区间二型模糊聚类算法研究及其在电力牵引监控系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模糊聚类算法因其类人的逻辑语言及易于实现的优点称为了聚类分析的最主流研究方法,且在图像分割、大规模数据分析、数据挖掘、模式识别等众多领域中得到广泛应用。模糊理论为模糊聚类分析提供了理论基础,随着模糊理论的发展,一型模糊集处理不确定性能力差的缺陷逐渐显现,因此拥有更强处理不确定性能力的二型模糊集成为了模糊理论研究的热点。在模糊控制等领域中,二型模糊集已经表现出优于型模糊集的处理能力。然而在模糊聚类分析中,二型模糊集的应用仍处于起步阶段。
     虽然目前二型模糊集在模糊聚类分析中已经有成功地尝试,并提出了较为有效的区间二型和广义二型模糊聚类算法,但是由于二型模糊集的运算复杂度较高,直接制约了二型模糊聚类算法的发展与应用。为提升二型聚类算法的运算效率以及处理大数据量样本的能力,通过对区间二型模糊聚类算法的深入研究,提出了结合降型特点的初始化聚类中心方法,并对降型运算的初值选择和运算过程进行优化,消除了传统方法的计算冗余。通过大量的实验结果表明,优化的区间二型模糊聚类算法在运算效率上较传统算法有约40%的提升。
     由于模糊聚类分析处理的数据类型多种多样,单一的聚类算法无法满足不同数据的聚类要求,因此二型模糊聚类算法的推广需要结合不同的研究背景展开。图像分割作为模糊聚类分析的一个重要应用方向,是目标识别、图像理解、计算机视觉研究中最基本、最重要的处理步骤和关键技术。首先,对于现有的图像分割模糊聚类算法进行归纳总结,并分析了改进方法在区间二型模糊聚类中应用的可能性。同时,考虑二型模糊聚类算法的有效性评估处于空白状态,将一型模糊聚类算法的有效性函数进行了扩展,提出了几种适用于区间二型模糊聚类算法的广义有效性函数。此外,结合图像分割中图像像素点相互关联的特点,提出了描述像素点邻域信息的空间隶属度函数。通过引入空间隶属度函数的区间二型模糊聚类算法进行图像分割,提高了算法对于噪声点以及边缘处像素点的划分精度。对人造图像及医学图像的分割结果验证了所提算法的有效性。
     作为接触网与受电弓的唯一连接部件,受电弓滑板肩负着保障机车运行动力的使命。由于铁路系统的不断提速,受电弓滑板的损耗情况日益严重。及时检测受电弓滑板的磨耗状态并更换过限滑板是铁路安全检测的重要任务。随着智能化铁路监控系统的发展,数字图像处理技术成为了受电弓滑板状态检测的重要手段。而图像分割作为图像目标提取与后期处理的重要步骤,其分割结果的好坏直接影响图像处理的最终结果。传统图像检测算法在检测现场图像时易受噪声、天气、光照等众多因素影响,导致检测到的滑板边缘线段不连续,从而影响检测的精确度。因此,考虑将改进的区间二型模糊聚类算法引入到受电弓滑板检测中,通过模糊聚类算法抑制噪声等各种环境因素的干扰,以提升滑板边缘的检测精度。同样地,算法也引入到接触网杆号的检测中,通过对杆号的图像识别,有效地定位故障发生的地点,为故障维修提供了便利。实际图像的处理结果验证了引入模糊聚类图像分割方法的有效性。
Because of its humanoid logic language and ease of implementation, fuzzy clustering becomes the most popular method among all clustering analysis methods and has been widely used in image segmentation, large-scale data analysis, data mining, pattern recognition, etc. Fuzzy theory provides a theoretical foundation for fuzzy clustering analysis. With the development of fuzzy theory, the defect of handling uncertainties in type-1fuzzy set gradually emerged over recent years. Therefore the type-2fuzzy set with ability of handling uncertainties became immediate areas of research focus. Type-2fuzzy set has demonstrated superior to type-1fuzzy set in application in fuzzy control and other areas. However, the use of type-2fuzzy set in fuzzy clustering analysis is still in its infancy.
