AgPb_mSbTe_(2+m)类化合物的制备与热电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论计算和实验研究都表明,结构低维化和纳米化可以大幅度地提高材料的热电性能,AgPb_mSbTe_(2+m)族化合物代表了一类包含纳米第二相的复合材料,具有潜在的高热电性能而在热电材料研究领域受到了极大的关注。已有的研究结果表明,这类化合物的高热电性能可能与富含AgSb的纳米第二相有关,这类化合物的热电性能对制备工艺和组成的微小变化十分敏感。因此,研究这类化合物组成、制备工艺对微观结构和热电传输性能的影响规律显得尤为重要。本论文主要讨论了不同制备工艺以及偏离化学计量比对材料相组成和热电性能的影响规律,同时探索了采用Ga和In取代Sb制备具有类似结构高性能热电材料的可行性。主要工作和结果如下:
     采用熔融法制备了AgPb_mSbTe_(2+m)(m=4,6,10,12,23,48,99,199)化合物,研究了AgSb掺杂量对化合物结构和热电传输性能的影响规律。结果表明,AgSb的掺杂显著影响了PbTe化合物的微观结构和电热输运特性,一定量的AgSb掺杂有助于提高PbTe材料的热电性能。AgSb掺杂后,样品中出现了明显的成分偏析,形成了富Pb相和富AgSb相调幅变化的结构。随着AgSb含量的逐渐增加,n型化合物电导率和功率因子均呈现下降的趋势,Seebeck系数绝对值先增加后降低,化合物的热导率和晶格热导率大幅降低,m值在10~23之间的样品具有最佳的热电性能。在所有样品中,AgPb_(23)SbTe_(25)化合物常温下具有最大的ZT值。
     研究了不同的熔体冷却速率对AgPb_(18)SbTe_(20)化合物结构和热电性能的影响规律,并在此基础上探索了粉末冶金工艺制备单相高性能AgPb_mSbTe_(2+m)化合物的可行性。研究表明,冷却速率越大,化合物成分偏析越严重,淬火样品中,作为第二相而存在的AgSb使化合物热电性能降低。采用熔融-淬火-退火-SPS烧结工艺制备了AgPb_mSbTe_(2+m)(m=18,10,6)样品,m为10和18时,淬火样品经过450℃退火40h及SPS烧结后可得到基本为单相的化合物,两者电导率和Seebeck系数相近,且几乎不随温度而改变,由于后者具有更低的热导率,在800K时具有最大ZT值0.90。
     研究了Ag、Pb、Sb偏离化学计量比对AgPb_(18)SbTe_(20)样品热电传输特性的影响规律。采用熔融-淬火-SPS烧结工艺制备了Ag含量偏离化学计量比的Ag_(1-x)Pb_(18)SbTe_(20)(x=0~0.75)样品,研究表明,当Ag含量下降时,部分Sb以第二相Sb_2Te_3存在,样品的载流子浓度增加,当Ag含量低于0.5后,样品载流子浓度增加到5×10~(18)cm~(-3)左右后不再增加,样品热导率和晶格热导率随Ag含量的降低而增加,Ag_(0.25)Pb_(18)SbTe_(20)样品在520K时具有最大的ZT值0.5;采用熔融缓冷法制备了Pb、Sb过量的AgPb_(18+x)SbTe_(20)和AgPb_(18)Sb_(1+x)Te_(20)样品,结果表明,Pb含量增加时,Te优先和Pb结合而使PbTe基体中固溶的AgSb含量降低,多余Ag和Sb以单质或二元化合物形式存在。Pb含量超过化学计量比1%时有助于提高材料电性能,而Sb高于化学计量比使样品的电性能下降。
     采用熔融缓冷法制备了(AgIn/Ga)_xPb_(1-2x)Te化合物,探索了AgIn和AgGa共同掺杂时对PbTe化合物相组成和热电性能的影响规律。结果表明,AgInTe_2在PbTe中的最大固溶度为4%,而AgInGa_2在PbTe中的固溶浓度低于1%。AgIn含量增大时,样品载流子浓度基本保持不变,而迁移率和电导率降低,样品均为n型传导,Seebeck系数的绝对值随AgIn含量的增加而增大,样品热导率随AgIn含量的增加而显著降低。AgIn和AgGa的共同掺杂有效的提高了PbTe材料的热电性能,Ag_(0.01)In_(0.01)Pb_(0.98)Te样品在800K具有最大的ZT值1.1;而Ag_(0.01)Ga_(0.01)Pb_(0.98)Te样品在700K时样品具有最大的ZT值1.12,ZT值比传统的n型PbTe材料提高了近40%。
Both theoretical calculation and experimental results have showed that great enhancement in thermoelectric properties can be obtained for thermoelectric materials charactered with low-dimensional and nano structure. As a kind of composite consisting of nanoscaled second phase, AgPb_mSbTe_(2+m) compounds have potential high thermoelectric figure of merits and attract much attention recently. The reported researches and results show that high ZT value of this series of compound possibly relates to nanoscaled second phase rich in AgSb, and the electrical and thermal transport properties are sensitive to preparation conditions and chemical composition. In this thesis, the effect of the fabrication process and nonstoichimetric composition on the microstructure and thermoelectric properties of the compounds were investigated. Also it is explored to synthesize material with similar structure and excellent thermoelectric properties by substituting Sb with Ga or In. The following results have been obtained in this thesis.
