindberg S, Rokstad O A, Holmen A. Catalytic partial oxidation of methane to synthesis gas [J]. Catal. Today., 1995, 24: 211-216.
    [38] Zhang Y, Li Z X, Wen X B, Liu Y. Partial oxidation of methane over Ni/Ce-Ti-O catalysts [J]. Chem. Eng. Jour., 2006, 121: 115-123.
    [39]严前古,高利珍,远松月,于作龙. Pt/Al2O3和Pt/CeO2/Al2O3催化甲烷部分氧化制合成气反应[J].高等学校化学学报, 1998, 19(8): 1300-1303.
    [40]蒋玄珍.甲烷部分氧化制合成气[J].分子催化, 1995, 9(1):7-9.
    [41]严前古,于军胜,于作龙. Ni/Al2O3催化剂上甲烷部分氧化制合成气[J].应用化学, 1997,13(3):19-21.
    [42] Bouwmeester H J M. Dense ceramic membranes for methane conversion [J]. Catal. Today, 2003, 82:141-150.
    [43] Balachandran U, Ma B. Mixed-conducting dense ceramic membranes for air separation and natural gas conversion [J]. J. Solid State Electrochem, 2006,10: 617-624.
    [44] Hendriksen P V, Larsen P H, Mogensen M, Poulsen F W, Wiik K. Prospects and problems of dense oxygen permeable membranes [J]. Catal. Today, 2000, 56:283-295.
    [45]刘晰,陶家林,于作龙.加压下甲烷部分氧化反应中催化剂上积碳形态的研究[J].催化学报, 2003, 24(1):17-21.
    [46]董新法,姬涛,林维明. CH4, CO2与O2制合成气催化剂研究VI催化剂表面积碳种类和积碳动力学研究[J].分子催化, 2004, 18 (4): 261-265.
    [47]徐南平.面向应用过程的陶瓷膜材料设计、制备与应用[M].北京:科学出版社, 2005.5:128-268.
    [48]朱雪峰,杨维慎.混合导体透氧膜反应器[J].催化学报, 2009, 30(8):801-816.
    [49]邵宗平,熊国兴,杨维慎.系统选择钙钛矿型透氧膜材料[J].无机材料学报, 2001, 16(2): 297-304.
    [50] Teraoka Y, Zhang H M, Furukawa S, Yamazoe N. Oxygen permeation through perovskite -type oxides [J]. Chem. Lett., 1985:1743-1746.
    [51]佟建华,杨维慎.混合导体透氧膜的制备及应用[J].材料研究学报, 2001, 15(1):9-16.
    [52]杨丽.新型锆基钙钛矿型致密透氧膜的研究:学位论文,南京:南京工业大学, 2003.
    [53]朱德春.甲烷制合成气透氧膜反应器研究:学位论文,合肥:中国科技大学, 2003.
    [54]约瑟G.桑切斯·马可,西奥多T托迪斯著,张卫东,高坚译.催化膜及膜反应器[M].北京:化学工业出版社, 2004. 1:1-5.
    [55] Ten Elshof J E, Bouwmeester H J M, Verweij H. Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor [J]. Appl. Catal. A: Gen., 1995, 130:195.
    [56] Lu H, Tong J H, Cong Y, Yang W S. Partial oxidation of methane in Ba0.5Sr0.5Co0.8Fe0.2O3?δmembrane reactor at high pressures [J]. Catal. Today., 2005, 104:154-159.
    [57] Wang H H, Tablet C, Schiestel T, Werth S, Caro J. Partial oxidation of methane to syngas in a perovskite hollow fiber membrane reactor [J]. Catal. Commun., 2006, 7: 907-912.
    [58] Ishihara T, Tsuruta Y, Todaka T, Nishiguchi H, Takita Y. Fe doped LaGaO3 perovskite oxide as an oxygen separating membrane for CH4 partial oxidation [J]. Solid State Ionics, 2002, 152-153: 709-714.
    [59] Stephens W T, Mazanec T J, Anderson H U. Influence of gas floe rate on oxygen flux measurements for dense oxygen conducing ceramic membrane [J]. Solid State Ionics, 2000, 129: 271-284.
    [60] Sofia R. Overview on industrial membranes [J]. Catal. Today., 1995, 25:285.
    [61] Balachandran U, Dusek J T, Mieville R L, Poeppel R B, Kleefisch M S, Pei S, Kobylinski T P, Udovich C A, Bose A C. Dense ceramic membranes for partial oxidation of methane to syngas [J]. Appl. Catal. A: Genl., 1995, 133:19-29.
    [62] Balachandran U, Dusek J T, Maiya P S, Ma B, Mieville R L, Kleefisch M S, Udovich C A. Ceramic membrane reactor for converting methane to syngas [J]. Catal. Today., 1997, 36:265-272.
    [63] Dyer P N, Richards R E, Russek S L, Taylor D M. Ion transport membrane technology for oxygen separation and syngas production [J]. Solid State Ionics, 2000, 134: 21-33.
    [64] Chen C M, Bennett D L, Carolan M F, Foster E P, Schinski W L, Taylor D M. Ion syngas ceramic membrane technology for synthesis gas production [J]. Stud. Surf. Scil. Catal., 2004, 147: 55-60.
    [65] Chen C C, Prasad R, Gottzmann C F. Solid electrolyte membrane with porous catalytically-enhancing constituents(Assigned to Praxair Technology), US Patent 5938822 (1999).
    [66] Prasad R, Schwartz J, Robinson E T, Gottzmann C F. Syngas production using an oxygen transport membrane (Assigned to Praxair and BP Technology), Patent No: WO 02/100773 (2002).
    [67] Harada K, Domen K, Hara M, Tatsumi T. Oxygen-permeable membrances of Ba1.0Co0.7Fe0.2Nb0.1O3-δfor preparation of synthesis gas from methane by partial oxidation [J]. Chem. Lett., 2006, 35: 968-969.
    [68] Harada M, Domen K, Hara M, Tatsumi T. Ba1.0Co0.7Fe0.2Nb0.1O3-δdense ceramic as an oxygen permeable membrane for partial oxidation of methane to synthesis gas [J]. Chem. Lett., 2006, 35:1326-1327.
    [69] Shao Z P, Yang W S, Cong Y, Dong H, Tong J H, Xiong G X. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3?δoxygen membrane [J]. J. Membr. Sci., 2000,172 : 177.
    [70] Zhang P, Chang X F, Wu Z T, Jin W Q, Xu N P. Effect of the packing amount of catalysts on the partial oxidation of methane reaction in a dense oxygen-permeable membrane reactor [J]. Ind. Eng. Chem. Res., 2005, 44: 1954-1959.