     There are some researches on combining type-2fuzzy set with fuzzy clustering and have proposed interval type-2and general type-2fuzzy clustering algorithms. But the computation complexity in type-2fuzzy set restricts the development and application of type-2fuzzy clustering algorithms. Through the in-depth study of interval type-2fuzzy clustering algorithm, an optimization method is proposed in this paper to enhance the computing efficiency and ability of managing large-scale data. An initialization method for cluster center is proposed and the calculation process of type-reduction has been optimized to elimate calculating redundancy. A mass of experimental results show that the optimized interval type-2fuzzy clustering algorithm has about40%improvement in operation efficiency compared with traditional interval type-2algorithm.
     Fuzzy clustering always treats diverse data types, and single clustering algorithm cannot meet the requirements of clustering different data. As a result, the application of type-2fuzzy clustering algorithms requires combination of different research background. As a main direction of application for fuzzy clustering, image segmentation is the most important process in object recognition, image understanding, computer vision, et al. A summary for existing fuzzy clustering algorithms in image segmentation is given in this paper, and the utilization of existing modified methods in interval type-2algorithm is discussed either. Consider the validity evaluation for interval type-2fuzzy clustering is still blank, the validity functions for type-1fuzzy clustering are extended to a generalized version to evaluate interval type-2fuzzy clustering algorithms. Besides, by taking into account the relevance among pixels in images, the spatial membership function is proposed to represent spatial neighborhood information. The utilization of spatial membership function in interval type-2fuzzy clustering algorithm gives the algorithm the ability of better segmenting pixels with noise and pixels along the edges. The experiments on synthetic and medical images verified the effectiveness of the modified algorithm.
     As the only connection component between catenary and pantograph, pantograph slide plays an important role in providing impetus for locomotives. With the speed-up in railway operation, the abrasion of pantograph slide is getting worse. Thus it's a vital task in railway safety inspection to detect the state of pantograph slide. With the development of intelligent railway monitoring system, digital image processing has become an important method to detect the state of pantograph slide. As a critical process in image object extraction and post-processing, the image segmentation results will directly affect the detection results. The traditional image detection methods are susceptible to noise, weather, lighting and other factors, which make the detected edges of pantograph slide discontinuous. To enhance the ability of suppressing the interference of noise and other environmental factors as well as to improve the detection accuracy, the modified interval type-2fuzzy clustering algorithm is used to segment pantograph images. Besides, the algorithm is utilized in the identification of catenary pole number to locate the failt point. The detection results validate the advantages of using interval type-2fuzzy clustering image segmentation process.
引文
[1]Xu R, Wunsch D. Survey of clustering algorithms[J]. Neural Networks, IEEE Transactions on.2005, 16(3):645-678.
    [2]Berkhin P. A survey of clustering data mining techniques[M]. Grouping multidimensional data, Springer,2006,25-71.
    [3]Warren Liao T. Clustering of time series data-a survey[J]. Pattern Recognition.2005,38(11): 1857-1874.
    [4]Abbasi A A, Younis M. A survey on clustering algorithms for wireless sensor networks[J]. Computer communications.2007,30(14):2826-2841.
    [5]Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data:A survey[J]. Knowledge and Data Engineering, IEEE Transactions on.2004,16(11):1370-1386.
    [6]高新波.模糊聚类分析及其应用[MI.西安电子科技大学出版,2004.
    [7]Zadeh L A. Fuzzy sets[J]. Information and control.1965,8(3):338-353.
    [8]Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. Kluwer Academic Publishers,1981.
    [9]Bezdek J C, Ehrlich R, Full W. FCM:The fuzzy c-means clustering algorithm[J]. Computers & Geosciences.1984,10(2):191-203.
    [10]Hopner F, Hoppner F, Klawonn F, et al. Fuzzy cluster analysis:methods for classification, data analysis and image recognition[M]. John,1999.
    [11]Baraldi A, Blonda P. A survey of fuzzy clustering algorithms for pattern recognition. II[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on.1999,29(6):786-801.
    [12]Mendel J M, John R I B. Type-2 fuzzy sets made simple[J]. Fuzzy Systems, IEEE Transactions on. 2002,10(2):117-127.
    [13]Mendel J M, John R I, Liu F. Interval type-2 fuzzy logic systems made simple[J]. Fuzzy Systems, IEEE Transactions on.2006,14(6):808-821.
    [14]Mendel J M. Uncertain rule-based fuzzy logic systems:Introduction and new direction.[M]. Upper Saddle River, New Jersey, USA:Prentice Hall,2001.
