浆态床镍基甲烷化催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浆态床反应器具有传热迅速,热稳定性高等特点,将浆态床反应器引入甲烷化过程中,可以克服催化剂因高温烧结而造成的失活问题,保持系统的稳定性。本文制备了以二氧化硅为载体的镍基浆态床甲烷化催化剂,优化了制备条件:在450-550℃焙烧,550℃还原时活性组分分散均匀,催化剂催化效果较好;Y-AI2O3形态的铝助剂可以有效的提高催化剂的选择性,而助剂在没有硫元素的情况抑制了催化效果;稀土元素镧和铈不仅提高了CO转化率而且对甲烷的选择性也较好。采用商用催化剂和制备的镍基催化剂,在浆态床反应器上进行了单因素优化,优化结果为:反应温度为290℃C-300℃,原料气中H2/CO的比例为3:1和3.5:1时。压力对摧化剂影响不明显,空速增大提高了反应速率,同时也降低了催化剂的单程转化率。
There are some advantages for the slurry bed reactor:high heat-transfer coefficient, high stability and so on. The catalysts sintering and losing activity could be reduced or avoided by using the slurry bed reactor in methanation production. And the process of reactor was well stability. The catalyst of nickel based on silica for methanation in slurry bed reactor was prepared in this paper. The results show that the catalyst calcinated at among450-550℃and reduced at550℃could improve nickel distribution on support and catalytic activity. The γ-Al2O3is very well promoter in methanation catalyst, and it could increase the selectivity of methane. The promoter research also showed that rare-earth element improved the CO conversion and the selectivity of methane, and Mo promoter reduced the catalytic results without sulfur. The process conditions of the catalyst were also studied, and the optimized conditions are that, the reaction temperature was at290℃or300℃, H2/CO were equal to3:1or3.5:1. The pressure had little effect, and2MPa was used in the paper. High gas-speed could reduce the CO conversion per pass and increase the reaction rate.
引文
[1].张玉卓.神华集团的煤炭洁净转化战略[J].中国煤炭,2004,4:5-7.
    [2].常轶智,李加楠.2012-2016年中国煤化工行业投资分析及前景预测报告[R].北京:2012年2月.
    [3].贺永德主编.现代煤化工技术手册[M].北京:化学工业出版社,2003
    [4].刘志光.煤制天然气的竞争力分析[J].中外能源,2010,15:26-30
    [5].付国忠,陈超.我国天然气供需现状及煤制天然气工艺技术和经济性分析[J].中外能源,2010,15:28-34
    [6].冯亮杰.我国发展煤制天然气项目的分析探讨[J].化学工程,2011,39(8):86-89
    [7].苗兴旺,吴枫,张数义.煤制天然气技术发展现状[J].氮肥技术,2010,31(1):6-8
    [8]. Liu Z H, Chu B Z, Zhai X L. Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor [J]. Fuel.2012,95:599-605
    [9].伍桂松.煤制天然气产业发展的几点思考[J].现代化工,2010,30:1-7.
    [10]. Grol T, Walter H, Haider M. Biomass steam gasification for Production of SNG-Process design and sensitivity analysis [J]. Applied Energy. Doi:10.1016/j. apenergy.2012.01:38
    [11]. Rabou L P, Bos L. High efficiency Production of substitute natural gas from bio-mass [J]. Applied Catalysis B:Environmental.2012,111-112:456-460
    [12].胡四斌.煤制合成天然气项目工艺方案与技术经济比较[J].化肥设计,2012,04:1-6.
    [13].田基本.煤制天然气气化技术选择[J].煤化工,2009,(5):8-11.
    [14].晏双华,双建永,胡四斌.煤制成天然气工艺中甲烷花合成技术[J].化肥设计,2010,4(48):19-21,32.
    [15].王莉萍,张永发.煤制甲烷基础研究和工艺开发进展[J].山西能源与节能,2009,(1):51-55
    [16].蔺华林,李克健,赵利军.煤制天然气高温甲烷化催化剂研究进展[J].化工进展,2011,30(8):1739-1743.
    [17]. Tavares M. T., Alstrup I., Bernardo C. A., et al. Carbon Formation and CO Methanation on Silica-Supported Nickel and Nickel-Copper Catalysts in CO+H2 Mixtures[J]. Journal of Catalysis,1996. 158(2):402-410.