    [71] Cheng Y F, Zhao H L, Teng D Q, Li F S, Lu X G, Ding W Z. Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3-δperovskite stabilized by low concentration of Nb for oxygen permeation membrane [J]. J. Membr. Sci., 2008, 322: 484-490.
    [72] Tsai C Y, Dixon A G, Moser W R, Ma Y H. Dense perovskite membrane reactors for partial oxidation of methane to syngas [J]. AIChE. J., 1997, 43: 2741-2750.
    [73] Tsai C Y, Dixon A G, Ma Y H, Moser W R, Pascucci M R. Dense perovskite La1-xAxFe1-yCoyO3-δ(A=Ba, Sr, Ca) membrane synthesis applications and characterization [J]. J. Am. Ceram. Soc., 1998, 81(6):1437-1444.
    [74] Jin W Q, Li S G, Huang P, Xu N P, Shi J, Lin Y S. Tubular lanthanum cobaltite perovskite type membrane reactors for partial oxidation of methane to syngas [J]. J. Membr. Sci., 2000, 166:13-22.
    [75] Jin W Q, Gu X, Li S S, Huang P, Xu N P, Shi J. Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas [J]. Chem. Eng. Sci., 2000, 55:2617.
    [76] Sammells A F, Schwarz M, Mackay R A, Barton T F, Peterson D R. Catalytic membrane reactors for spontaneous synthesis gas production [J]. Catal. Today, 2000, 56:325.
    [77] Schwartz M, White J H, Sammels A F. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them (Assigned to Eltron Research, Inc.), US Patent 6033632 (2000).
    [78] Shao Z P, Xiong G X, Dong H, Yang W S, Lin L W. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3?δoxygen-permeation dense ceramic reactor for partial oxidation of methane to syngas[J]. Separ. Purif. Technol., 2001, 25: 97-116.
    [79] Tong J H, Yang W S, Cai R, Zhu B C, Lin L W. Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas [J]. Catal. Lett., 2002, 78: 129-137.
    [80] Basile F, Fornasari G, Gazzano M, Kiennemann A, Vaccari A. Preparation and characterization of a stable Rh catalyst for the partial oxidation of methane [J]. J. Catal., 2003, 217: 245-252.
    [81]王桂茹.催化剂与催化剂作用(第二版)[M].大连:大连理工大学出版社, 2006: 19-107..
    [82]吉林大学化学系《催化剂作用基础》编写组.催化剂作用基础[M].北京:科学出版社, 1980.
    [83]德鲁斯B A著.多相催化理论[M].北京大学化学系有机催化教研室译.北京:中国工业出版社, 1963.
    [84]邓景发,唐熬庆.催化作用原理导论[M].长春:吉林科学技术出版社, 1984.
    [85]安德森B R著.催化研究中的实验方法[M].中国科学院大连化物所译.北京:科学出版社, 1987.
    [86] Pedernera M N, Pińa J, Borio D O. Kinetic evaluation of carbon formation in a membrane reactor for methane reforming [J]. Chem. Eng. Jour., 2007, 134:138-144.
    [87] Galea N M, Knapp D, Ziegler T. Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction [J]. J. Catal., 2007, 247: 20-33.
    [88] Arena F, Frusteri F, Parmaliana A. Alkali promotion of Ni/MgO catalysts [J]. Appl. Catal. A: Gen., 1999, 187: 127-140.
    [89] Juan-Juan J, Roman-Martinez M C, Ulan-Gomez M J. Catalytic activity and characterization of Ni/A12O3 and NiK/A12O3 catalysts for CO2 methane reforming [J]. Appl. Catal. A: Gen., 2004, 264 (2): 169-174.
    [90] Pompeo F, Nichio N N, Gonzalez M G,. Montes M, Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming [J]. Catal. Today, 2005, 107(8): 856-862.
    [91] Lu Y, Liu Y, Shen S K. Design of stable Ni catalysts for partial oxidation of methane to synthesis gas [J]. J. Catal., 1998, 177: 386-388.
    [92] Zhang Z L, Verkios X Z, Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts [J]. Catal. Today, 1994, 21(2-3): 589-595.
    [93] Miao Q, Xiong G X, Sheng S S, Cui W, Guo X X. The oxidative transformation of methane over the nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide [J]. Stud. Surf. Scil. Catal., 1996, 101: 453-462.
    [94] Miao Q, Xiong G X, Sheng S S, Cui W, Guo X X. Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide [J]. Appl. Catal. A: Gen., 1997, 154 (1-2):17-27.
    [95]许峥,李玉敏,张继炎,张鎏,何菲.甲烷二氧化碳重整制合成气的镍基催化剂性能II.碱性助剂的作用[J].催化学报, 1997, 18 (5): 364-367.
    [96]叶季蕾,刘源,段华超.制备方法对La改性的Ni/γ-Al2O3催化剂甲烷部分氧化重整的研究[J].燃料化学学报, 2006, 34(5): 562-566.
    [97] Martinez R, Romero E, Guimon C, Bilbao R. CO2 reforming of methane over coprecipitated Ni-A1 catalysts modified with lanthanum [J]. Appl. Catal. A: Gen., 2004, 274(1-2):139-149.
    [98]姬涛.甲烷、二氧化碳和氧气催化氧化重整制合成气镍基催化剂的研究:学位论文,广州:华南理工大学, 2001.
    [99]宋一兵,余林,孙长勇,叶飞,方奕文,林维明.稀土Ce对制合成气用Ce-Ni/Al2O3催化剂活性和稳定性的影响[J].催化学报, 2002, 23 (3): 267-270.
    [100]严洪杰,杨骏英,周德幢. CeO2对Ni/γ-Al2O3, Pt/γ-Al2O3中Ni, Pt分散度的影响[J].天然气化工, 1992, 17(5): 26-30.
    [101] Ruckenstein E, Hu Y H. Methane partial oxidation over NiO/MgO solid solution catalysts [J]. Appl. Catal. A: Gen., 1999, 183: 85-92.
    [102] Ruckenstein E, Hu Y H. Combination of CO2 reforming and partial oxidation of methane over NiO/MgO solid solution catalysts [J]. Ind. Eng. Chem. Res., 1998, 37: 1744-1747.
    [103] Ruckenstein E, Hu Y H. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts [J]. Appl. Catal. A: Gen., 1995, 133 (1):149-161.
    [104] Ruckenstein E, Hu Y H. Combined catalytic partial oxidation and CO2 reforming of methane over supported cobalt catalysts [J]. Catal. Lett., 2001, 73(2-4): 99-105.
    