    [15]Liang Q, Mendel J M. Interval type-2 fuzzy logic systems:theory and design[J]. Fuzzy Systems, IEEE Transactions on.2000,8(5):535-550.
    [16]Mendel J M. Type-2 fuzzy sets and systems:an overview[J]. Computational Intelligence Magazine, IEEE.2007,2(1):20-29.
    [17]Hagras H A. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots[J]. Fuzzy Systems, IEEE Transactions on.2004,12(4):524-539.
    [18]Haralick R M, Shapiro L G. Image segmentation techniques[J]. Computer vision, graphics, and image processing.1985,29(1):100-132.
    [19]Pal N R, Pal S K. A review on image segmentation techniques[J]. Pattern recognition.1993,26(9): 1277-1294.
    [20]史冬雪.6C系统保障高铁供电设备安全[J].世界轨道交通.2012(9):22-23.
    [21]Mamdani E H. Application of fuzzy algorithms for control of simple dynamic plant[J]. Electrical Engineers, Proceedings of the Institution of.1974,121(12):1585-1588.
    [22]Mendel J M, Liu F, Zhai D. α-plane representation for type-2 fuzzy sets:theory and applications[J]. IEEE Transactions on Fuzzy Systems.2009,17(5):1189-1207.
    [23]Wagner C, Hagras H. Toward general type-2 fuzzy logic systems based on zSlices[J]. Fuzzy Systems, IEEE Transactions on.2010,18(4):637-660.
    [24]Ruspini E H. A new approach to clustering[J]. Information and control.1969,15(1):22-32.
    [25]Tamura S, Higuchi S, Tanaka K. Pattern classification based on fuzzy relations[J]. Systems, Man and Cybernetics, IEEE Transactions on.1971(1):61-66.
    [26]Le K. Fuzzy relation compositions and pattern recognition[J]. Information sciences.1996,89(1): 107-130.
    [27]Wu Z, Leahy R. An optimal graph theoretic approach to data clustering:Theory and its application to image segmentation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1993, 15(11):1101-1113.
    [28]Dunn J C. A graph theoretic analysis of pattern classification via Tamura's fuzzy relation[J]. Systems, Man and Cybernetics, IEEE Transactions on.1974(3):310-313.
    [29]Bezdek J C. Numerical taxonomy with fuzzy sets[J]. Journal of Mathematical Biology.1974,1(1): 57-71.
    [30]Bezdek J C. Cluster validity[M]. Pattern Recognition with Fuzzy Objective Function Algorithms, Springer,1981,95-154.
    [31]Fukuyama Y, Sugeno M. A new method of choosing the number of clusters for the fuzzy c-means method[C]. Proc.5th Fuzzy Syst. Symp,1989:247-250.
    [32]Karayiannis N B. Fuzzy partition entropies and entropy constrained fuzzy clustering algorithms[J]. Journal of Intelligent & Fuzzy Systems.1997,5(2):103-111.
    [33]Yeh Y, Chu Y, Chiou C W, et al. A Fuzzy C-Means Method for Determining Motor's Quality Types Based on Current Waveforms[M]. Intelligent Technologies and Engineering Systems, Springer,2013,77-83.
    [34]Egrioglu E, Aladag C H, Yolcu U. Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks[J]. Expert Systems with Applications.2013,40(3): 854-857.
    [35]Havens T C, Bezdek J C, Leckie C, et al. Fuzzy c-means for very large data[J]. IEEE Transactions on Fuzzy Systems.2012.
    [36]Cao H, Deng H, Wang Y. Segmentation of M-FISH images for improved classification of chromosomes with an adaptive fuzzy c-means clustering algorithm[J]. Fuzzy Systems, IEEE Transactions on.2012,20(1):1-8.
    [37]Kannan S R, Ramathilagam S, Chung P C. Effective fuzzy c-means clustering algorithms for data clustering problems[J]. Expert Systems with Applications.2012,39(7):6292-6300.
    [38]Rhee F C, Hwang C. A type-2 fuzzy C-means clustering algorithm[C]. IFSA World Congress and 20th NAFIPS International Conference,2001:1926-1929.
    [39]Khooban M H, Alfi A, Abadi D N M. Control of a class of non-linear uncertain chaotic systems via an optimal Type-2 fuzzy proportional integral derivative controller[J]. IET Science, Measurement& Technology.2013,7(1):50-58.
