以ZSM-5分子筛为载体的新型丙烷脱氢催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以ZSM-5分子筛为载体,分别制得Pt/ZSM-5、PtSn/ZSM-5、PtSnNa/ZSM-和PtSnNaLa/ZSM-5催化剂用于丙烷脱氢制丙烯反应,并利用多种手段对催化剂进行表征。
     1.确定了Pt/ZSM-5催化剂中的最佳Pt负载量和分子筛的最佳Si/Al比。Pt/ZSM-5催化剂尽管具有较高的初始反应活性,但反应稳定性和产物选择性较差。适量Sn助剂的添加可明显改善Pt/ZSM-5催化剂的丙烷脱氢反应性能,利用比表面积测定、XRD、氢化学吸附、H_2-TPD、TPR、TPO、热重等技术对催化剂的物理结构、Pt金属表面性质、金属-载体之间的相互作用以及催化剂的抗积炭性能进行表征。与PtSn/γ-Al_2O_3催化剂相比,PtSn/ZSM-5催化剂的“容炭”能力强,反应稳定性好。研究了Pt/ZSM-5催化剂的积炭失活历程,推导出该催化剂在反应初期的积炭量随反应时间的幂函数形式的关系式和积炭速率式。
     2.PtSnNa/ZSM-5催化剂中的最佳Na含量为1.0%。适量Na助剂的添加不仅降低了催化剂中的Br(o|¨)nsted酸中心和Lewis中/强酸中心,而且提高了催化剂表面的Pt金属裸露度,使PtSn/ZSM-5催化剂的金属功能和酸性功能得到较好的匹配。过量Na的添加,增加了催化剂中的Lewis弱酸中心,同时促进了催化剂中Sn组分的还原,不利于丙烷脱氢反应的进行。不同反应条件对PtSnNa/ZSM-5催化剂的丙烷脱氢反应性能影响明显。
     3. Al_2O_3粘结剂的加入明显提高了PtSnNa/ZSM-5催化剂的机械强度。~(27)Al MAS NMR表明Al_2O_3粘结剂中的部分可溶性Al物种经高温焙烧后可进入ZSM-5分子筛的骨架,从而产生部分中等强度的酸中心。PtSnNa/ZSM-5催化剂中的最佳Al_2O_3粘结剂含量为5%,此时粘结剂的加入明显提高了PtSnNa/ZSM-5催化剂的Pt金属分散度,使催化剂中的金属功能和酸性功能达到较好的匹配。在不同的反应条件下,Al_2O_3粘结剂对PtSnNa/ZSM-5催化剂丙烷脱氢反应性能的影响是不同的。
     4. PtSnNa/ZSM-5催化剂的最佳焙烧温度为500℃,此时Pt组分与载体及Pt、Sn之间的相互作用得到增强,催化反应的稳定性和丙烯选择性明显提高。继续提高焙烧温度,催化剂的比表面积和孔容降低明显。催化剂的表面酸性降低,Pt颗粒发生不同程度的烧结,不利于丙烷脱氢反应的进行。
     5.不同条件的水热处理对PtSnNa/ZSM-5催化剂脱铝程度的影响不同。当水热处理温度在
Pt/ZSM-5、PtSn/ZSM-5、PtSnNa/ZSM-5 and PtSnNaLa/ZSM-5 catalysts were prepared on ZSM-5 zeolite for propane dehydrogenation and the catalysts were characterized by several techniques.
     The best Pt content and suitable Si/Al ratio of ZSM-5 zeolite were confirmed on Pt/ZSM-5 catalyst. Although the initial reaction activity of Pt/ZSM-5 catalyst was high, the reaction stability and selectivity to propene were poor. Suitable addition of Sn could improve the catalytic behavior of Pt/ZSM-5 catalyst for propane dehydrogenation obviously. In order to discuss the possible reasons, several techniques including BET surface area, XRD, hydrogen chemisorption, H_2-TPD, TPR, TPO and thermogravimetric analysis were used to get their physical structure, surface character of Pt, interactions between metal and carrier and anti-coking property. Comparing with PtSn/γ-Al_2O_3 catalyst, the capacity to accommodate the coke of PtSn/ZSM-5 catalyst was much better, which resulted in the improved reaction stability. Moreover, the deactivation process of Pt/ZSM-5 catalyst was studied and the formula between the carbon amount and reaction time of Pt/ZSM-5 catalyst at the beginning of reaction and the formula about the coke velocity were obtained.
     The best content of Na in PtSnNa/ZSM-5 catalyst was 1.0%. In this case, the addition of Na could not only reduce the Br(o|¨)nsted acid sites and moderate/strong Lewis acid sites, but also increase the fraction of bare metallic Pt on the surface of the catalyst, thus making the matching between acid functions and metal functions stand at the best state. However, the excessive addition of Na increased the amount of Lewis acid sites and promoted the reduction of Sn species, which was disadvantageous to the reaction. Different reaction conditions could have obvious impacts on the reaction performance of PtSnNa/ZSM-5 catalyst in the dehydrogenation of propane.
     The addition of alumina binder in PtSnNa/ZSM-5 catalyst could increase the particle intensity obviously. The results of ~(27)Al MAS NMR indicated that some Al species from the binder could migrate into the zeolite framework in calcination so as to produce some acid sites of moderate intensity. The best content of
引文
1. Bhasin M M, McCain J H, Vora B V, et al, Dehydrogenation and oxydehydrogenation of paraffins to olefins [J]. Appl.Catal.A. 2001,221(1-2):397-419.
    2. 余长林,葛庆杰,徐恒泳,等. 丙烷脱氢制丙烯研究新进展[J],化工进展,2006,25(9):977-982.
    3. 尤廷秀,由宏君. 丙烷脱氢氧化制丙烯反应动力学研究进展[J],天然气化工,2004,29(6):51-56.