    [18].杨明.煤制天然气现状及发展建议[J].洁净煤技术,2011,17(3):3-5,97.
    [19]. I. Czekaj, F. Loviat, F. Raimondi, et al. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas:X-ray photoelectron spectroscopy (XPS). Applied Catalysis A:General,2007.329:68-78.
    [20].刘文燕.煤气甲烷化催化剂的研究[D].2011,华东理工大学硕士学位论文.
    [21]. Andersson M. P., Pedersen F. A., Remediakis I. N., et al. Structure sensitivity of the methanation reaction:H2-induced CO dissociation on nickel surfaces. Journal of Catalysis,2008.255(1):6-19.
    [22].钱卫,黄于益,张庆伟等.煤制天然气(SNG)技术现状[J].洁净煤技术,2011,17(1):27-32.
    [23].朱瑞春,公维恒,范少锋.煤制天然气工艺技术研究[J].洁净煤技术,2011,06:81-85.
    [24].张明.煤制天然气项目甲烷化废热锅炉系统的技术探讨[J].化工机械,2012,02:121-123,161.
    [25].安建生,李小定,李新怀,煤制天然气高CO甲烷化的研究进展[J].化工设计通讯,2012,02:13-16,18.
    [26].李积强,盛莉莉,黎菲.煤制天然气工艺的研究与应用[J].企业技术开发,2012,11:169-171.
    [27].胡晶友,李俊杰,张雷.辽宁大唐国际阜新煤制天然气项目控制系统的方案设计[J].化工进展,2012,31:282-285.
    [28].赵亮,陈允捷.国外甲烷化技术发展现状[[J].化工进展,2012,31:176-178.
    [29].安丽飞,栾永亮.煤制天然气项目煤炭的合理利用[J].洁净煤技术,2012,04:55-56,79.
    [30]. Great Plains Gasification Plant. Practical experience gained during the first twenty years of operation of the great plains gasification plant and implications for future projects. Dakota Gasification Company prepared for US Department of Energy,2006.
    [31]. Chen L, Noolan R, Avadhany S. Thermodynamic analysis of coal to SNG process. Mechanical Engineering,1997,4(2):84-89.
    [32]. Kopyscinski J., Schildhauer T. J., Biollaz S. M. A. Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review from 1950 to 2009[J]. Fuel,2010,89:1763-1783.
    [33]. Rudolph P. F.. The Lurgi route to substitute natural gas from coal. The 4th Synthetic Pipeline Gas Symposium, Chicago,1972, Oct.
    [34]. Moeller F. W., Roberts H., Brtize B.. Methanation of coal gas for SNG [J]. Hydrocarbon Processing.1974, 53(4):69.
    [351. Haldor Topsoe, Form coal to substitute natural gas using TREMP, Technical report of Haldor Topsoe,2008
    [36]. Hull D. E.. Status of the bi-gas coal gasification pilot plant. The 7th synthetic pipeline gas symposium, Chicago, Illinois,1975, Oct.27-29.
    [37].崔晓曦,李忠,张庆庚等.一种焦炉煤气进行甲烷化合成天然气的工艺:中国,CN101979475[P].2011.2.23.
    [38].张庆庚,李忠,闫少伟等.一种煤制合成气进行甲烷化合成天然气的工艺:中国,CN101979476[P].2011.2.23.
    [39].何忠,翟晓曦,范辉等.煤制天然气工艺技术和催化剂的研究进展[J].化工进展,2011,30:388-392.
    [40]. Yaccato K., Carhart R., Hagemeyer A., et al. Competitive CO and CO2 methanation over supported noble metal catalysts in high throughput scanning mass spectrometer [J]. Applied Catalysis A:General.2005,296: 30-48.
    [41]. Vannice M. A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group viii metals:V. The catalytic behavior of silica-supported metals [J]. Journal of Catalysis,1977,50(2):228-236.
    [42]. Bligaard T., N(?)rskov J. K., Dahl S., et al.The Br(?)nsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis,2004,224:206-217.
    [43]. Panagiotopoulou P., Kondarides D. I., Verykios X. E. Selective methanation of CO over supported noble metal catalysts:Effects of the nature of the metallic phase on catalytic performance[J]. Applied Catalysis A: General,2008,344:45-54.
    [44]. Panagiotopoulou P., Kondarides D. I., Verykios X. E..Selective methanation of CO over supported Ru catalysts[J]. Applied Catalysis B:Environmental,2009,88:470-478.