    [40]Bernardo D, Hagras H, Tsang E. An interval type-2 Fuzzy Logic based system for model generation and summarization of arbitrage opportunities in stock markets[C].12th UK Workshop on Computational Intelligence (UKCI),2012:1-7.
    [41]Hagras H, Wagner C. Towards the wide spread use of type-2 fuzzy logic systems in real world applications[J]. Computational Intelligence Magazine, IEEE.2012,7(3):14-24.
    [42]Castillo O, Martinez-Marroqufn R, Melin P, et al. Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot[J]. Information Sciences.2012,192:19-38.
    [43]Hwang C, Rhee F C H. Uncertain fuzzy clustering:interval type-2 fuzzy approach to c-means[J]. Fuzzy Systems, IEEE Transactions on.2007,15(1):107-120.
    [44]Linda O, Manic M. General Type-2 Fuzzy C-Means Algorithm for Uncertain Fuzzy Clustering[J]. IEEE Transactions on Fuzzy Systems.2012,20(5):883-897.
    [45]高新波,李洁,谢维信.模糊C均值聚类算法中参数m的优选[J].模式识别与人工智能.2000,13(1):7-11.
    [46]章琉晋.图像分割[Z].北京:科学出版社,2001.
    [47]罗希平,田捷.图像分割方法综述[J].模式识别与人工智能.1999,12(3):300-312.
    [48]刘永学,李满春,毛亮.基于边缘的多光谱遥感图像分割方法[J].遥感学报.2006,10(3):350-356.
    [49]沈世旻,盛翊智.基于边缘检测的车牌图像分割技术[J].自动化技术与应用.2004,23(3):24-26.
    [50]赵雪松,陈淑珍.综合全局二值化与边缘检测的图像分割方法[J].计算机辅助设计与图形学学报.2001,13(2):118-121.
    [51]韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术.2002,24(6):91-94.
    [52]陈冬岚,刘金南,余玲玲.几种图像分割阈值选取方法的比较与研究[J].机械制造与自动化.2003,1:77-80.
    [53]王茜蓓,彭中,刘莉.一种基于自适应阈值的图像分割算法[J].北京理工大学学报.2003,23(4):521-524.
    [54]余锦华,汪源源,施心陵.基于空间邻域信息的二维模糊聚类图像分割[J].光电工程.2007,34(4):114-119.
    [55]林开颜,徐立鸿,吴军辉.快速模糊C均值聚类彩色图像分割方法[J].中国图象图形学报.2004,9(2):159-163.
    [56]冯衍秋,陈武凡,梁斌,等.基于Gibbs随机场与模糊C均值聚类的图像分割新算法[J].电子学报.2004,32(4):645-647.
    [57]高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报.2007,12(6):1025-1032.
    [58]李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报.2002,25(11):1175-1183.
    [59]马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报.2002,23(1):46-51.
    [60]于万聚.高速电气化铁路接触网[M].西南交通大学出版社,2003.
    [61]王贵青,陈敬超,孙加林.电力机车受电弓滑板的研究状况及发展趋势[J].材料导报.2003,17(1):18-20.
    [62]张德.受电弓滑板磨损自动测量装置的开发[J].电气化铁道.1995,1:22-23.
    [63]张芳,姚懋许.受电弓自动监视装置[J].国外机车车辆工艺.2001,2:15.
    [64]Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning-[J]. Information sciences.1975,8(3):199-249.
    [65]郑高.二型模糊系统模糊性测度及其在电力负荷预测中的应用研究[D].西南交通大学,2011.
    [66]Karnik N N, Mendel J M. Operations on type-2 fuzzy sets[J]. Fuzzy sets and systems.2001,122(2): 327-348.
    [67]Karnik N N, Mendel J M. Centroid of a type-2 fuzzy set[J]. Information Sciences.2001,132(1): 195-220.
    [68]Karnik N N, Mendel J M. Introduction to type-2 fuzzy logic systems[C]. IEEE World Congress on Computational Intelligence.1998:915-920.
    [69]Wu D, Mendel J M. Enhanced Karnik-Mendel Algorithms[J]. Fuzzy Systems, IEEE Transactions on.2009,17(4):923-934.
    [70]Yeh C, Jeng W, Lee S. An enhanced type-reduction algorithm for type-2 fuzzy sets[J]. Fuzzy Systems, IEEE Transactions on.2011,19(2):227-240.