    [105] Choudhary V R, Uphade B S, Mamman A S. Simultaneous steam and CO2 reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen [J]. Appl. Catal. A: Gen., 1998, 168(1):33 -46.
    
    [106] Goula M A, Lemonidou A A, Efstathiou A M. Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO-A12O3 catalysts studied by various transient techniques [J]. J. Catal., 1996, 161(2): 626-640.
    
    [107] Souza M M V M, Aranda D A G, Schmal M. Coke formation on Pt/ZrO2/A12O3 catalysts during CH4 reforming with CO2 [J]. Ind. Eng. Chem. Res, 2002, 41(18): 4681-4685.
    
    [108] Bartholomew C H. Carbon Deposition in Steam Reforming and Methanation [J]. Catal. Rev. Sci. Eng., 1982, 24(1): 67-112.
    
    [109]刘晰,陶家林,于作龙.加压下甲烷部分氧化反应中催化剂上积碳形态的研究[J].催化学报, 2003, 24(1): 17-21.
    
    [110] Dissanayake D, Rosynek M P, Kharas K C C, Lunsford J H. Partial Oxidation of Methane to Carbon Monoxide and Hydrogen over a Ni/Al2O3Catalyst [J]. J. Catal., 1991, 132: 117-127.
    
    [111] Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T. Suppression of carbon deposition in CO2 reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst [J]. Appl. Catal. A: Gen., 1996, 144:111-120.
    
    [112]邓存,路勇,丁雪加,沈师孔.CH4和CO2制合成气的负载型镍催化剂的制备研究[J].厦门大学学报, 1996, 35(2): 295-299.
    
    [113] Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts 1. Catalyst characterization and activity [J]. Appl. Catal. A: Gen., 1996, 142:73-96.
    
    [114] Tomishige K, Chen Y G, Fujimoto K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts [J]. J. Catal., 1999, 181: 91-103.
    
    [115] Hickman D A, Schmidt L D. Synthesis gas formation by direct oxidation of methane over Pt monoliths [J]. J. Catal., 1992, 138: 267-274.
    