    4. Solsona B J, Lopez Nieto J M, Díaz U. Siliceous ITQ-6: A new support for vanadia in the oxidative dehydrogenation of propane[J], Micropo.Mesopo.Mater, 2006, 94(1-3):339-347.
    5. Xu B J, Zheng B, Hua W M, et al. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts[J], J.Catal, 2006,239(2):470-477.
    6. Liu Y M, Feng W L, Li T Ch, et al. Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene [J], J.Catal, 2006,239(1):125-136.
    7. Kondratenko E V, Cherian M, Baerns M. Oxidative dehydrogenation of propane over differently structured vanadia-based catalysts in the presence of O2 and N2O[J], Catal.Today, 2006,112(1-4):60-63.
    8. Jibril B Y, Ahmed Sh. Oxidative dehydrogenation of propane over Co, Ni and Mo mixed oxides/MCM-41 catalysts: Effects of intra- and extra-framework locations of metals on product distributions[J], Catal.Commun, 2006,7(12):990-996.
    9. 董文生,王心葵,彭少逸. 丙烷脱氢制丙烯研究进展[J].合成化学,1997,5(3):246-250.
    10.肖锦堂.烷烃催化脱氢生产 C3~C4 烯烃工艺[J],天然气工业,1994,14(2):64-69.
    11. Gorriz O F, Cadus L E. Supported chromium oxide catalysts using metal carboxylate complexes: dehydrogenation of propane [J], Appl.Catal.A,1999, 180(1-2):247-260.
    12. 王士文,秦永宁,赵玉娟. Cr2O3-Al2O3 催化剂半导性对催化性能的影响[J],催化学报,1993,14(3):179-184.
    13. 董群,郭大为,廖百顺,等. 改性 Cr2O3/Al2O3 催化剂的丙烷临氢脱氢性能[J],大庆石油学院学报,2001,25(4):29-31.
    14. 陈海松 , 余立新 , 徐海升 , 等 . 稀土助剂改良的铬铝催化剂上丙烷脱氢宏观动力学 [J], 高校化学工程学报,1999,13(1):38-43.
    15. Gascon J, Tellez C, Herguido J. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation [J], Appl.Catal.A, 2003,248(1-2):105-116.
    16. 杨维慎,林励吾. 负载型铂锡催化剂的研究进展[J].石油化工,1993,23(5):347-352.
    17. Burch R. Platinum-tin reforming catalysts: I. The oxidation state of tin and the interaction between platinum and tin [J]. J. Catal,1981,71(2):348-359.
    18. 徐天宏,匡文兴,范以宁. 锶助剂对铂锡催化剂正丁烷脱氢催化性能的影响[J],无机化学学报,1998,14(3):343-346.
    19. 张 涛 , 臧 景 龄 , 胡 爱 华 , 等 . 锂 对 于 γ-Al2O3 表 面 酸 中 心 的 调 变 作 用 及 其 积 炭 性 能 的 影 响 [J]. 催 化 学报,1991,11(5):341-347.
    20. Casella M L, Siri G J, Santori G F, et al. Surface characterization of li-modified platinum/tin catalysts for isobutene dehydrogenation[J]. Langmuir,2000,16(13):5639-5643.
    21. 郭松,丙烷脱氢多组分铂催化剂的研究[D]:[硕士学位论文].南京:南京大学化学化工学院,2002
    22. 杨维慎,吴荣安,林励吾. PtSn/A12O3 负载型催化剂丙烷脱氢性能的改进[J].石油化工,1992,21(8):511-515
    23. Li R X, Wong N B, Tin K C ,et al. The effect of lanthanum in dehydrogenation of propane on Pt-Sn bimetallic catalysts[J]. Catal. Lett,1998,50(3-4):219-223.
    24. 黄宁表,田金忠,刘强,等. 铂锡双金属催化剂上丙烷脱氢反应研究[J].燃料化学学报,1996,24(2):108-112.
    25. Angel G D, Bonilla A, Pena Y,et al. Effect of lanthanum on the catalytic properties of PtSn/γ-A12O3 bimetallic catalysts prepared by successive impregnation and controlled surface reaction[J].J.Catal,2003,219(1):63-73.
    26.王承玉,吴荣安,林励吾.Pt-Sn/Al2O3 催化剂中氯离子与铂、锡的相互作用及其对反应性能的影响[J].催化学报,1983,4(3):177-183.
    27. 董文生,王浩静,王心葵,等. 水蒸汽对 PtSn/A12O3 催化剂结构及反应性能的影响[J]. 分子催化, 1999,13(3):181-185.
    28. Afonso J C, Schmal M, Frety R. The chemistry of coke deposits formed on a Pt-Sn catalyst during dehydrogenation of n-alkanes to mono-olefins [J]. Fuel ProcessTechnol, 1994,41(1):13-25.
    29. Annaland M S, Kuipers J A M, Swaaij W P M. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst [J], Catal.Today, 2001,66(2-4):427-436.
    30. Lin L W, Zhang T, Zang J L, et al. Dynamic process of carbon deposition on pt and Pt-Sn catalysts for alkane dehydrogenation[J].Appl Catal,1990,67:11-23.
    31. Larsson M, Hulten M, Blekkan E A ,et al. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation [J].J.Catal,1996,164(1):44-53.
    32. Afonso J C, Aranda D A G, Schmal M, et al. Regeneration of a PtSn/A12O3 catalyst: influence of heating rate, temperature and time of regeneration[J]. Fuel Proce Technol,1997,50(1):35-48.
    33. 余长林,葛庆杰,徐恒泳,等.助剂对 Pt/γ-Al2O3 催化剂丙烷脱氢性能的影响[J],石油化工,2006,35(3):217-220.