    [71]Dongrui U, Nie M. Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems[C]. IEEE International Conference on Fuzzy Systems.2011: 2131-2138.
    [72]Hathaway R J, Bezdek J C. Local convergence of the fuzzy c-Means algorithms[J]. Pattern recognition.1986,19(6):477-480.
    [73]Bezdek J C, Hathaway R J, Sabin M J, et al. Convergence theory for fuzzy c-means: Counterexamples and repairs.[J]. IEEE Transactions on Systems, Man, and Cybernetics.1987, 17(5):873-877.
    [74]Hathaway R J, Bezdek J C. Recent convergence results for the fuzzy c-means clustering algorithms[J]. Journal of Classification.1988,5(2):237-247.
    [75]邱存勇,肖建.区间二型模糊C均值聚类在图像分割中的应用[J].信息与电子工程.2011,9(6):754-758.
    [76]Liu F. An efficient centroid type-reduction strategy for general type-2 fuzzy logic system[J]. Information Sciences.2008,178(9):2224-2236.
    [77]Wagner C, Hagras H. zSlices-towards bridging the gap between interval and general type-2 fuzzy logic[C]. IEEE World Congress on Computational Intelligence.2008:489-497.
    [78]Mendel J M. On a 50% savings in the computation of the centroid of a symmetrical interval type-2 fuzzy set[J]. Information Sciences.2005,172(3):417-430.
    [79]Liu X, Mendel J M, Wu D. Study on enhanced Karnik-Mendel algorithms:Initialization explanations and computation improvements[J]. Information Sciences.2012,184(1):75-91.
    [80]刘笛,朱学峰,苏彩红.一种新型的模糊C均值聚类初始化方法[J].计算机仿真.2005,21(11):148-151.
    [81]邱存勇,肖建,韩璐.增强型区间二型FCM算法[J].控制与决策.2013.
    [82]Blake C L, Merz C J. UCI Repository of machine learning databases [http://www. ics. uci. edu/-mlearn/MLRepository. html]. Irvine, CA:University of California. Department of Information and Computer Science.1998:460.
    [83]Otsu N. A threshold selection method from gray-level histograms[J]. Automatica.1975,11 (285-296):23-27.
    [84]Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J]. Medical Imaging, IEEE Transactions on.2002,21(3): 193-199.
    [85]Liu H, Zhao F. An Adaptive Non Local Spatial Fuzzy Image Segmentation Algorithm[J]. Intelligent Computing Technology.2012:373-378.
    [86]Pham D L. Fuzzy clustering with spatial constraints[C]. International Conference on Image Processing,2002:65-68.
    [87]Wang X Y, Bu J. A fast and robust image segmentation using FCM with spatial information[J]. Digital signal processing.2010,20(4):1173-1182.
    [88]Yang Z, Chung F L, Shitong W. Robust fuzzy clustering-based image segmentation[J]. Applied Soft Computing.2009,9(1):80-84.
    [89]Zhang D Q, Chen S C. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation[J], artificial intelligence in medicine.2004,32(1):37-50.
    [90]余锦华,汪源源,施心陵.基于空间邻域信息的二维模糊聚类图像分割[J].光电工程.2007,34(4):114-119.
    [91]Pham D L. Spatial models for fuzzy clustering[J]. Computer vision and image understanding.2001, 84(2):285-297.
    [92]王洪蕾.基于模糊聚类的图像分割算法研究[D].南昌大学,2009.
    [93]Leszczynski K, Penczek P, Grochulski W. Sugeno's fuzzy measure and fuzzy clustering[J]. Fuzzy Sets and Systems.1985,15(2):147-158.
    [94]Zhou B, Hansen J H. Unsupervised audio stream segmentation and clustering via the Bayesian information criterion.[C]. INTERSPEECH,2000:714-717.
    [95]Trauwaert E, Kaufman L, Rousseeuw P. Fuzzy clustering algorithms based on the maximum likelihood priciple[J]. Fuzzy Sets and Systems.1991,42(2):213-227.
    [96]Jajuga K. L1-norm based fuzzy clustering[J]. Fuzzy Sets and Systems.1991,39(1):43-50.
    [97]Hathaway R J, Bezdek J C. Nerf c-means:Non-Euclidean relational fuzzy clustering[J]. Pattern recognition.1994,27(3):429-437.