    [116]沈师孔,李春义,余长春. Ni/Al2O3催化剂上甲烷部分氧化制合成气反应机理[J].催化学报, 1998, 19(4): 309-314.
    
    [117] Jin R C, Chen Y X, Li W Z, Cui W, Ji Y Y, Yu C Y, Jiang Y. Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst [J]. Appl. Catal. A: Gen., 2000, 201:71-80.
    
    [118] Banares M A, Rodriguez-Ramos I, Guerrero-Ruiz A, G. Fierro J L. Mechanistic Aspects of The Selective Oxidation of Methane to C1-Oxygenates Over MoO3/SiO2 Catalysts in A Single Catalytic Step [J]. Stud. Surf. Scil. Catal., 1993, 75: 1131-1144.
    
    [119]汪波.高温致密透氧膜材料和膜过程研究:学位论文,合肥:中国科技大学, 2006.
    
    [120] Wang H H, Cong Y, Yang W S. Investigation on the Partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δmembrane reactor [J]. Catal. Today., 2003, 82:157-166.
    
    [121] Chen C S, Feng S J, Ran S, Zhu D C, Liu W, Bouwmeester H J M. Conversion of methane to syngas by membrane-based oxidation-reforming process [J]. Angew Chem Int Ed., 2003, 42:5196.
    
