煤热解制氢负载型催化剂的制备及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了金属氧化物负载型催化剂对煤催化热解制备氢气的影响。利用γ-Al203为载体,选用不同的金属硝酸盐作为浸渍液,采用等体积浸渍法制备了金属和双金属氧化物负载型催化剂。分别选取了催化效果较好的NiO/γ-Al2O3单金属氧化物催化剂和Ag2O-Co3O4/γ-Al203双金属氧化物催化剂为例,通过条件实验确定了NiO/γ-Al2O3和Ag2O-Co3O4/γ-Al203制备的最佳工艺条件,应用XRD、XPS、BET、SEM、TPR等现代测试手段对催化剂的结构和性能进行了表征。结果表明:NiO/Y-Al2O3催化剂最佳的制备条件为Ni的负载量为10%、焙烧温度为450℃,焙烧时间为5小时;Ag2O-Co3O/γ-Al2O3最佳的制备条件为Ag的负载量为8%、焙烧温度为450℃、焙烧时间为4小时,Co的负载量为8%、焙烧温度为450℃、焙烧时间为4小时。实验研究表明,NiO/Y-Al203单金属氧化物催化剂和Ag2O-Co3O4/γ-Al2O3双金属氧化物催化剂对煤热解催化制备氢气有很高的催化活性,是一种优良的煤制氢催化剂。
The paper mainly focuses on the study of the effect of metal oxide supported catalysts on hydrogen production from coal pyrolysis. Using y-Al2O3 as carrier and diverse metal nitrates as impregnation solutions, metal oxide supported catalysts and bimetal oxide supported catalysts were prepared by the method of equivalent volume impregnation. NiO/γ-Al2O3 and Ag2O-Co3O4/γ-Al2O3 catalyst was selected as an example and via diverse conditional tests. Furthermore, the optimal conditions of the NiO/γ-Al2O3 and Ag2O-Co3O4/γ-Al2O3 were confirmed. Several kinds of modern advanced testing measures were conducted to identify the structure and performance of the catalysts such as XRD、XPS、BET、SEM、TPR. The results showed that the optimal condition of preparation about NiO/γ-Al2O3 and Ag2O-Co3O4/γ-Al2O3 are as follows:The load of Ni is 10%, calcination temperature is 450℃, calcination time is 5h; the load of Ag is 8%, calcination temperature is 450℃, calcination time is 4h; the load of cobalt is 8%, calcination temperature is 450℃, calcination time is 4h. The study of the experiment showed that, NiO/γ-Al2O3 and Ag2O-Co3O4/γ-Al2O3 supported catalysts have pretty high catalytic activities for making hydrogen from coal prolysis. Thus, NiO/γ-Al2O3 and Ag2O-Co3O4/γ-Al2O3 are confirmed as the excellent catalysts for making hydrogen production.
引文
1.袁传敏,颜涌捷.生物质制氢气的研究[J].煤炭转化,2005,25(1):19-22
    2.李敏.浅谈中国能源现状及未来[J].山西电力.2004,6(120):66-68
    3.史立山.中国能源现状分析和可再生能源发展规划[J].可再生能源,2004,5:1-4
    4.付融冰,张慧明.中国能源的现状[J].能源环境保护,2005,2:8-12
    5.张志芹.洁净的新能源-氢能[J].现代物理知识.1999,4:23-24
    6.康铸慧,王磊,郑广宏,等.微生物产氢研究的进展[J].工业微生物,2005,6:41-49
    7.王毅波.21世纪理想的能源-氢能[J].能源研究与信息,2003,2(19):63-68
    8.毛宗强.无限的氢能-未来的能源[J]. Chinese Journal of Nature. Vol 28 NO.1:14-18
    9.索鸿英.氢能:新能源中的一颗明珠[J].世界科学,2000(5):35
    10.陈哲艮.太阳能光电氢能系统[J].能源工程,2001(1):12-14
    11.毛宗强.氢能——我国未来的清洁能源[J].化工学报,2004,10:296-302
    12.关荐伊,王世震.氢能——未来理想的新能源[J].化学世界,2001(8):447-448
    13.贡光禹.世界能源发展态势——加速向太阳能氢能过渡[J].科技导报,2001(11):51-54
    14. Uhrig Robert E. Heading toward hydrogen [J]. Energy(Norwalk,Connecticut),2004,29(2):17-21
    15.毛宗强.氢能——21世纪的绿色能源[M].北京:化学工业出版社,2005
    16. Choudhary T V, Sivadinarayana C, Chusuei C C et al. Hydrogen Production via Catalytic Decomposition of Methane [J]. Catalysis,2001,4(199):9-18
    17. Naresh S, Devadas P, Gerald P H. Hydrogen production by catalytic decomposition of methane [J]. Energy & Fuels,2001,15:1528-1534