    34. 余长林,葛庆杰,徐恒泳,等.Cr 对 Pt-Sn/γ-Al2O3 催化剂丙烷脱氢性能的影响[J],燃料化学学报,2006,34(2):209-213.
    35. Kogan S B, Schramm H, Herskowitz M. Dehydrogenation of propane on modified Pt/θ- alumina performance in hydrogen and steam environment [J]. Appl.Catal.A, 2001, 208(1-2):185-191.
    36. Kogan S B, Herskowitz M. Selective propane dehydrogenation to propylene on novel bimetallic catalysts[J].Catal Commun,2001,2(5):179-185.
    37. 陈进富,陆绍信. Pt-Sn/CCA 催化剂性能及结构表征[J].石油大学学报(自然科学版),1999,23(1):89-92.
    38. 张继光.催化剂制备过程技术[M].北京:中国石化出版社,2004,258.
    39 董文生,王浩静,王心葵,等. 不同载体的 PtSn 催化剂上丙烷脱氢性能的研究[J]. 天然气化工,1999,24(3):9-12.
    40. 董文生,王心葵,彭少逸. Ca 对 PtSn/MgAl2O4 结构及丙烷脱氢性能的影响[J],分子催化,1998,12(3):183-188.
    41. Aguilar-Rios G, Valenzuela M A, Armendariz H ,et al. Metal-support effects and catalytic properties of platinum supported on zinc aluminate [J], Appl. Catal, 1992,90(1):25-34.
    42. Dessau, Ralph M, Valyocsik, et al. Tin-colating microporous crystalline materials and their use as dehydrogenation, dehydrocyclization reforming catalysts[P].US:5192728,1993-03-09.
    43. Barri, Sami A I, Tahir, et al. Chemical process and catalyst[P].US: 5208201, 1993-05-04
    44. Alexander, Bruce D, Huff J, et al. Dehydrogenation catalysts and process [P].US: 6103103, 2000-08-15
    45. 布鲁斯.D.亚力山大,乔治.A.赫夫,烃脱氢的催化剂和方法[P]. CN:1395506A,2003-02-05
    46. Katranas T K, Vlessidis A G, Tsiatouras V A,et al. Dehydrogenation of propane over natural clinoptilolite zeolites [J].Micropo.Mesopo.Mater,2003,61(1-3):189-198.
    47. Hill J M, Cortright R D, Dumesic J A. Silica- and L-zeolite-supported Pt, Pt/Sn and Pt/Sn/K catalysts for isobutane dehydrogenation [J].Appl Catal A,1998, 168(1):9-21
    48. 王鉴,董群,武显春,等. 金属改性 HZSM-5 对丙烷脱氢和芳构化反应的研究[J].大庆石油学院学报,1995,19(2):46-48.
    49. Cola P L D, Glaser R, Weitkamp J. Non-oxidative propane dehydrogenation over Pt-Zn-containing zeoliters [J]. Appl.Catal.A, 2006,306:85-97.
    50 徐如人,庞文琴等著.分子筛与多孔材料化学[M],北京:科学出版社, 2004, 72.
    51. Li B, Li Sh J, Li N, et al. Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization[J], Micropo.Mesopo.Mater, 2006, 88(1-3):244-253.
    52. Blasco T, Corma A, Martínez-Triguero J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J], J.Catal, 2006,237(2):267-277.
    53. Liu H M, Kuehl G H, Halasz I, et al. Quantifying the n-hexane cracking activity of Fe- and Al-based acid sites in H-ZSM-5[J], J.Catal, 2003,218(1):155-162.
    54. Villegas J I, Kumar N, Heikkil? T, et al. Isomerization of n-butane to isobutane over Pt-modified Beta and ZSM-5 zeolite catalysts: Catalyst deactivation and regeneration [J], Chem Eng J, 2006,120(1-2):83-89.
    55 Bauer F, Chen W H, Zhao Q, et al. Improvement of coke-induced selectivation of H-ZSM-5 during xylene isomerization[J], Micropo. Mesopo.Mater, 2001,47(1):67-77.
    56. Guo J J, Lou H, Zhao H, et al. Dehydrogenation and aromatization of propane over rhenium-modified HZSM-5 catalyst [J]. J.Mol.Catal A,2005,239(1-2):222-227.
    57. Yu S Y, Yu G J, Li W, et al. Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization onCo/H-ZSM5 and H-ZSM5 [J]. J.Phys.Chem.B, 2002,106(18):4714-4720.
    58. 徐如人,庞文琴等著.分子筛与多孔材料化学[M],北京:科学出版社, 2004, 250
    59. Marques Maria de Fátima V, Moreira Simone C. ZSM-5 acid zeolite supported metallocene catalysts for ethylene polymerization [J], J.Mol.Catal A,2003,192(1-2):93-101.
    60. Viswanadham N, Muralidhar G, Prasada Rao T S R. Cracking and aromatization properties of some metal modified ZSM-5 catalysts for light alkane conversions [J]. J.Mol.Catal A, 2004,223(1-2):269-274.
    61. Sily P D, Noronha F B, Passos F B. Methane Direct Conversion on Mo/ZSM-5 Catalysts Modified by Pd and Ru [J]. J.Natural Gas Chem, 2006, 15(2):82-86.
    62. Pérez-Ramírez J,Gallardo-Llamas A. Impact of the preparation method and iron impurities in Fe-ZSM-5 zeolites for propylene production via oxidative dehydrogenation of propane with N2O[J]. Appl Catal A, 2005,279(1-2):117-123.
    63. Pidko E A, Kazansky V B, Hensen E J M, et al. A comprehensive density functional theory study of ethane dehydrogenation over reduced extra-framework gallium species in ZSM-5 zeolite [J].J.Catal, 2006,240(1):73-84
    64. 辛勤,固体催化剂研究方法(上册)[M],北京:科学出版社, 2004, 353.