     AgPb_mSbTe_(2+m) (m=4, 6, 10, 12, 23, 48, 99, 199) samples were prepared from melts and the effect of AgSb concentration on the microstructure and thermoelectric properties of AgPb_mSbTe_(2+m) compounds have been investigated. Results show that Ag-Sb-doping significantly affects the microstructure and electrical and thermal transport properties, and a proper AgSb concentration can enhance the thermoelectric properties of PbTe compound. Obvious phase segregation occurs during cooling process of the ingots, and samples contain compositional modulation of Pb-rich phase and Ag-Sb-rich phase. As the AgSb concentration increases, the electrical conductivity, and power factor of the n-type samples show a decreasing trend, and the absolute Seebeck coefficient increase firstly and then decrease; also the thermal conductivity and lattice thermal conductivity of the samples decrease dramatically. The samples have the highest thermoelectric properties for m in the range from 10 to 23, and AgPb_(23)SbTe_(25) samples have the maximum ZT value at room temperature among all samples.
     Effects of cooling rates on the microstructure and thermoelectric properties of AgPb_(18)SbTe_(20) compounds have been investigated, and the feasibility to prepare single-phase high performance AgPb_mSbTe_(2+m) compounds by powder metallurgy technology have also been explored. Results show that phase segregation happens more seriously in samples synthesized with faster cooling rate. Quenched samples have poor thermoelectric performance with a large amount of AgSb existing as a second phase in the samples. AgPb_mSbTe_(2+m)(m=18, 10, 6) samples were prepared by melt-quench-anneal-spark plasma sintering (SPS) process. Results show that the second phase produced in quenching process can be eliminated by annealing at 450℃for 40h and SPS when m equals 18 and 10 for AgPb_mSbTe_(2+m) samples. The two samples have similar electrical conductivity and Seebeck coefficient, both nearly independent on temperature. Owing to its lower thermal conductivity, samples with m=10 have higher ZT value during the whole measuring temperature range,, and the maximum ZT value reach 0.90 at 800K.
     Effects of nonstoichimetric AgPb_(18)SbTe_(20) compounds in content of Ag, Pb and Sb on the microstructure and thermoelectric properties of this compound have been discussed. In this part, Ag_(1-x)Pb_(18)SbTe_(20) (x=0-0.75) samples were prepared by melt-quench-SPS process. Results show that, as the Ag content decreases, part of Sb exists as a second phase Sb_2Te_3; the carrier concentration increases and reaches to a maximum value of about 5×10~(18)cm~(-3), when x equals 0.5. The thermal conductivity and lattice thermal conductivity increase as Ag content decreases. Ag_(0.25)Pb_(18)SbTe_(20) sample has a maximum ZT value of 0.5 at 520K. N-type AgPb_(18+x)SbTe_(20) and AgPb_(18)Sb_(1+x)Te_(20) compounds were prepared by slow cooling from melts. Results indicate that with the increasing of the Pb concentration, Te combines firstly with excessive Pb leaving corresponding Ag and Sb existing as elements or their binary compounds in the material. The electrical properties can be enhanced for samples with 1% excessive Pb content whereas excessive Sb makes the compounds thermoelectric properties decrease.