    18. Astanovsky D L, Astanovsky L Z, Raikov B S, et al. Hydrogen Production by Steam Catalytic Natural Gas Conversion with Using Drilling Gas Pressure[C]. Proceedings of the National Hydrogen Association's 12th Annual U.S. Hydrogen Meeting, March, Washington, D.C, USA
    19. Sakae, Takeuaka. Decomposition of methane over supported-Ni catalysts:effects of the supports on the catalytic lifetime[J]. Applied Catalysis A:General.2001,217:101-110
    20. Dicks AL. Hydrogen generation from natural gas for the fuel cell systems of tomorrow [J]. Power Sources, 1996,61(1/2):113-124
    21. Rampe T, Heinzel A,Vogel B.Hydrogen generation from biogenic and fossil fuels by autothermal reforming[J]. Power Sources,2000,86(1/2):536-541
    22. Han, J. Kim, I.-S., and Choi, K.-S., High purity hydrogen generator for on-site hydrogen production[J]. International Journal of Hydrogen Energy,2002.27(10):1043-1047
    23. Edwards N, Ellis S R, Frost J C, et al. On-board hydrogen generation for transport applications:the HotSpot&unknown; methanol processor [J]. Power Sources,1998,71(1/2):123-128
    24. Lindstrom B, PetterssonL J, Steam reforming of methanol over copper-based monoliths:the effects of zirconia doping [J]. Power Sources.2002(106):264-273
    25. Klouz V, Fierro V, Denton P, et al. Ethanol Reforming for Hydrogen Production in a Hybrid Electric Vehicle: Process Optimisation [J]. Power Sources,2002,105(1):26-34
    26. Marino F J, Cerrella E G, Duhalde S, et al. Hydrogen from Stream Reforming of Ethanol. Characterization
    and Performance of Copper-Nickel Supported Catalysts [J]. Hydrogen Energy,1998,23(12):1095-1101
    27. Han J,Lee S M, Chang H. J. Direct methanol fuel-cell combined with a small back-up battery[J]. Power Sources,2002,112(2):484-490
    28. Meyer Steinberg, Hsing Cheng, Modem and prospective technologies for hydrogen production from fossil fuels [J]. Hydrogen Energy 1989,14:797-820
    29.陈丹之.氢能[M].西安:西安交通大学出版社,1990
    30. D. P. Gregory et al, The economics of hydrogen production. In Hydrogen:Production and Marketing[J]. ACS Symposium Series,1980,3:116-132
    31. K. R. Ekman, Cost of hydrogen production from fossil and nuclear fuels[J].Jet Propulsion Laboratory, CIT, 1980,797-806
    32. L. K. Gaines and A. M. Wolsky, Economics of hydrogen production:the next twenty-five yrars [J]. Hydrogen Energy Progress,1984,1:259-272
    33. Y. K. Ahn and W. H. Fischer, Production of hydrogen from coal and petroleum coke:technical and economcic perspectives [J]. Hydrogen Energy.1986,11:783-792
    34.邹仁鋆,王小曼.氢技术——研究、开发及工业应用展望[J].化工进展,1992,3:20-25
    35. Abdel-aal H K, Shalabi M A, Al-Harbi D K et al. Non-catalytic partial oxidation of sour natural gas[J]. Hydrogen Energy.1992,18:359-367
    36. Conibeer G J, Richards B S. A comparison of PV/electrolyser and photoelectrolytic technologies for use in solar to hydrogen energy storage systems [J]. Hydrogen Energy,2007,32(9):2703-2711
    37. Rosen M A, Scdtt D S. Comparative efficiency assessments for a range of hydrogen production processes [J]. Hydrogen Energy 1992.17:199-204