    [98]Timm H, Kruse R. A modification to improve possibilistic fuzzy cluster analysis[C]. Proceedings of IEEE International Conference on Fuzzy Systems.2002:1460-1465.
    [99]Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis[M]. Cambridge university press, 2004.
    [100]程可嘉.基于核函数的模糊聚类算法研究[D].电子科技大学,2009.
    [101]高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报.1999,21:2241-2251.
    [102]Qiu C, Xiao J, Yu L, et al. An interval type-2 fuzzy c-means algorithm based on spatial information for image segmentation[C]. Fuzzy Systems and Knowledge Discovery (FSKD), Eighth International Conference on,2011:545-549.
    [103]Bezdek J C. Cluster validity with fuzzy sets[J]. J. Cybern.1974,3(3):58-71.
    [104]Bezdek J C. Mathematical models for systematics and taxonomy[C]. Proceedings of Eighth International Conference on Numerical Taxonomy,1975:143-166.
    [105]Xie X L, Beni G. A validity measure for fuzzy clustering[J]. IEEE Transactions on pattern analysis and machine intelligence.1991,13(8):841-847.
    [106]Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. Fuzzy Systems, IEEE Transactions on.1995,3(3):370-379.
    [107]Wu K, Yang M. A cluster validity index for fuzzy clustering[J]. Pattern Recognition Letters.2005, 26(9):1275-1291.
    [108]Qiu C,Xiao J,Yu L,et al.A modified interval type-2 fuzzy C-means algorithm with application inMR image segmentation[J]. Pattern Recognition Letters.2013,34(12):1329-1338.
    [109]Trauwaert E. On the meaning of Dunn's partition coefficient for fuzzy clusters[J]. Fuzzy Sets and Systems.1988,25(2):217-242.
    [110]范九伦.模糊聚类新算法与聚类有效性问题研究[J].西安电子科技大学.1998:53-54.
    [111]黄艳红,高晓蓉.受电弓滑板磨耗现场检测技术综述[J].铁道技术监督.2008,36(8):15-17.
    [112]冯倩,陈维荣,王云龙,等.受电弓滑板磨耗测量算法的研究[J].铁道学报.2010(001):109-113.
    [113]陈维荣,冯倩,张健,等.受电弓滑板状态监测的图像目标提取[J].西南交通大学学报.2010(001):59-64.
    [114]崔占涛.受电弓滑板外部状态图像检测[D].西南交通大学.2005.
    [115]黄艳红.受电弓滑板磨耗图像检测算法研究[D].西南交通大学.2008.
    [116]Gonzalez R C, Woods R E, Eddins S L. Digital image processing using MATLAB[M]. Gatesmark Publishing Knoxville.2009.
    [117]Canny J. A computational approach to edge detection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1986(6):679-698.
    [118]Heath M, Sarkar S, Sanocki T, et al. Comparison of edge detectors:a methodology and initial study[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1996: 143-148.
    [119]谢力.基于图像处理的受电弓状态检测技术研究[D].西南交通大学,2009.
    [120]Hough P V. Method and means for recognizing complex patterns[Z]. U.S. Patent.1962.
    [121]Illingworth J, Kittler J. A survey of the Hough transform[J]. Computer vision, graphics, and image processing.1988,44(1):87-116.
    [122]崔屹.图像处理与分析:数学形态学方法及应用[M].科学出版社,2000.
    [123]王慧锋,战桂礼,罗晓明.基于数学形态学的边缘检测算法研究及应用[J].计算机工程与应用.2009,45(9):223-226.
    [124]王咏胜.基于数学形态学的灰度图像的边缘检测技术研究[D].哈尔滨工程大学,2005.
    [125]林通,石青云.一种基于边缘生长的灰度和彩色图象分割方法[J].中国图象图形学报.2000,5(11):911-915.
    [126]Serra J. Image analysis and mathematical morphology[M]. Academic Press, London.1982.
    [127]朱晓恒,高晓蓉,王泽勇,等.受电弓滑板磨耗检测中边缘连接算法的研究[J].信息技术.2010(008):58-61.
    [128]冯子亮,王翠芹,施关民.一种基于主动生长的边缘连接算法[J].计算机应用研究.2009,26(10):3954-3956.
    [129]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报.2003,29(1):110-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700