    65. Zhang C M, Liu Q, Xu Zh, et al. Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment [J]. Miropor. Mesopor. Mater. 2003,62(3):157-163.
    66. 徐如人,庞文琴等著,分子筛与多孔材料化学[M],北京,科学出版社, 2004, 251.
    67. Lucas A D, Valverde J L, Sanchez P. et al. Hydroisomerization of n-octane over platinum catalysts with or without binder[J].Appl Catal A. 2005,282(1-2):15-24.
    68. Rachapudi R, Chintawar P S, Greene H L. Aging and Structure/Activity Characteristics of CR–ZSM-5 Catalysts during Exposure to Chlorinated VOCs[J]. J.Catal. 1995,185(1):58-72.
    69. Ahmed K. Aboul-Gheit, Sameh M,et al. Hydroconversion of cyclohexene using H-ZSM-5 zeolite catalysts promoted via hydrochlorination and/or platinum incorporation[J]. J.Mol.Catal A,2006,245(1-2):167-177.
    70. Machida M, Watanabe T. Effect of Na-addition on catalytic activity of Pt-ZSM-5 for low-temperature NO–H2–O2 reactions[J]. Appl.Catal. B. 2004,52(4):281-286.
    71. Xin M, Hwang I Ch, Kim D H.et al. The effect of the preparation conditions of Pt/ZSM-5 upon its activity and selectivity for the reduction of nitric oxide[J]. Appl.Catal. B. 1999,21(3):183-190.
    72. Lin L W, Yang Sh, Jia J F, et al. Surface structure and reaction performances of highly dispersed and supported bimetallic catalysts [J].Science in china (Series B). 1999, 42(6):571-580.
    73. Miller J T, Meyers B L, Barr M K, et al. Hydrogen Temperature-Programmed Desorptions in PlatinumCatalysts: Decomposition and Isotopic Exchange by SpilloverHydrogen of Chemisorbed Ammonia[J]. J.Catal. 1996,159(1):41-49.
    74. Passos F B, Schmal M, Vannice M A. Effect of In and Sn on the Adsorption Behavior and Hydrogenolysis Activity of Pt/Al2O3Catalysts[J]. J.Catal. 1996,160(1):106-117.
    75. Balakrishnan K, Schwank J J. A chemisorption and XPS study of bimetallic Pt-Sn/Al2O3 catalysts [J]. J.Catal. 1991,127(1):287-306.
    76. Zhang Y W, Zhou Y M, Qiu A D, et al. Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter [J]. Catal. Commun. 2006,7(11):860-866.
    77. 董文生,王心葵,王浩静,等. Pt-Sn/MgAl2O4 催化剂的 TPR 和 H2-TPD 研究[J].催化学报,1999,20(5):577-580.
    78. Araujo L R R, Schmal M. Pt-Cr/ZSM-5 catalysts for propane and cyclohexane conversions[J].Appl Catal A. 2002,235(1-2):139-147.
    79. Cortright R D, Dumesic J A. L-zeolite-supported platinum and platinum/tin catalysts for isobutane dehydrogenation[J]. Appl Catal A. 1995,129(1):101-115.
    80. Bacaud R, Bussiere P, Figueras F. M?ssbauer spectra investigation of the role of tin in platinum-tin reforming catalysts[J]. J.Catal. 1981,69(2):399-409.
    81. Guisnet M, Gnep N S. Aromatization of propane over GaHMFI catalysts. Reaction scheme, nature of the dehydrogenating species and mode of coke formation[J]. Catal Today. 1996,31(3-4):275-292.
    82. Paal Z, Gyory A, Uszkurat I. Pt/Al2O3 catalysts and PtSn/Al2O3 catalysts prepared by two different methods: hydrogenpressure effects in the reactions of n-hexane [J]. J.Catal, 1997,168(2):164-175.
    83. Piti T, Kanokthip S, Jumras L. Nature of the metal-support interaction in bifunctional catalytic Pt/H-ZSM-5 zeolite[J].J.Phys.Chem.B, 2005,109(24):11940-11945.
    84. Biloen P, Dautzenberg F M, Sachtler W M H. Catalytic dehydrogenation of propane to propene over platinum and platinum-gold alloys[J]. J.Catal, 1977,50(1):77-86.
    85. Li X, Wang A J, Sun Zh Ch, et al. Effect of surface proton exchange on hydrodesulfurization performance of MCM-41-supported catalysts[J]. Appl.Catal.A,2003,254(2):319-326.
    86. 陆铭,孙洪敏,郭燏,等.ZSM-5 沸石催化剂的失活历程和活性稳定性[J].石油学报(石油加工),2001,17(4):59-63.
    87. 赵毓璋,甲苯岐化在 ZSM-5 沸石催化剂上积炭规律的研究[D],[硕士论文],北京: 石油化工科学研究院,1999.
    88. 王辉,张汉军, 孔德金,等.ZSM-5 催化剂水蒸汽处理对甲苯选择性歧化性能的影响[J].石油化工,2000,29(6):401-404.
    89. Basile F, Fornasari G, Grimandi A,et al. Effect of Mg, Ca and Ba on the Pt-catalyst for NOx storage reduction[J]. Appl.Catal. B, 2006,69(1-2):58-64.
    90. Sordelli L, Guidotti M, Andreatta D, et al. Characterization and catalytic performances of alkali-metal promoted Rh/SiO2 catalysts for propene hydroformylation[J],J.Mol.Catal.A.2003,204-205:509-508.
    91. Bocanegra S A, Castro A A, Guerrero-Ruíz A, et al. Characteristics of the metallic phase of Pt/Al2O3 and Na-doped Pt/Al2O3 catalysts for light paraffins dehydrogenation[J].Chem.Eng. J, 2006,118(3):161-166.
    92. Sakagami H, Ohno T, Takahashi N, et al. The effects of Na loading on catalytic properties of H2-reduced Pt/MoO3 for heptane isomerization[J].J.Catal,2006,241(2):296-303.