    38.管英富,邓麦村,金美芳,等.微藻光生物水解制氢技术[J].中国生物工程志,2003,23(4):8-13
    39.辛文.海藻制氢可为汽车供能[J].汽车工艺与材料,2001,(2):12-15
    40.罗明典.发展氢能的几条途径[J].精细与专用化学品,2003,(7):13-14
    41.任南琪,王宝贞,马放.厌氧活性污泥工艺生物发酵产氢能力研究[J].中国环境科学,1995,12(6):401-406
    42.樊耀亭,李晨林,侯红卫,等.天然厌氧微生物氢发酵生产生物氢气的研究[J].中国环境科学,2002,22(4):370-374
    43.任保增,唐大惠,胡庆丽,等.清洁制氢技术[J].河南化工,2004,11:5-7
    44.夏祖璋.太阳能制氢——洁净的能源供给系统[J].太阳能,1994,(3):31,36
    45. Fujishima A, Honda K. Electrochemical photolysis of water at a semi-conductor electrode[J]. Nature,1972, 238:37-38.
    46.王桂,王延吉,宋宝俊.光催化分解水制氢用含钛氧化物催化剂的研究[J].河北工业大学学报,2002,31(16):1-6
    47. Deluchi M A. Hydrogen vehicles:An evaluation of fuel storage, performance, safety, environmental impacts, and cost[J]. Hydrogen Energy.1989,14:81-130
    48. Kyu-Sung Sim, Young-Mok Son, Jong-Won Kim. Some thermochemical cycles composed of copper compounds with three-step reactions [J]. Hydrogen Energy.1993,18:287-290
    49. Bicelli L P, Pedeferri P, Razzini G.. Anodically oxidized titanium films to be used as electrodes in photoelectrolysis solar cells [J]. Hydrogen Energy.1986,11:555-562
    50.刘少文,吴广义.制氢技术现状及展望[J].贵州化工,2003,10:4-9
    51.尚廷科.液氢的生产[J].太阳能,2000(4):26-27
    52. Yang R.T.吸附法气体分离.王树森,曾美云等译[D].北京:化学工业出版社.1991
    53.边守军.新型四塔变压吸附制氢工艺研究[D].天津:天津大学,2000
    54.朱红莉,朱建华,陈光进.从含氢气体中分离提浓氢气技术的研究进展[J].青岛科技大学学报,2004,25(5):421-425
    55.虞继舜.煤化学[M].冶金工业出版社,2002
    56. Plotczyk W W,Resztak A,Szymanski A. Plasma Processing of Brown Coal [J]. International Journal of Materials&Product Technology,1995,10(3-6):530-540
    57. Kalinenko R A,Kunznetsov A P. Pulverized coal plasma gasification[J]. Plasma Chemistry and Plasma Processing,1993,13(1):141-167
    58. Georgiev I B,Mihailov B I. Some General Conclusions from the Results of Studies on Solid Fuel Steam Plasma Gasification [J]. Fuel,1992,71(8):895-901
    59. Herlitz H,Santen S. Plasma Technology for Production of Synthesis Gas from Coal or Other Fuels[J]. Industrial Heating,1985, (11):22-23
    60. Chen H G, Xie K C. Hydropyrolysis of light hydrocarbons in H2/Ar plasma jet [J]. Petrol Sci Technol,2003, 21(5/6):709-717
    61. Xie K C, Lu Y K, Tian Y J, et al. Study of Coal Conversion in an Arc Plasma Jet [J]. Energy Sources,2002, 24(12):1093-1098
    62.王胜,申曙光,陈宏刚,等.等离子煤气化工艺条件下弧温计算和试验对比[J].煤炭转化,2002,25(4):27-31
    63.田原宇,黄伟,鲍卫仁,等.煤等离子体热解制乙炔工艺的工程探讨[J].现代化工,2002,22(2):7-10
    64.邱介山,何孝军,马腾才.煤的水蒸气等离子体气化研究现状和前景[J].煤炭转化,2002,25(2):1-7
    65.李登新,高晋生.等离子体技术及其在煤制合成气中的应用[J].煤炭转化,1999,22(2):12-15
    66.谢克昌,田亚峻,陈宏刚.煤在H2/Ar电弧等离子体中的热解[J].化工学报,2001,52(6):516-521