     (AgIn/Ga)_xPb_(1-2x)Te compounds were prepared by melting and slow cooling method, and the effects of codoping of AgIn and AgGa on the phase consititution and thermoelectric properties have been investigated. Results show that AgInTe2 can solve in PbTe with a maximum solid solubility of 4%, whereas the solubility of AgInGa_2 in PbTe is less than 1%. As Ag-In content increases, the carrier concentration remains unchanged while the carrier mobility and electrical conductivity decrease. As Ag-In content increase, the absolute Seebeck coefficient increase and the thermal conductivity decrease dramatically. The co-doping of AgIn and AgGa can effectively enhance the thermoelectric properties of the PbTe compound. Ag_(0.01)In_(0.01)Pb_(0.98)Te and Ag_(0.01)Ga_(0.01)Pb_(0.98)Te samples have maximum ZT value of 1.1 and 1.12 at 800K and 700K, respectively. Compared with the traditional n-type PbTe materials, these values are increased by 40%.
引文
[1] Skrabeck E.A. and Trimmer. D.S. Thermoelectric Handbook. Edited by D. M. Rowe (CRC. Boca Raton, F1), 1995.274.
    [2] Rowe D.M. and Bhandari C.M. Modem Thermoelectricity. Holt Rinchalt and Wiston London, 1983.28-33.
    [3] Cadoff J.B. and Miller E. Thermoelectric Materls and Device. NewYork: Reinhold Publ Corp, 1961.84-92.
    [4] Heikens and Ure. Thermoelectricity: science and engineering. 1961. 105-110.
    [5] 刘恩科,朱秉升,罗晋生.半导体物理学.国防工业出版社,1994.289-290.
    [6] Rowe D.M, Thermoelectrics handbook "Macro to nano", by CRC Press Taylor & Francis Group LLC, 2006. 8.
    [7] Yim W.M. and Rosi F.D. Compound tellurides and their alloys for peltier cooling—A review. Solid-State Electronics, 1972.15(10): 1121-1134.
    [8] Linden K.J. and Kennedy C.A. Phase Diagram of the Ternary System Pb-Sn-Te. Journal of Applied Physics, 1969. 40(6): 2595-2597.
    [9] Tung Y.W. and Cohen M.L. Relativistic Band Structure and Electronic Properties of SnTe, GeTe, and PbTe. Physical Review, 1969. 180(3): 823-826.
    [10] Gaur N.K.S. Phonon thermal conductivity of heavily doped hot-pressed p-type Si-Ge alloys at high temperatures. Physica B, 1978.93(2): 212-218.
    [11] Rowe D.M. Electron mobility in heavily doped, hot pressed silicon germanium alloys. Applied Energy, 1980.6(6): 455-462.
    [12] Rowe D.M. and Bhandari C.M. Effect of grain size on the thermoelectric conversion efficiency of semiconductor alloys at high temperature. Applied Energy, 1980. 6(5): 347-351.
    [13] Kishimoto K. and Koyanagi T. Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties. Journal of Applied Physics, 2002.92(5): 2544-2549.
    [14] Morelli D.T., Caillat T., and Fleurial J. Low-temperature transport of p-type CoSb3. Physical Review B, 1995.51:9622-9628
    [15] Peng J., Yang J., Song X., Chen Y., and Zhang T. Effect of Fe substitution on the thermoelectric transport properties of CoSb_3-based Skutterudite compound. Journal of Alloys and Compounds, 2006. 426(1-2): 7-11.
    [16] Chakoumakos B.C. and Sales B.C. Skutterudites: Their structural response to filling. Journal of Alloys and Compounds, 2006. 407(1-2): 87-93.
    [17] Mi J.L., Zhu T.J., Zhao X.B., and Ma J. Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb_3. Journal of Applied Physics, 2007.101(5): 054314.
    [18] Zhai RC, Zhao W.Y., Li Y., Liu L.S., Tang X.F., Zhang Q.J., and Niino M. Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials. Applied Physics Letters, 2006. 89(5): 052111.
    [19] Yang L., Wu J.S., and Zhang L.T. Thermoelectric properties of some skutterudite compounds with different grain size. Journal of Alloys and Compounds, 2004. 375(1-2): 114-119.
    [20] Nolas G.S., Fowler G, and Yang J. Assessing the role of filler atoms on the thermal conductivity of filled skutterudites. Journal of Applied Physics, 2006.100(4): 043705.
    [21] Fowler G. and Nolas GS. Assessing the role of the filler atoms on the thermal conductivity of La-filled skutterudites. Clemson, SC, United States: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States.2005. 449-451.