    93. 邱安定, 范以宁, 马永福, 等. 添加碱金属助剂对负载型铂锡催化剂长链烷烃脱氢反应性能的影响[J]. 催化学报,2001,22(4):343-347.
    94. 王珏, 赵璧英, 谢有畅. MgO/HZSM-5 中 MgO 分散状态和催化性能的关系[J].物理化学学报,2001,17(11):966-971.
    95. Fu Z H, Yin D L, Yang Y Sh et al. Characterization of modified ZSM-5 catalysts for propane aromatization prepared by a solid state reaction[J]. Appl Catal A,1995,124(1):59-71.
    96. 白杰 , 刘盛林 , 谢素鹃 , 等 Mg 的添加对 Mo/ZSM-5 催化剂催化甲烷芳构化性能的影响 [J]. 催化学报,2004,25(1):70-74.
    97. Barias O A, Holmen A, Blekkan E A. Propane dehydrogenation over supported platinum catalysts: effect of tin as a promoter[J]. Catal Today, 1995,24(3):361-364.
    98. Konsolakis M, Macleod N, Isaac J, et al. Strong Promotion by Na of Pt/γ-Al2O3 Catalysts Operated under Simulated Exhaust Conditions[J]. J.Catal, 2000,193(2):330-337.
    99. Huang Z, Fryer J R, Park C, et al. Transmission electron microscopy and energy dispersive X-ray spectroscopy studies of Pt-Sn/γ-Al2O3 catalysts [J]. J.Catal, 1996,159(2):340-352.
    100. Dorado F, Romero R, Canizares P. Influence of Clay Binders on the Performance of Pd/HZSM-5 Catalysts for the Hydroisomerization of n-Butane[J].Ind. Eng. Chem. Res. 2001,40(16):3428-3434.
    101. Lee S-Ch, Jang J-H, Lee B-Y, et al. The effect of binders on structure and chemical properties of Fe-K/γ-Al2O3 catalysts for CO2 hydrogenation[J]. Appl.Catal.A,2003,253(1):293-304.
    102. Dorado F, Romero R, Canizares P. Hydroisomerization of n-butane over Pd/HZSM-5 and Pd/Hβ with and without binder[J]. Appl Catal A,2002,236(1-2):235-243.
    103. Lucas A D, Valverde J L, Sanchez P, et al. Influence of the binder on the n-octane hydroisomerization over palladium-containing zeolite catalysts[J]. Ind.Eng.Chem.Res.2004,43(26):8217-8225.
    104. Lee M H, Cheng C F, Heine V, et al. Distribution of tetrahedral and octahedral Al sites in gamma alumina[J]. Chem Phy Lett, 1997,265(6):673-676.
    105. Ke J-A, Wang I. Elucidation of the role of potassium fluoride in the chemical and physical nature of ZSM-5 zeolite[J]. Mater.Chem.Phys. 2001,68(1-3):157-165.
    106. Zhang Y W, Zhou Y M, Yang K Zh, et al. Effect of hydrothermal treatment on catalytic properties of PtSnNa/ZSM-5 catalyst for propane dehydrogenation [J].Micropor. Mesopor. Mater. 2006,96(1-3):245-254.
    107. Fougerit J M, Gnep N S, Guisnet M, et al. Effect of binder on the properties of a mordenite catalysts for the selectiveconversion of the methanol into light olefins[J]. Stud.Surf.Sci.Catal,1994,84(11):1723-1729.
    108. Shen S C, Kawi S. MCM-41 with improved hydrothermal stability: formation and prevention of Al content dependent structural defects[J]. Langmuir, 2002,18(12):4720-4728.
    109.Usman U, Takaki M,Kubota T, et al. Effect of boron addition on a MoO3/Al2O3 catalyst physicochemical characterization[J]. Appl Catal A, 2005,286(1):148-154.
    110. Lu J Y, Zhao Zh, Xu Ch M, et al. FeHZSM-5 molecular sieves-Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene [J], Catal.Commun. 2006,7(4):199-203.
    111. 林励吾, 杨维慎, 贾继飞, 等. 负载型高分散双组分催化剂的表面结构及催化性能研究[J].中国科学(B辑),1999,29(2):109-117.
    112. Chen J X, Wang R J, Zhang J Y, et al. Effects of preparation methods on properties of Ni/CeO2–Al2O3 catalysts for methane reforming with carbon dioxide [J]. J.Mol.Catal A, 2005, 235(1-2):302-310.
    113. Ataloglou T, Vakros J, Bourika K,et al. Influence of the preparation method on the structure–activity of cobalt oxide catalysts supported on alumina for complete benzene oxidation[J]. Appl.Catal.B, 2005, 57(4):299-312.
    114. Shiau Ch-Y, Ma M W, Chuan C S g. CO oxidation over CeO2-promoted Cu/γ-Al2O3 catalyst: Effect of preparation method[J]. Appl Catal A, 2006, 301(1): 89-95.
    115. Boveri M, Aguilar-Pliego J, Pérez-Pariente J, et al. Optimization of the preparation method of HSO3-functionalized MCM-41 solid catalysts[J]. Catal.Today, 2005(107-108): 868-873
    116. 马中义,杨成,陶文晶,等,载体焙烧温度对 Cu/ZrO2 催化剂 CO 加氢反应行为的影响[C], 第十三届全国催化学术会议论文集,兰州,2006, 343.
    117. 张晨,郭新闻,王亚男,等. 焙烧温度对 NH4F 改性纳米 HZSM-5 的 β-甲基萘甲基化性能的影响[C], 第十三届全国催化学术会议论文集,兰州,2006,537.
    118. Xu R, Wei W, Li W h, et al. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas: Effect of calcination temperature[J], J.Mol.Catal A, 2005,234(1-2):75-83.