    67.戴波.等离子体裂解煤制乙炔的研究[D].北京:清华大学,2000
    68.邱介山,王小泉,马腾才.几种烃化合物在氮热等离子体中的热解[J].燃料化学学报,1998,6(6):481-485
    69.沈本贤,吴幼青,高晋生.煤等离子体裂解制乙炔的研究[J].煤炭转化,1994,17(4):67-71
    70.申曙光,王胜,庞先勇,等.煤在直流电弧等离子体中的气化[J].煤炭转化,2003,26(1):45-47
    71.戴晓雁,康建华,印永祥.热等离子体裂解煤研究综述[J].煤化工,2001,(1):6-9
    72. Bittner D,Wanzl W. The significance of coal properties for acetylene formation in a hydrogen plasma [J]. Fuel Processing Technology,1990,24(1-3):311-316
    73. BRIDGWATER A V. Principles and practice of biomass fast pyrolysis processes for liquids [J]. Journal of Analytical and Applied Pyrolysis,1999,51(1):3-22
    74.姚福生,易维明.生物质快速热解液化技术[J].中国工程科学,2001,3(4):63-67
    75. LEDE J.Solar thermochemical conversion of biomass [J]. Solar Energy,1999,65(1):3-13
    76. SIPIL U K, et al. Characterization of biomass-based flash pyrolysis oils [J]. Biomass and Bioenergy,1998,
    14(2):103-113
    77. SCHOLZE B, HANSER C, MEIER D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin) Part Ⅱ.GPC, carbonyl goups, and 13C-NMR [J].Journal of Analytical and Applied Pyrolysis,2001,59(4):387-400
    78. SCHOLZE B, MEIER D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part Ⅰ. PY-GC/MS, FTIR, and functional groups [J]. Journal of Analytical and Applied Pyrolysis, 2001,60(1):41-54
    79. BRIDGWATER A V. Principles and practice of biomass fast pyrolysis processes for liquids [J]. Journal of Analytical and Applied Pyrolysis,1999,51(1):3-22
    80. Miura K. Mild. Conversion of coal for producing valuable chemicals [J]. Fuel processing technology,2000, 62:119-135
    81. ALEXANDER L,BROWN,DAVID C DAYTON, et al. Design and Characterization of an Entrained Flow Reactor for the Study of Biomass Pyrolysis Chemistry at High Heating Rates[J]. Energy & Fuels,2001, 15:1276-1285
    82. ALEXANDER L,BROWN,DABID C DAYTON, et al. Astudy of Cellulose Pyrolysis Chemistry and Global Kinetics at High Heating Rates[J]. Energy & Fuels,2001,15:1286-1294
    83.陈彩霞,孙学信,马毓义.煤粉热解的挥发份组分析出模型[J].自然科学发展——国家重点实验室通讯,1995,5(1):83-90
    84.陈彩霞,孙学信,张小可.层流曳带流反应器内流动和温度特性的数值模拟[J].华中理工大学学报,1994,22(3):30-35
    85. SASS A.Garrett's coal pyrolysis process [J]. Chem Eng Prog,1974,70(1):72-73
    86. RAMMLERRW, LURG I K. Synthetic fuels from Lurgi coal pyrolysis[J]. Energy Progress,1982,2(2): 121-129
    87.郭树才,罗长齐,张代佳,等.褐煤固体热载体干馏新技术工业性试验[J].大连理工大学学报,1995,35(1):46-50
    88.朱国防,吴善洪.利用循环流化床技术实现热、电、煤气“三联产”的实验研究[J].山东电力技术,1998(3):19-23
    89.吴茂峰,刘作,渠伟.热电煤气“三联产”的试验探索[J].能源技术,2003(24):39-40
    90.岑可法,方梦祥,洛仲泱,等.循环流化床热电气三联产装置研究[J].工程热物理学报,1995,16(4):499-502