    [45]. Kimura M., Miyao T., Komori S., et al.Selective methanation of CO in hydrogen-rich gases involving large amounts of CO2 over Ru-modified Ni-Almixed oxide catalysts[J]. Applied Catalysis A:General, 2010,379:182-187.
    [46]. Z Kowalczyk, K Stolecki, W Rarog-Pilecka, et al.Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios[J]. Applied Catalysis A:General,2008,342:35-39.
    [47]. V Fr(?)seth, S Storsaeter,(?) Borg, et al.Steady state isotopic transient kinetic analysis (SSITKA) of CO hydrogenation on different Co catalysts[J]. Applied Catalysis A:General,2005,289:10-15.
    [48]. E Kok, J Scott, N Cant, et al.The impact of ruthenium, lanthanum and activation conditions on the methanation activity of alumina-supported cobalt catalysts[J]. Catalysis Today,2011,164:297-301.
    [49].李霞,杨霞珍,唐浩东等.载体对合成气制甲烷镍基催化剂性能的影响[J].催化学报,2011,32(8):1400-1404.
    [50]. Li G., Hu L., Hill J. J.M. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation[J]. Applied Catalysis A:General,2006,301:16-24.
    [51]. Loviat F., Czekaj L., Wambach J., et al. Nickel deposition on γ-Al2O3 model catalysts:An experimental and theoretical investigation[J]. Surface Science,2009,603:2210-2217.
    [52]. Park J. N., McFarland E. W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2[J]. Journal of Catalysis.2009,266:92-97.
    [53].韦以,刘新香.A1203-Ti02复合载体的制备与表征[J].石油化工,2006,35:173-177.
    [54]. Cai M. D., Wen J., Chu W. Methanation of carbon dioxide on N/ZrO2-Al2O3 catalysts:Eeffets of ZrO2 Promoter and Preparation method of novel ZrO2-Al2O3 carrier[J]. Journal of Nautral Gas Chemistry.2011, 20:318-324.
    [55].莫欣满,董新法,刘基海等.纳米ZrO2负载Ni催化剂催化CO选择性甲烷化[J].石油化工,2008,37:656-661.
    [56]. Liu Q, Dong X, Mo X, et al. Selective catalytic methanation of CO in hydrogen-rich gases over Ni/ZrO2 catalyst[J]. Journal of Natural Gas Chemistry,2008,17:268-272.
    [57].胡常伟,陈豫,王文灼.钠助剂对极低镍含量Ni/A1203体系上CO反应性能的影响.天然气化工,1993,18(4):16-20.
    [58].胡常伟,彭新民,王文灼.钠做助剂的Ni/A1203体系上CO2加氢反应[J].天然气化工,1994,19(5):6-11.
    [59].胡劲召,李凤仪,石秋杰 低钯型Pd-Ni-La-Ce催化剂氧化性能研究[J].中国稀土学报,2003,21:72-75.
    [60]. Jehng J. M., Wachs I. E. Raman characterization of alumina supported MO-V-Fe catalysts:influence of calcination temperature[J]. Journal of Molecular Catalysis,1993,81:63-75.
    [61]. Boudjahem A. G., Monteverdi S., Mercy M., et al. Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine[J]. Journal of Catalysis,2004, 221:325-334.
    [62].章青,王会芳,孙果宋等.镍盐前驱体对Ni/C催化剂乙醇气相羰化活性的影响[J].应用化学,2009,26:976-981.
    [63]. Dai X., Yu C. H2-induced CO adsorption and dissociation over Co/A12O3 catalyst[J]. Journal of Natural Gas Chemistry,2008,17:365-368.
    [64]. Iriondo A., Barrio V. L., Cambra J. F., et al. Hydrogen Production from Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La[J]. Topics in Catalysis,2008,49:46-58.
    [65]. Conner W. C., Falconer J. L. Spillover in Heterogeneous Catalysis[J]. Chemical Reviews,1995,95: 759-788.
    [66]. Dimitratos N., Villa A., Wang D., et al. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols[J]. Journal of Catalysis,2006,244:113-121.
    [67]. Bianchi C. L., Canton P., Dimitratos N., et al. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Ptmetals[J]. Catalysis Today,2005,102-103:203-212.
    [68]. Sehested J., Larsen K., Kustov A., et al. Discovery of technical methanation catalysts based on computational screening[J]. Topics in Catalysis,2007,45:9-13.