    119. Tang X F, Li Y G, .Huang X M, et al. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature[J], Appl.Catal.B, 2006,62(3-4):265-273.
    120.李应成,闫世润,杨为民,等.焙烧温度对 Nb2O5/α-Al2O3 催化剂结构及催化性能的影响[J],催化学报,2006, 27(5):433-439.
    121. Harrison P G, Allison F J, Daniell W. Effect of Preparation Route and Thermal Treatment on the Nature of Copper and Chromium Doubly Promoted Ceria Catalysts [J]. Chem Mater, 2002,14(2):499-507.
    122. 赵宁, 杨成, 魏伟,等. 焙烧温度对合成低碳醇用 Cu/Mn/Ni/ZrO2 催化剂性能的影响[J],催化学报, 2002, 23(6): 571-574.
    123. 尹双凤,徐柏庆.环己酮肟在改性氧化锆催化剂上的 Beckmann 重排反应 Ⅴ .活化焙烧温度对 B2O3ZrO2 催化剂的影响[J].催化学报,2002,23(6):507-512.
    124 林绮纯,董新法,郭锡坤等.焙烧温度对 SO2-ZrO-DyO-HZSM-5 催化性能的影响[J].天然气化工,2002,27(5):21-24.
    125. 蒋劼 , 毛东森 , 杨为民 , 等 . 焙烧对醛氨缩合催化剂 Co-ZSM-5 分子筛核磁共振的影响 [J]. 光谱实验室,2003,20(5):668-670.
    126. 陈雷,邓风,叶朝辉.HZSM-5 分子筛焙烧脱铝的 27AlMQMAS NMR 研究[J].物理化学学报,2002, 18(9):786-790
    127. 辛勤主编, 固体催化剂研究方法(上册)[M],北京:科学出版社.2004.352.
    128. 蒋 劼.毛东森.杨为民.等. 焙烧温度对Co-ZSM-5 分子筛催化剂上醛氨缩合的影响.化学通报.2003.第66 卷.w088
    129. Guzmán-Castillo M L., López-Salinas E, Fripiat J J. et al, Active sulfated alumina catalysts obtained by hydrothermal treatment [J], J.Catal, 2003,220(2):317-325.
    130. Stanislaus A, Al-Dolama K, Absi-Halabi M. Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism [J], J.Mol.Catal A,2002,181(1-2):33-39.
    131. Choudhary V R, Banerjee S, Uphade B S. Activation by hydrothermal treatment of low surface area ABO3-type perovskite oxide catalysts[J], Appl.Catal.A,2000,197(2):183-186.
    132. 龚燕丽,向兰,金涌.水热处理对 Ni/Al2O3 催化剂结构和性能的影响[J].催化学报,2003,24(12):919-923.
    133. 解 红 娟 , 王 军 威 , 冯 月 兰 , 等 . 水 热 处 理 Zn/HZSM-5 催 化 剂 对 丙 烷 芳 构 化 反 应 的 影 响 [J]. 分 子 催化,2000,14(4):289-293.
    134. Kumar S, Sinha A K, Hegde S G, et al. Influence of mild dealumination on physicochemical, acidic and catalytic properties of H-ZSM-5[J]. J.Mol.Catal A: Chem. 2000,154(1-2):115-120.
    135. Triantafillidis C S, Vlessidis A G, Nalbandian L, et al. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites [J]. Micropor. Mesopor. Mater. 2001,47(2-3):369-388.
    136. Ruckenstein E, Hu X D. The effect of steam on supported metal catalysts [J]. J.Catal. 1986,100(1):1-16.
    137. Sombatchaisak S, Praserthdam P, Chaisuk Ch. Et al. An alternative correlation equation between particle size and structure stability of H-Y zeolite under hydrothermal treatment conditions [J], Ind.Eng.Chem.Res, 2004,43(15):4066-4072.
    138. Praserthdam P, Mongkolsiri N, Kanchanawanichkun P. Effect of crystal size on the durability of Co/HZSM-5 in selective catalytic reduction of NO by methane[J]. Catal.Commun. 2002,3(5):191-197.
    139. Budi P F, Howe R. Steam deactivation of CoZSM-5 NOx reduction catalysts[J]. Catal Today. 1997,38(2):175-179.
    140. Seiler M,Wang W,Hunger M. Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ NMR spectroscopy [J].J.Phys.Chem.B. 2001,105(34):8143-8148.
    141. Samoson A, Lippmaa E, Engelhardt G, et al. Quantitative high-resolution 27Al NMR: tetrahedral non-framework aluminium in hydrothermally treated zeolites[J].Chem.Phys.Lett. 1987,134(6):589-592.
    142. Omegna A, Haouas M, Kogelbauer A, et al. Realumination of dealuminated HZSM-5 zeolites by acid treatment: a reexamination[J]. Micropor. Mesopor. Mater. 2001,46(2-3):177-184.
    143. Gutierrez L, Boix A, Pentunchi J. Promoting Effect of Pt on CoZeolites upon the SCR of NOx[J]. J.Catal. 1998,179(1):179-191.
    144. 汪树军,梁娟,郭文珪,等.ZSM-5 沸石骨架铝迁移规律的研究,I.水热处理条件及沸石硅铝比的影响[J].催化学报,1992,13(1):38-43.
    145. Gayubo A G, Aguayo A T, Atutxa A, et al. Role of Reaction-Medium Water on the Acidity Deterioration of a HZSM-5 Zeolite [J]. Ind.Eng.Chem.Res. 2004,43(17):5042-5048.
    146. Pieterse J A Z, Pirngruber G D, Bokhoven J A, et al. Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition [J], Appl.Catal .B. 2006,71:16-22.