    91.姚建中,郭慕孙.煤炭拔头提取液体燃料新工艺[J].化学进展,1995,7(3):205-208
    92.梁鹏,王志峰,董众兵,等.固体热载体热解淮南煤实验研究[J].燃料化学学报,2005,6:257-262
    93.王志峰,梁鹏,·董众兵,等.CFB煤燃烧/热解双反应器中热解室对立管内气固流动特性的考察[J].燃料化学学报,2004,32(6):711-716
    94.王志峰,梁鹏,董众兵,等.循环流化床煤燃烧/热解双反应器压力分布的实验研究[J].燃料化学学报,2004,32(4):413-417
    95.郭崇涛.煤华学[第一版][D].北京:化学工业出版社.1992(1999重印):82-89
    96. Fenrong Liu,Wen Li,Haokan Chen,Baoqing Li. Uneven distribution of sulfurs and their transformation during coal pyrolysis [J]. Fuel,2007 (86):360-366
    97. Zhixin Fu, Zhancheng Guo,Zhangfu Yuan,Zhi Wang. Swelling and shrinkage behavior of raw and processed coals during pyrolysis [J]. Fuel,2007 (86):418-425
    98. 范晓雷.神府煤热解及气化动力学研究[D].上海:华东理工大学,2006
    99.郑庆荣.中等变质程度煤热解特征研究[D].山西:太原理工大学,2004
    100. G. Skodras, P. Grammelis, P. Basinas. Pyrolysis and combustion behaviour of coal-MBM blends [J]. Bioresource Technology 2007 (98):1-8
    101. A. Kosminski, D.P. Ross, J.B. Agnew. Reactions between sodium and silica during gasification of a low-rank coal [J]. Fuel Processing Technology 2006 (87):1037-1049
    102.谢克昌.煤的结构与反应性[M].北京:科学出版社,2002
    103.储伟,催化剂工程[M].四川大学出版社,2006
    104.王桂茹,催化剂与催化作用[M].大连理工大学出版社,2004
    105.王尚弟,孙俊全.催化剂工程导论[M].化学工业出版社,2007
    106.徐朝芬,向军,胡松,等.热解条件对煤的热解行为的影响[J].实验室研究与探索,2005,6:18-24
    107.朱之培,高晋升.煤化学[M].上海:上海科学技术出版社,1984
    108.马礼敦.近代X射线多晶体衍射——实验技术与数据分析[M].北京:化学工业出版社,2004
    109.崔银萍,秦玲丽,杜鹃,等.煤热解产物的组成及其影响因素分析[J].煤化工,2007,(4):10-15
    110.闫金定,崔洪.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报,2003,32(3):311-315
    111. Solomon P R, Serio M A. Cross-Link Reaction during Coal Conversion [J]. Energy & Fuels,1990,4(1): 42-54
    112.许越,夏海涛,刘振琦.催化剂设计与制备工艺[M].北京:化学工业出版社,2003,5
    113. Franklin H D, Peters W A, Howard J B. Mineral matter effects on the rapid pyrolysis and hydropyrolysis of a bituminou coal 1. Effects on yields of Char, Tar and Light gaseous volatiles [J]. Fuel,1982,61(2):155-160
    114. Yoon K J, Walker P L Jr, Mulay L N et al. Benzene Hydrogenation over Iron:1.Specific Activities and Kinetic Behaviorover Unsupported Iron and Iron Dispersed on SiO2, Al2O3, Carbon and Doped Carbon [J]. Ind Eng Chem Process Des Dev,1983,22(4):519-526
    115. Lai C S, Chen P, Longwell J P et al. Thermal Reactions of m-Cresol over Calcium Oxide Between 350 and 600℃ [J]. Fuel,1987,66(4):525-531
    116. Khan M R, Seshadri K. Compositional Changes in the Mild Gasification Liquids Produced in the Presence of Calcium Compounds [J]. Fuel Processing Technology,1991,27(1):83-94
    117.吕俊复,岳光溪.氧化钙条件下焦油主要组分的催化裂解[J].清华大学学报(自然科学版),1997,37(2):6-10