    [122] Ikeguchi M, Mimura T, Sekine Y, Kikuchi E, Matsukata M. Reaction and oxygen permeation studies in Sm0.4Ba0.6Fe0.8Co0.2O3-δmembrane reactor for partial oxidation of methane to syngas [J]. Appl. Catal. A: Gen., 2005, 290: 212–220.
    [1]徐匡迪.中国钢铁工业的发展和技术创新[J].钢铁, 2008, 43(2): 1
    [2]殷瑞钰,张春霞.钢铁企业功能拓展是实现循环经济的有效途径[J].钢铁, 2005, 40(7): 1.
    [3]殷瑞钰.关于新一代钢铁制造流程的命题[J].上海金属, 2006, 28(4): 1.
    [4]殷瑞钰.节能、清洁生产、绿色制造与钢铁工业的可持续发展[J].钢铁, 2002, 37(8): 1.
    [5] Maruoka N, Akiyama T. Exergy recovery from steelmaking off-gas by latent heat storage for methanol production [J]. Energy, 2006, 31: 1632-1642.
    [6] Andrew E L, Robert W B, Leslie B, Alex R. Thermodynamic analysis of hydrogen production by partial oxidation reforming [J]. Int. J. Hydrogen Energy., 2004, 29: 809-816.
    [7] Nor Aishah S A, Tung C Y. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas [J]. Int. J. Hydrogen Energy., 2007, 32: 1789-1798.
    [8] Andrew E L, Robert W, Bradshaw J O, Keller D W. Thermodynamic analysis of hydrogen production by steam reforming [J]. Int.J. Hydrogen Energy., 2003, 28: 159-167.
    [9] Seo Y S, Shirley A, Kolaczkowski S T. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in the different reforming technologies [J]. J. power sources., 2002, 108: 213-225.
    [10]张家元,殷志群.焦炉煤气制备冶金还原气的热力学分析[J].煤气与热力, 2004, 24(4):183-185.
    [11]张家元,殷志群.焦炉煤气改质的动力学研究[J].冶金能源, 2004, 23 (4):37.
    [12]唐文武,周孑民.焦炉煤气催化部分氧化转化的实验研究[J].金属材料与冶金工程, 2008, 36 (1):22.
    [13]唐文武.焦炉煤气重整转化实验及动力学模型的研究:学位论文,长沙:中南大学, 2007.
    [14] Li Y B, Xiao R, Jin B S. Thermodynamic Equilibrium Calculations for the Reforming of Coke Oven Gas with Gasification GasChem [J].Chem. Eng. Technol., 2007, 30 (1): 91-98.
    [15] Zhang Y W, Li Q, Shen P J, Liu Y, Yang Z B, Ding W Z, Lu X G. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. Int. J. Hydrogen Energy., 2008, 33: 3311-3319.
    [16] ESM Software (2005) HSC chemistry 5.1. Retrieved August 2, 2005
    [1] Zhang Y W, Li Q, Shen P J, Liu Y, Yang Z B, Ding W Z, Lu X G. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. Int. J. Hydrogen Energy, 2008, 33: 3311-3319.
    [2] Cheng Y F, Zhao H L, Teng D Q, Li F S, Lu X G, Ding W Z. Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3-δperovskite stabilized by low concentration of Nb for oxygen permeation membrane [J]. J. Membr. Sci., 2008, 322: 484-490.
    [3] Yang Z B, Ding W Z, Zhang Y Y, Lu X G, Zhang Y W, Shen P J. Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst [J]. Int. J. Hydrogen Energy, 2010, 35 (12):6239-6247.
    [4] Yang Z B, Zhang Y Y, Ding W Z, Zhang Y W, Shen P J, Zhou Y D, Liu Y, Huang S Q, Lu X G. Hydrogen production from coke oven gas over LiNiREOx/γ-Al2O3 catalyst modified by rare earth metal in a membrane reactor [J]. J .Natural Gas Chemistry, 2009, 18:407-414.
    [1] Ashcroft A T, Cheetham A K, Foord J S, Green M L H, Grey C E, Murrell A J, Vernon R D E. Selective oxidation of methane to synthesis gas using transition metal catalysts [J]. Nature, 1990, 344: 319-321.
    [2] Tsang S C, Claridge J B, Green M L H. Recent advances in the conversion of methane to synthesis gas [J]. Catal Today., 1995, 23: 3-15.
    [3] Rostrup-Nielsen J R. Fuels and Energy for the Future: The Role of Catalysis [J]. Caltal. Rev. Sci. Tech., 2004, (46): 247-270.
    [4] Zhang Y H, Xiong G X, Sheng S S, Yang W S. Deactivation studies over NiO/γ-Al2O3 catalyst for partial oxidation of methane to syngas [J]. Catal. Today., 2000, 63: 517-522.
    [5] Pompeo F, Gazzoli D, Nichio N N. Stability improvements of NiO/α-Al2O3 catalyst tp obtain hydrogen from methane reforming [J]. Int. J. Hydrogen Energy., 2009, 34: 2260-2268.
    [6] Requies J, Cabrero M A, Barrio V L, Cambra J F, Güemez M B, Arias P L, Parola V La, Pe?a M A, Fierro J L G. Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation [J]. Catal. Today., 2006, 116: 304- 312.
    [7] Miao Q, Xiong G X, Sheng S, Cui W, Xu L, Guo X X. Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide [J]. Appl. Catal. A: Gen., 1997, 154: 17-27.
    [8] Fornasiero P, Di Monte R, Rao G R, Kaspar J, Meriani S, Trovarelli A, Graziani M. Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties [J]. J. Catal., 1995, 151: 168-177.
    [9] Wang W, Ran R, Shao Z P. Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane [J]. J. Power sources., 2011, 196: 90-97.
    [10] Miao Q, Xiong G X, Sheng S S, Cui W, Guo X X. The oxidative transformation of methane over the nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide [J]. Stud. Surf. Sci. Catal., 1996, 101:453-462.