    147. Morales R, Melo L, Lianos A, et al. Characterization of bifunctional PtSn/H[Al]ZSM5 catalysts: a comparison between two impregnation strategies[J]. J.Mol.Catal A, 2005,228(1-2):227-232.
    148. Menezes S M C, Camorim V L, Lam Y L, et al. Characterization of extra-framework species of steamed and acid washed faujasite by MQMAS NMR and IR measurements[J].Appl.Catal.A, 2001,207(1-2):367-377.
    149. Yue B H, Zhou R X, Wang Y J. et al, Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce–Zr/Al2O3 catalysts[J], Appl.Catal.A,2005,295(1):31-39.
    150. Sheemol V N, Tyagi B, Jasra R V. Acylation of toluene using rare earth cation exchanged zeolite β as solid acid catalyst[J], J.Mol.Catal A,2004,215(1-2):201-208.
    151. Kladis Ch, Bhargava S K, Foger K. et al, FT-IR studies of the NO adsorption on rare earth (Eu/Gd/Tb) exchanged new generation silicoaluminophosphate catalysts of chabazite type[J], Catal.Today, 2000,63(2-4):297-303.
    152. Djaidja A, Barama A, Bettahar M M. Oxidative transformation of methane over nickel catalysts supported on rare-earth metal oxides[J], Catal.Today,2000,61(1-4):303-307.
    153. Fraga M A , Soares de Souza E , Villain F. et al. Addition of La and Sn to alumina-supported Pd catalysts for methane combustion[J].Appl.Catal.A, 2004,259(1):57-63.
    154. Ogawa Y, Toba M, Yoshimura Y. Effect of lanthanum promotion on the structural and catalytic properties of nickel-molybdenum/alumina catalysts[J].Appl.Catal.A, 2003,246(2):213-225.
    155. 叶 季 蕾 , 李 增 喜 , 段 华 超 , 等 . 甲 烷 部 分 氧 化 反 应 的 镧 改 性 Ni/γ-Al2O3 催 化 剂 研 究 [J], 中 国 稀 土 学报,2006,24(3):302-308.
    156. 袁志庆,许中强,谢在库. HZSM-5 孔道中的 La 物种及其定位研究[C],第十三届全国催化学术会议论文集,兰州,2006, 689.
    157. Sugi Y, Kubota Y, Komura K,et al. Shape-selective alkylation and related reactions of mononuclear aromatic hydrocarbons over H-ZSM-5 zeolites modified with lanthanum and cerium oxides[J].Appl.Catal.A. 2006,299:157-166.
    158. Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane using double-stage reaction [J], Appl.Catal. A. 2002,230(1-2):195-202.
    159. Wakui K, Satoh K, Sawada G, et al. Cracking of n-Butane Over Alkaline Earth-Containing HZSM-5 Catalysts [J], Catal lett. 2002,84(3-4):259-264.
    160. 杨刚,王妍,周丹红,等.La/ZSM-5 分子筛的热稳定性及镧存在形态研究[J].物理化学学报,2004,20(1):60-64.
    161 郭锡坤,刘庆红,林绮纯.镧改性铜基铝铈交联蒙脱土的制备及其对丙烯选择性还原 NO 的催化性能[J].催化学报,2004,25(12):989-994.
    162. 徐东彦,李文钊,段洪敏,等.Pt,Ru 和 Pd 助剂对 F-T 合成中 Co/γ-Al2O3 催化剂性能的影响[J],催化学报,2005,26(9):780-784.
    163. Machocki A, Ioannides T, Stasinska B, et al. Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane[J], J.Catal.2004,227(2):282-296
    164. Fuentes S, Bogdanchikova N, Avalos-Borja M, et al. Structural and catalytic properties of Pd/Al2O3–La2O3 catalysts[J]. Catal. Today. 2000,55(3):301-309.
    165 .陈吉祥,邱业君,张继炎,等.La2O3 和 CeO2 对 CH4-CO2 重整 Ni/MgO 催化剂结构和性能的影响[J],物理化学学报,2004,20(1):76-80.
    166. 崔月华,徐恒泳,葛庆杰,等.Ni/La2O3/α-Al2O3 中的高温脱附氢促进 CH4/CO2 重整反应的初活性[J],催化学报,2006,27(8):659-663.
    167. 林 明 桂 , 杨 成 , 吴 贵 升 , 等 . 锰 和 镧 改 性 Cu/ZrO2 合 成 甲 醇 催 化 剂 的 结 构 及 催 化 性 能 [J], 催 化 学报,2004,25(7):591-595.
    168. Larese C, Campos-Martin J M, Calvino J J,et al. Alumina- and Alumina–Zirconia-Supported PtSn Bimetallics: Microstructure and Performance for the n-Butane ODH Reaction[J]. J.Catal. 2002,208(2):467-478.
    169. 张一卫,周钰明,叶志良,等.镧对 PtSnNa/Al2O3 催化剂丙烷脱氢反应性能的影响[J],现代化工,2006,26(2):33-36.
    170. Praserthdam P, Grisdanurak N, Yuangsawatdikul W. Coke formation over Pt–Sn–K/Al2O3 in C3, C5–C8 alkane dehydrogenation[J],Chem. Eng. J,2000,77(3):215-219.
    171. Shamsi A, Baltrus J P, Spivey J J. Characterization of coke deposited on Pt/alumina catalyst during reforming of liquid hydrocarbons[J], Appl.Catal.A,2005,293:145-152.
    172. Martín N, Viniegra M, Zarate R, et al. Coke characterization for an industrial Pt–Sn/γ-Al2O3 reforming catalyst[J],Catal.Today. 2005,107-108:719-725.
    173. Bitter J H, Seshan K, Lercher J A. Deactivation and Coke Accumulation during CO2/CH4Reforming over Pt Catalysts[J], J.Catal. 1999,183(2):336-343.
    174. 刘杰, 王国甲. 稀土在异丁烷脱氢催化反应中的助催化作用[J].应用化学, 1994,11(4):117-119.