    [69]. Kustov A. L., Frey A. M., Larsen K. E., et al. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization[J]. Applied Catalysis A:General,2007,320: 98-104.
    [70].王宁.Ni-Fe/y-Al2O3双金属催化剂的制备、表征及其CO甲烷化研究[D].太原:山西大学,2010.
    [71]. Hwang S., Lee J., Hong U. G., et al. Hydrogenation of carbon monoxide to methane over mesoporous nickel-M-alumina (M=Fe, Ni, Co, Ce, and La) xerogel catalysts[J]. Journal of Industrial and Engineering Chemistry,2011,18:243-248.
    [72]. Bligaard T., N(?)rskov J. K., Dahl S., et al. The Br(?)nsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis,2004,224:206-217.
    [73]. Zhang J., Xu H., Jin X., et al. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition[J]. Applied Catalysis A:General,2005,290:87-96.
    [74].卢伟光,龙军,田辉平.镧和铈改性对氧化铝性质的影响[J].催化学报,2003,24:574-578.
    [75].谢有畅,钱民协,唐有祺.添加剂La2O3对甲烷化催化剂中镍的分散度和热稳定性的影响[J].中国科学,1983,9:788-796.
    [76].樊劭,王彩红,袁振等.铝铈助剂对镍基甲烷化催化剂性能的影响[J].煤炭转化,2010,33:68-71.
    [77]. Wang D. X., Jiang F. H., Kang X. H., et al. Study On Low Ni Catalyst For Methanation Of Town Gas[J]. Journal of Natural Gas Chemistry,1993,2:119-129.
    [78].新民,郝茂荣,姚亦淳等.镍基甲烷化催化剂中的助剂作用——Ⅰ、稀土氧化物添加剂的电子效应[J].分子催化,1990,4:321-328.
    [79].康慧敏,蒋福宏,王大祥.城市煤气甲烷化低镍催化剂的研究[J].化学工业与工程,1992,10:8-13.
    [80].李丽波,魏树权,徐国林.第二金属组分对CO2甲烷化沉淀型镍基催化剂的影响[J].天然气化工,2004,29:27-3-1
    [81]. Bang Y., Seo J. G, Song I. K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni-La-Al2O3 aerogel catalysts:Effect of La content[J]. International Journal of Hydrogen Energy,2011,36:8307-8315.
    [82]. Xaviera K. O., Sreekalaa R., Rashida K. A. Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation [J]. Catalysis Today.1999,49:17-21.
    [83].宋焕玲,杨建,赵军等.CO2在高分散Ni/La2O3催化剂上的甲烷化[J].催化学报,2010,31:21-23.
    [84]. 武瑞芳,张因,王永钊等.ZrO2助剂对Ni/SiO2催化剂CO甲烷化催化活性及其吸附性能的影响[J].燃料化学学报,2009,37:578-582.
    [85]. Lee H. H. Heterogeneous Reactor Design[M]. Butter worth Publishers. America:Boston.1984.
    [86]. Hwang S., Smith R. Heterogeneous catalytic reactor design with optimum temperature profile I:application of catalyst dilution and side-stream distribution [J]. Chemical Engineering Science,2004,59:4229-4243.
    [87]. Hwang S., Linke P., Smith R. Heterogeneous catalytic reactor design with optimum temperature profile Ⅱ: application of non-uniform catalyst [J]. Chemical Engineering Science,2004,59:4245-4260.
    [88].吴连弟,陈幸达,王文明.两种煤气甲烷化反应器的模拟和比较[J].煤炭转化,2006,29(2):70-75,98.
    [89].孙予罕,李永旺.煤基浆态床合成油品的工业化[J].中国科学院院刊.2002,(2):100-103.
    [90].凡俊琳.FT合成清洁燃料新型催化剂的研制[D].郑州大学硕士学位论文.2007.
    [91].赵玉龙.浆态床FT合成反应器的工程放大[J].化学反应工程与工艺,2008,24(5):461-467.
    [92]Alex M.G., Steffgen W.F.. Catalytic Methanation[J]. Catalysis Reviews:Science and Engineering,1974. 8(1):159-210.
    [93]. Li S. J., Luo L. T., Guo J. J. Study on the Mechanism of Methanation of Carbon Dioxide[J]. Journal of Natural Gas Chemistry,2001,10(2):176-180,182.