    [11] Wang W, Stagg-Williams S M, Noronha F B, Mattos L V, Passos F B. Partial oxidation and combined reforming of methane on Ce-promoted catalysts [J]. Catal. Today., 2004, 98: 553-563.
    [12] Chu Y L, Li S B, Lin J Z, Gu J F, Yang Y L. Partial oxidation of methane to carbon monoxide and hydrogen over NiO/La2O3/γ-Al2O3 catalyst [J]. Appl. Catal. A: Gen., 1996, 134: 67-80.
    [13] Xiong G. X, Miao Q. China Patent. Appl No 951100718.
    [14] Cai X L, Dong X F, Lin W M. Effect of CeO2 on the catalytic performance of Ni/Al2O3 for autothermal reforming of methane [J]. J. Natural Gas Chem., 2008, 17: 98-102.
    [15] Ma D, Mei D J, Li X, Gong M C, Chen Y Q. Partial oxidation of methane to sygas over Monolithic Ni/γ-Al2O3 catalyst-Effect of rare earths and other basic promoters [J]. J. Rare Earths.,2006, 24: 451-455.
    [16] Miao Q, Xiong G X, Sheng. S S, Cui W, Guo X X. Partial oxidation of methane over NiO/Al2O3 modified by metal oxides [J]. J. Catal (in Chinese)., 1997, 18(1): 17-20.
    [17] Liu S L. Xiong G X, Dong H, Yang W S. Effect of carbon dixide on the reaction performance of partial oxidation of methane over a LiLaNiO/γ-Al2O3 catalyst [J]. Appl. Catal. A: Gen., 2000, 202: 141-146.
    [18]宋一冰,余林,孙长勇,叶飞,方奕文,林维明.稀土Ce对制备合成气用CeNi/Al2O3催化剂活性和稳定性的影响[J].催化学报, 2002, 23(3): 267-270.
    [19] Gellings P J, Bouwmeester H J M. Solid state aspect of oxidation catalysis [J]. Catal. Today., 2000, 58: 1-53.
    [20] Ferri D, Forni L. Methane combustion on some pervoskite-like mixed oxides [J]. Appl. Catal. B: Enviromental., 2001, 210(1-2): 45-53.
    [21] Natasha M G, Daniel K, Tom Z. Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fule cells: suggestion for coke reduction [J]. J. Catal., 2007, 247(1): 20-33.
    [22]沈培俊,丁伟中,张玉文,周宇鼎,杨志彬,秦国利. BaCo0.7Fe0.2Nb0.1O3-δ膜反应器还原侧表面反应机理[J].高等学校化学学报, 2009, 30(1): 152-158.
    [23]代小平,余长春,李然家,师海波,沈师孔. Co/SiO2催化剂催化费托合成中CeO2助剂的作用[J].催化学报, 2006, 27(10): 904-910.
    [24] Ernst B, Hilaire L, Kiennemann A. Effect of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst [J]. Catal. Today., 1999, 50: 413-427.
    [25]代小平,余长春,李然家.费托合成CeO2助Co/SiO2催化剂的失活[J].催化学报, 2007, 28(12): 1047-1052.
    [26]陈燕馨,李灿,李文钊,陈怡萱. CeO2及Pd/CeO2催化剂上H2, O2的作用特性[J].物理化学学报, 1992, 8(4): 452-458.
    [27]魏永刚,王华,刘明春,张翅远,李孔斋.用于部分氧化甲烷制合成气的铈基氧载体性能表征[J].分子催化, 2008, 22(1): 27-32.
    [28]王海涛,李振华,田树勋,何菲.助剂对甲烷部分氧化制合成气镍基催化剂性能的影响[J].燃料化学学报, 2004, 32(4): 475-479.
    [29]陈吉祥,邱业君,张继炎,苏万华. La2O3和CeO2对CH4-CO2重整Ni/MgO催化剂结构和性能的影响[J].物理化学学报, 2004, 20(1): 76-80.
    [30]杨咏来,徐恒泳,李文钊. CeO2和Pd在Ni/γ-Al2O3催化剂中助剂作用[J].物理化学学报, 2002, 18(4): 321-325.
    [31]郭强.改性Co2O3-CeO2催化剂用于CO优先氧化反应的研究:学位论文,天津:天津大学, 2009.
    [32] Holmgren A, Andersson B. Oxygen storage dynamics in Pt/CeO2/Al2O3 catalysts [J]. J. Catal., 1998, 178: 14-25.
    [33]王淤娟. SOFC阳极甲烷直接氧化电催化剂的研究:学位论文,广州:华南理工大学, 2001.
    [34]孔令华,岳宝华,汪学广,于飞,增强,鲁雄刚,丁伟中. Li掺杂对LaNi/Al2O3在焦油重整中催化性能的影响[J].过程工程学报, 2009, 9(2): 403-407.
    [35] Ugo R. The contribution of organometallic chemistry and homogeneous catalysis to the understanding of surface reaction [J]. Catal. Rev., 1975, 11: 225-297.
    [1] Yamazaki O, Tomishige K, Fujimoto K. Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio [J]. Appl. Catal. A:Gen., 1996, 136:49-56.
    [2] Chen Y G, Tomishige K, Yokoyama K, Fujimoto K. Catalytic performance and catalyst structure of nickel-magnesia catalysts for CO2 reforming of methane [J]. J. Catal.,1999, 184:479-490.
    [3] Ruckenstein E, Hu Y H. Methane partial oxidation over NiO/MgO solid solution catalysts [J]. Appl. Catal. A:Gen., 1999, 183: 85-92.
    [4] Djaidja A, Libs S, Kiennemann A, Barama A. Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts [J]. Catal. Today., 2006, 113:194-200.
    [5] Ruckenstein E, Hu Y H. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts [J]. Appl. Catal. A:Gen., 1995, 133: 149-161.
    [6] Ruckenstein E, Hu Y H. Carbon dioxide reforming of methane to synthesis gas over supported cobalt catalysts [J]. Appl. Catal. A:Gen., 2000, 204: 257-263.
    [7] Ruckenstein E, Hu Y H. Combination of CO2 reforming and partial oxidation of methane over NiO/MgO solid solution catalysts [J]. Ind. Eng. Chem. Res., 1998, 37: 1744-1747.
    [8] Ruckenstein E, Hu Y H. Combined catalytic partial oxidation and CO2 reforming of methane over supported cobalt catalysts [J]. Catal. Lett., 2001, 73(2-4): 99-105.
    [9] Chen Y G, Tomishige K, Yokoyama K, Fujimoto K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2 [J]. Appl. Catal. A:Gen., 1997, 165: 335-347.