    118. Simell P A, Hepola J O, Krause A O. Effects of Gasification Gas Components on Tar and Ammonia Decomposition over Hot Gas Cleanup Catalysts[J]. Fuel,1997,76(12):1117-1127
    119. Xu W C,Tomita A,The Effects of Temperature and Residence Time on the Secondary Reactions of Volatiles from Coal Pyrolysis[J]. Fuel Processing Technology,1989,21(1):25-37
    120. Simell P A, Bredenberg J B. Catalytic Purification of Tarry Fuel Gas[J]. Fuel,1990,69(10):1219-1225
    121. Clemens A H, Damiano L F, Matheson T W. The effect of calcium on the rate and products of steam gasification of char from low rank coal [J]. Fule,1998,77(9-10):1017-1020
    122. Asami K, Sears P, Furimsky E et al. Gasification of brown coal and char with carbon dioxide in the presence of finely dispersed iron catalysts[J]. Fule Processing Technology.1996,47(2):139-151
    123. Lang R J, Neavel R C. Behavior of calcium as a steam gasification catalyst [J]. Fuel,1982,71 (7):620-626
    124. Kopsel R, Zabawski H. Catalytic effects of ash components low rank coal gasification [J]. Fuel,1990,69 (5): 275-281
    125.田部浩三,野依良治.超强酸和超强碱[M].崔圣范译.北京:化学工业出版,1986:133-135
    126. Ushikubo T, Iizuka T, Hattori H et al. Preparation of highly acidic hydrated niobium oxide [J]. Catalysis Today,1993,16(3-4):291-295
    127. Wornat M J, Nelson P F. Effect of Iron-Exchanged Calcium on Brown Coal Tar [J]. Energy and Fuels,1992, 6(2):136-142
    128.田部浩三,小野嘉夫,御圜生诚,等.新固体酸和碱及催化作用[M].郑禄彬,王公慰,张盈珍,等译.北京:化学工业出版社,1992:79-83
    129.伍天洪,关平.恒温时间对煤热解实验开放性的影响有[J].天然气地球科学,2007,2:93-98
    130.赵融芳,黄伟,常丽萍,等.三种不同煤阶煤的模拟热解实验研究(Ⅰ)气态产物组成特性及其演化规律[J].煤炭转化,2000,10:37-41
    131.照日格图,李文钊,KIEFFER Roger.丙烷氧化脱氢氧化物催化剂的活性氧物种[J].分子催化,2002,16(4):279-283
    132.王辉,赵秀阁,肖文德,等.NO在负载型金属氧化物催化剂上的氧化反应机理[J].华东理工大学学报,2001,01:6-10
    133.陈铜,李文钊,张晋芬,等.钴基催化剂上乙烷氧化脱氢的催化作用[J].化学学报,2004,18(62):1760-1764
    134.郭建光,李忠,奚红霞,等.催化燃烧VOCs的三种过渡金属催化剂的活性比较[J].华南理工大学学报(自然科学版),2004,32(5):56-59
    135. Agroskin,A.A. Chemistry and Technology of Coal,U.S.Dept.of Int.and Nat.Sci.Foundation, Washingtion,D.C. 1966:234
    136.宫立倩,陈吉祥,李正,等.还原方式及还原温度对甲烷部分氧化镍催化剂结构和反应性能的影响[J].燃料化学学报,2008,36(2):192-196
    137.邱业君,陈吉祥,张继炎.CeO2、CaO助剂对甲烷部分氧化制合成气Ni/Mg-A12O3催化剂结构和性能的影响[J].燃料化学学报,2007,35(1):85-90
    138.张玉红,熊国兴,盛世善,等.NiO/γ-Al2O3中NiO与从γ-Al2O3间的相互作用[J].物理化学学报,1999,15(8):735-741
    139.余林,孙建,孙明,等.乙烷氧化脱氢制乙烯CeO2-NiO/γ-Al2O3催化剂上氧物种的研究[J].分子催化,2007,21(4):344-350
    140.周长军,朱月香,谢有畅.甲烷催化燃烧催化剂Ag/SnO2体系的研究[J].物理化学学报,2001,17(9):850-854
    141.谭永放,郝树任,张新堂,等.Co-Mo系耐硫变换催化剂的TPR表征[J].工业催化,1999,2:58-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700