    175. 咸春雷 , 张波 , 王彬成 , 等 . 吸热型碳氢燃料在银 - 镧改性 ZSM25 分子筛上的裂解研究 [J]. 燃料化学学报,2002,30(6):509-513.
    176. Angel G D, Bonilla A, Navarrete J, et al. The Inhibiting Effect of Lanthanum on the Formation of Benzene over PtSn/Al2O3 Reforming Catalysts [J].J.Catal, 2001,203(2):257-263
    177. Niu G X, Huang Y, Chen X Y.et al. Thermal and hydrothermal stability of siliceous Y zeolite and its application to high-temperature catalytic combustion[J].Appl.Catal.B.1999,21(1):63-70.
    178. Li L D, Chen J X,Zhang Sh J,et al. Selective Catalytic Reduction of Nitrogen Oxides from Exhaust of Lean Burn Engine over In-Situ Synthesized Cu-ZSM-5/Cordierite[J]. Environ.Sci.Technol. 2005,39(8):2841-2847.
    179. Zhuang J Q, Ma D, Yang G. et al. Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J].J.Catal.2004,228(1):234-242.
    180. Yang G, Zhuang J Q, Wang Y. et al. Enhancement on the hydrothermal stability of ZSM-5 zeolites by the cooperationeffect of exchanged lanthanum and phosphoric species[J]. J.Mol.Struc. 2005,737(2-3):271-276.
    181. Hairston J. Process advance for increase propylene production [J].Chem Eng,1999,106(5):30-36.
    182. 张一卫,周钰明,许艺,等. 丙烷临氢脱氢催化剂的研究进展[J].化工进展,2005,24(7):729-732.
    183. 苏建伟, 牛海宁. 丙烷脱氢制丙烯技术进展[J].化工科技,2006,14(4):62-66.
    184. 钱伯章,增产丙烯技术及其进展[J],石油炼制与化工,2001,32(11):19-23.
    185. Zhu X X, Liu Sh L, Song Y Q. Catalytic cracking of 1-butene to propene and ethene on MCM-22 zeolite[J], Appl.Catal.A,2005,290(1-2):191-199.
    186. Zhu X X, Liu Sh L, Song Y Q. Catalytic cracking of C4 alkenes to propene and ethene: Influences of zeolites pore structures and Si/Al2 ratios[J], Appl.Catal.A,2005,288(1-2):134-142.
    187. 朱向学, 宋月芹,李宏冰,等.丁烯催化裂解制丙烯/乙烯反应的热力学研究[J],催化学报,2005,26(2):111-117.
    188. 滕加伟 , 赵国良 , 谢在库 , 等 ,ZSM-5 分子筛晶粒尺寸对 C4 烯烃催化裂解制丙烯的影响 [J], 催化学报,2004,25(8):602-606.
    189. 杨抗震,周钰明,刘蓉,等. Ba 改性对 P-ZSM-5 分子筛酸性和催化裂解性能的影响[C],第十三届全国催化学术会议论文集,兰州,2006,357
    190. Viswanadham N, Muralidhar G, Rao T S R P. Cracking and aromatization properties of some metal modified ZSM-5 catalysts for light alkane conversions [J]. J.Mol. Catal. A, 2004,223(1-2):269-274.
    191. Airaksinen S M K, M A Ba?ares, Krause A O I. In situ characterisation of carbon-containing species formed on chromia/alumina during propane dehydrogenation[J]. J.Catal. 2005,230(2):507-513.
    192. 李立新,张恒珍,张永新.乙烯装置长周期运行技术应用与进展评述[J],化工进展,2005,24(8):845-848.
    193. 郭仕莲,乙烯裂解炉结焦抑制技术的进展[J],炼油与化工,2006,17(2):10-13.
    194. 孔凡贵; 张婧元; 魏铁锋. 裂解炉结焦抑制技术进展[J],乙烯工业,2005,17(3):19-21.
    195. 宋芙蓉.乙烯裂解装置结焦抑制技术新进展[J],石油化工,2001,30(6):475-478.
    196 许艺,丙烷脱氢制丙烯经济及技术分析[J],化工时刊,2003,17(3):50-53.
    197. 陈建九,史海英,汪泳.丙烷脱氢制丙烯工艺技术[J], 精细石油化工进展,2000,1(12):23-28.
    198. Stagg S M, Querini C A, Alvarez W E, et al. Isobutane Dehydrogenation on Pt–Sn/SiO2Catalysts: Effect of Preparation Variables and Regeneration Treatments[J].J.Catal.1997,168(1):75-94.
    199. 范以宁,藏璟龄,林励吾.循环积炭-烧炭处理对 Pt/Al2O3和 PtSn/Al2O3催化剂表面性质的影响.II.再生催化剂的表面反应[J]. 催化学报,1991,12(1):7-12.
    200. 朱明慧,王红秋.国外丙烯生产技术最新进展及技术经济比较[J], 国际石油经济,2006,1:38-42.
    201. 姚国欣.因地制宜合理选择丙烯生产技术[J],现代化工,2004,24(8):4-11.
    202. 闵恩泽,杜泽学.石化催化技术的技术进步与技术创新-总结历史经验指导未来[J],当代石油化工,2002,10(11):1-6.
    203. 徐兆瑜. 聚丙烯生产和工艺技术最新进展[J],塑料,2004,33(5):31-38.
    204. 李建生. 丙烯世界性紧俏依稀可见[J],国际化工信息,2005,9:10-13.
    205. 董秀成, 聂军. 中国石油工业面临的挑战和发展对策[J]. 石油大学学报(社会科学版),2003,19(1):1-6.
    206. 刘灵丽, 胡怀敏, 王华. 我国炼油企业与国外同行的差距分析[J].当代石油化工,2004,12(3):37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700