    [10]朱德春,刘卫,陈初升.甲烷制合成气透氧膜反应器研究[J].中国稀土学报, 2004, 22: 231-234.
    [11]李健林,杨萍华,陈初升.致密La0.75Sr0.25Cr0.5Mn0.5O3-δ膜的透氧性能研究[J].中国稀土学报, 2004, 22: 90-92.
    [12]沈培俊,丁伟中,张玉文,周宇鼎,杨志彬,秦国利. BaCo0.7Fe0.2Nb0.1O3-δ膜反应器还原侧表面反应机理[J].高等学校化学学报, 2009, 30(1): 152-158.
    [13] Tong J H, Yang W S, Suda H, Haraya K. Initiation of oxygen permeation and POM reaction in different mixed conducting ceramic membrane reactors [J]. Catal.Today., 2006, 118 :144-150.
    [14] Harada K, Domen K, Hara M, Tatsumi T. Oxygen-permeable membrances of Ba1.0Co0.7Fe0.2Nb0.1O3-δfor preparation of synthesis gas from methane by partial oxidation [J]. Chem. Lett., 2006, 35: 968-969.
    [15] Harada M, Domen K, Hara M, Tatsumi T. Ba1.0Co0.7Fe0.2Nb0.1O3-δdense ceramic as an oxygen permeable membrane for partial oxidation of methane to synthesis gas [J]. Chem. Lett., 2006, 35:1326-1327.
    [16] Choudhary V R, Mamman A S. Energy efficient conversion of methane to syngas over NiO–MgO solid solution [J]. Appl. Energy., 2000, 66:161-175.
    [17] Choudhary V R, Rajput A M, Mamman A S. NiO-Alkaline Earth Oxide Catalysts for Oxidative Methane-to-Syngas Conversion: Influence of Alkaline Earth Oxide on the Surface Properties and Temperature-Programmed Reduction/Reaction by H2 and Methane [J]. J. Catal., 1998, 178 (2):576 -585.
    [18] Yamazaki O, Tomishige K, Fujimoto K. Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio [J]. Appl.Catal.A:Gen.,1996, (136): 49-56.
    [19] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Hydrogen Production from Simulated Hot Coke Oven Gas by Using Oxygen-Permeable Ceramics [J]. Energy&Fuels., 2009, 23(1):414-421.
    [20] Choudhary V R, Mondal K C, Choudhary T V. Methane reforming over a high temperature stable-NiCoMgOx supported on zirconia–hafnia catalyst [J]. Chem. Eng. Jour., 2006, 121: 73-77.
    [21]王桂茹.催化剂与催化剂作用(第二版)[M].大连:大连理工大学出版社, 2006: 19-107..
    [22] Choudhary V R, Rajput A M, Prabhakar B, Mamman A S. Partial oxidation of methane to CO and H2 over nickel and/or cobalt containing ZrO2, ThO2, UO2, TiO2 and SiO2 catalysts [J]. Fule, 1998, 77: 1803-1807.
    [23] Slagtern A, Swaan H M, Olsbye U, Dahl I M, Mirodatos C. Catalytic partial oxidation of methane over Ni-,Co- and Fe-based catalysts [J]. Catal.Today., 1998, 46: 107-115.
    [24] Swaan H M, Rouanet R, Widyananda P, Mirodatos C. Partial oxidation of methane over nickel- and cobalt-based catalysts [J]. Stud. Surf. Scil. Catal., 1997, 107: 447-453.
    [25]徐东彦,李文钊,段洪敏,葛庆杰,徐恒泳. Pt, Ru和Pd助剂对F-T合成中Co/γ-Al2O3催化剂性能的影响[J].催化学报, 2005, 26(9): 780-784.
    [1] Li L, Borry R W, Igiesia E. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal-homogeneous-heterogeneous reaction pathways [J]. Chem. Eng. Sci., 2001, 56: 1869-1881.
    [2] Jin R C, Chen Y X, Li W Z, Cui W, Ji Y Y, Yu C Y, Jiang Y. Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst [J]. Appl .Catal. A:Gen., 2000, 201: 71-80.
    [3] Zhu J J, Ommen J G van, Lefferts L. Reaction scheme of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia [J]. J. Catal., 2004, 225: 388-397.
    [4] Michael B C, Donazzi A, Schmidt L D. Effect of H2O and CO2 addition in catalytic partial oxidation of methane on Rh [J]. J. Catal., 2009, 265: 117-129.
    [5] Fleys M, Simon Y, Marquaire P. Detailed kinetic study of the partial oxidation of methane over La2O3 catalyst.Part 2: Mechanism [J]. Ind. Eng. Chem. Res., 2007, 46: 1069-1078.
    [6] Hu J, Xing T L, Jia Q C, Hao H S, Yang D L, Guo Y Q, Hu X. Methane partial oxidation to syngas in YBa2Cu3O7-x membrane reactor[J]. Appl. Catal. A:Gen., 2006, 306: 29-33.
    [7] Akin F T, Jerry Y, Lin S. Oxygen permeation through oxygen ionic or mixed-conducting ceramic membrane with chemical reaction [J]. J. Membr. Sci., 2004, 231: 133-146.
    [8] Veser G, Frauhammer J, Friedle U. Syngas formation by oxidation of methane reaction mechanisms and new reactor concepts [J]. Catal. Today., 2000, 61: 55-64.
    [9] Chen C S, Feng S J, Ran S, Zhu D C, Liu W, Bouwmeester H J M. Conversion of methane to syngas by membrane-based oxidation-reforming process [J]. Angew Chem Int Ed., 2003, 42:5196.
    [10] Wang H H, Cong Y, Yang W S. Investigation on the Partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δmembrane reactor [J]. Catal. Today., 2003, 82:157-166.
    [11] FisherⅡJ C,Steven S, Chuang C. Investigating the CH4 reaction pathway on a novel LSCF anode catalyst in the SOFC [J]. Catal. Commun., 2009, 10: 772-776.