    [94]. Loc L. C., Huan N. M., Thoang H. S., et al. Investigation of the Mechanism of Carbon Monoxide Methanation by Hydrogen[C]. The Conference Papers of the 13th Asian Chemical Congress.2009. Shanghai, China.
    [95].伏义路,李锡青,徐小云.镍基催化剂上变换-甲烷化反应机理的研究[J].催化学报,1985,6(4):306-312.
    [96].胡云行,万惠霖,关玉德等.Ni催化剂上一氧化碳加氢反应机理研究[J].高等学校化学学报,1995,16(8):1289-1291.
    [97]. Fujita S., Terunuma H., Nakamura M., et al. Mechanisms of methanation of carbon monoxide and carbon dioxide over nickel[J]. Industrial & Engineering Chemistry Research,1991,30:1146-1151.
    [98]. Gupta N. M., Kamble V. S., Rao K. A., et al. On the mechanism of CO and CO2 methanation over Ru/molecular-sieve catalyst[J]. Journal of Catalysis,1979,60:57-67.
    [99].胡大成,高加俭,贾春苗等.甲烷化催化剂及反应机理的研究进展[J].过程工程学报.2011,]](5):880-893
    [100]. Engbas k J., Lytken O., Nielsen J. H., et al. CO dissociation on Ni:The effect of steps and of nickel carbonyl[J]. Surface Science,2008,602:733-743.
    [101]. Sehested J., DahlS ., Jacobsen J., et al. Methanation of CO over Nickel:Mechanism and Kinetics at High H2/CO Ratios[J]. The Journal of Physical Chemistry B,2004,109:2432-2438.
    [102]. Polizzotti R. S., Schwarz J. A. Hydrogenation of CO to methane:Kinetic studies on polycrystalline nickel foils[J]. Journal of Catalysis,1982,77:1-15.
    [103]. Goodman D. W., Kelley R. D., Madey T. E., et al. Kinetics of the hydrogenation of CO over a single crystal nickel catalyst[J]. Journal of Catalysis,1980,63:226-234.
    [104]. Underwood R. P., Bennett C. O. The CO/H2 reaction over nickel-alumina studied by the transient method[J]. Journal of Catalysis,1984,86:245-253.
    [105]. Beuls A., Swalus C., Jacquemin M., Methanation of CO2:Further insight into the mechanism over Rh/y-A12O3 catalyst [J]. Applied Catalysis B:Environmental.2012,113-114:2-10.
    [106]. Kim H. Y., Lee H.M., Park J. N. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: Independent roles of MgO and Pd on CO2 methanation [J]. Journal of Physical Chemistry C.2010,114: 7128-7131.
    [107]. Jacquemin M., Beuls A., Ruiz P. Catalytic Production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism [J]. Catalysis Today.2010,157:462-466.
    [108].黄仲涛.工业催化剂手册[M].北京:化学工业出版社,2004.
    [109]. Levenspiel O., Chemical Reaction Engineering [M]. NewYork:Wiley,1972:496.
    [110].王宁.焙烧温度对Ni-Fe/y-Al2O3催化剂一氧化碳甲烷化性能的影响[J].科技情报开发与经济,2010,20(18):158-160.
    [111].黄海燕,沈志虹.焙烧温度对Ni/y-AI2O3催化剂性能的影响[J].石油大学学报(自然科学版),1999.23(6):67-69.
    [112].宫立倩,陈吉祥,邱业君等.焙烧温度对甲烷部分氧化Ni/MgO-Al2O3催化剂结构和性能的影响[J].燃料化学学报,2005,33(2):224-228.
    [113]. Oh Y. S., Roh H. S., Jun K. W., et al. A Highly Active Catalyst, Ni/Ce-ZrO2/θ-Al2O3, for on-Site H2 Generation by Steam Methane Reforming:Pretreatment Effect[J]. International Journal of Hydrogen Energy,2003,28:1387-1392.
    [114].翼卫,曹立仁.H2、CO、N2和CO2在液体石蜡烃中的溶解度[J].燃料化学学报,1992,20(1):59-66.
    [115].刘光启,马连湘,刘杰.化学化工物性手册[M].北京:化学工业出版社,2002.
    [116].崔晓曦,曹会博,盂凡会等.合成气甲烷化热力学计算分析[J].天然气化工(C1化学与化工),2012,37(5):15-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700