    [12] Zhu D C, Xu X Y, Feng S J, Liu W, Chen C S. La2NiO4 tubular membrane reactor for conversion of methane to syngas [J]. Catal. Today., 2003, 82: 151.
    [13] Shao Z P, Xiong G X, Dong H, Yang W S, Lin L W. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δoxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas [J]. Separ. Purif. Technol., 2001, 25: 97-116.
    [14] Wang H H, Wang R, Liang D T, Yang W S. Experimental and modeling studies onBa0.5Sr0.5Co0.8Fe0.2O3?δ(BSCF) tubular membranes for air separation [J]. J. Membr. Sci., 2004, 243: 405-415.
    [15] Ikeguchi M, Mimura T, Sekine Y, Kikuchi E, Matsukata M. Reaction and oxygen permeation studies in Sm0.4Ba0.6Fe0.8Co0.2O3-δmembrane reactor for partial oxidation of methane to syngas [J]. Appl. Catal. A:Gen., 2005, 290: 212–220.
    [16] Zhang P, Chang X F, Wu Z T, Jin W Q, Xu N P. Effect of the packing amount of catalysts on the partial oxidation of methane reaction in a dense oxygen-permeable membrane reactor [J]. Ind. Eng. Chem. Res., 2005, 44: 1954-1959.
    [17] Karmer R, Andre M. Adsorption of atomic hydrogen on alumina by hydrogen spillover [J]. J. Catal., 1979, 58: 287-295.
    [18] Sen B, Falconer J L, Mao T F, Tu M. Spillover of CO and H2 onto Al2O3 surface [J]. J. Catal., 1990, 126:465.
    [19] Shen P J, Ding W Z, Zhou Y D, Huang S Q. Reaction mechanism on reduction surface of mixed conductor membrane for H2 production by coal-gas [J]. Applied Surface Science, 2010, 256: 5094-5101.
    [20] Zhang W X, Smit J, Van Sint Annaland M, Kuipers J.A.M. Feasibility study of a novel membrane reactor for syngas production: Part 1: Experimental study of O2 permeation through perovskite membranes under reducing and non-reducing atmospheres[J]. J. Membr. Sci., 2007, 291: 19-32.
    [1] Guo J Z, Hou Z Y, Gao J, Zheng X M. Production of Syngas via partial oxidation and CO2 reforming of coke oven gas over a Ni Catalyst [J]. Energy Fuels., 2008, (22): 1444-1448.
    [2] Zhang Y W, Li Q, Shen P J, Liu Y, Yang Z B, Ding W Z, Lu X G. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. Int. J. Hydrogen Energy., 2008, (33): 3311-3319.
    [3] Rakass S, Oudghiri-Hassani H, Rowntree P, Ahatzoglou N. Steam reforming of methane over unsupported nickel catalysts [J]. J. Power Sources., 2006, (158): 485-496.
    [4] Miura K, Kawase M, Nakagawa H, Ashida R, Nakai T, Ishikawa T. Conversion of Tar in Hot Coke Oven Gas by Pyrolysis and Steam Reforming [J]. J. Chem. Eng. Jpn., 2003, (36): 735-741.
    [5] Li L Y, Morishita K, Takarada T. Conversion of Hot Coke Oven Gas into Light Fuel Gas over Ni/Al2O3 Catalyst [J]. J. Chem. Eng. Jpn., 2006, (39): 461-468.
    [6] Shen J, Wang Z Z. A New Technology for Producing Hydrogen and Adjustable Ratio Syngas from Coke Oven Gas [J]. Energy Fuels., 2007, (21): 3588-3592.
    [7] Michael B C, Donazzi A, Schmidt L D. Effects of H2O and CO2 addition in catalytic partial oxidation of methane on Rh [J]. J. Catal., 2009, (265): 117-129.
    [8] Huang T J, Huang M C, Huang M S. Novel methane steam-reforming catalyst of Ni-Bi2O3/GDC to reduce CO for hydrogen production [J]. Appl.Catal.A:Gen., 2009, (354): 127-131.
    [9] Rostrup-Nielsen J R. Fuels and Energy for the Future: The Role of Catalysis [J]. Caltal. Rev. Sci. Tech., 2004, (46): 247-270.
    [10] Laosiripojana N, Sangtongkitcharoen W, Assabumrungrat S. Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2 [J]. Fuel, 2006, 85(3): 323-332.
    [11] Yamazaki O, Tomishige K, Fujimoto K. Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio [J]. Appl.Catal.A:Gen.,1996, (136): 49-56.
    [12] Ruckenstein E, Hu Y H. Methane partial oxidation over NiO/MgO solid solution catalysts [J]. Appl. Catal. A:Gen., 1999, 183: 85-92.
    [13] Wang S, Lu G. Q M. CO2 reforming of methane on Ni catalysts: Effects of the support phase and preparation technique [J].Appl. Catal. B: Environ., 1998, (16): 269-277.
    [14] Choudhary V R, Mamman A S, Uphade B S. Steam and oxysteam reforming of methane to syngas over CoχNi1-χO supported on MgO precoated SA-5205 [J]. AIChE J., 2001, (47): 1632-1638.
    [15] Jacob T. The Mechanism of Forming H2O from H2 and O2 over a Pt Catalyst via Direct Oxygen Reduction [J].Fuel Cells., 2006, (3-4): 159-181.
    [16] Van Hook J P. Methane-Steam Reforming [J]. Catal. Rev.–Sci. Eng., 1980, (21): 1-51.
    [17] Roh H S, Jun K W, Park S E. Methane-reforming reactions over Ni/Ce-ZrO2/θ-Al2O3 catalysts [J]. Appl.Catal.A:Gen., 2003, (251): 275-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700