    [22] Kendziora C.A. and Nolas GS. Phonons and thermal conductivity in skutterudite thermoelectrics. Boston, MA., United States: Materials Research Society.2003.107-112.
    [23] Dilley N.R., Bauer E.D., Maple M.B., Dordevic S., Basov D.N., Freibert F., Darling T.W., Migliori A., Chakoumakos B.C., and Sales B.C. Thermoelectric and optical properties of the filled skutterudite YbFe_4Sb_(12). Physical Review B, 2000. 61(7): 4608-4614.
    [24] Tang X.F., Chen L.D., Goto T, Hirai T, and Yuan R.Z. Synthesis and thermoelectric properties of filled skutterudite compounds Ce_yFe_xCo_(4-x)Sb_(12) by solid state reaction. Journal of Materials Science, 2001. 36(22): 5435-5439.
    [25] Nolas GS., Yang J., and Takizawa H. Transport properties of germanium-filled CoSb_3. Applied Physics Letters, 2004. 84(25): 5210-5212.
    [26] Sales B.C., Chakoumakos B.C., and Mandrus D. Thermoelectric properties of thallium-filled skutterudites. Physical Review B, 2000. 61(4): 2475-2481.
    
    [27] Tang X.F., Chen L.D., Goto T., Hirai T., and Yuan R.Z. Solid state reaction synthesis of filled skutterudite compounds (Ce/Y)_yFe_xCo_(4-x)Sb_(12) and the effect of filling atoms Ce or Y on lattice thermal conductivity. Science in China Series B-Chemistry, 2000. 43(3): 306-312.
    [28] Alleno E., Berardan D., Godart C, Puyet M., Lenoir B., Lackner R., Bauer E., Girard L., and Ravot D. Double filling in skutterudites: A promising path to improved thermoelectric properties. Physica B: Condensed Matter, 2006. 383(1): 103-106.
    [29] Tang X.F., Chen L.D., Takashi G, Toshio H., and Yuan R.Z. Effect of Ce filling fraction on thermoelectric transport properties of p-type CeyFe_(1.5)Co_(2.5)Sb_(12). Acta Physica Sinica, 2000. 49(12): 2460-2465.
    [30] Li H., Tang X.F., Liu T.X, Song C, and Zhang Q.J. Synthesis and thermoelectric properties of dual-atom filled p-type Ca_mCe_nFe_xCo_(4-x)Sb_(12) compounds. Acta Physica Sinica, 2005. 54(11): 5481-5486.
    [31] Song X., Yang J., Peng J., Chen Y., Zhu W., and Zhang T. Thermoelectric properties of La filled skutterudite prepared by mechanical alloying and hot pressing. Journal of Alloys and Compounds, 2005. 399(1-2): 276-279.
    [32] Peng J., Yang J., Zhang T, Song X., and Chen Y. Preparation and characterization of Fe substituted CoSb_3 skutterudite by mechanical alloying and annealing. Journal of Alloys and Compounds, 2004. 381(1-2): 313-316.
    [33] Liu W.-S., Zhang B.-P., Li J.-F., and Zhao L.-D. Thermoelectric property of fine-grained CoSb_3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering. Journal of Physics D: Applied Physics, 2007. 40(2): 566-572.
    [34] Liu K., Jiuxing Z., and Dong X. The exploration for synthesizing CoSb_3 powder by mechanical alloying. Journal of Materials Processing Technology, 2007. 184(1-3): 257-260.
    [35] Bao S., Yang J., Peng J., Zhu W., Fan X.a., and Song X. Preparation and thermoelectric properties of La_xFeCo_3Sb_(12) skutterudites by mechanical alloying and hot pressing. Journal of Alloys and Compounds, 2006. 421(1-2): 105-108.
    [36] Bao S., Yang J., Zhu W., Fan X.a., Duan X., and Peng J. Preparation and thermoelectric properties of La filled skutterudites by mechanical alloying and hot pressing. Materials Letters, 2006. 60(16): 2029-2032.
    [37] Liu H., Wang J., Shi R., and Hu X. Nano-dendrites in NaFe_4P_(12) nano-wires synthesized by hydrothermal method. Optical Materials, 2003. 23(1-2): 475-478.
    [38] Liu H., Wang J., Hu X., Li L., Gu F., Zhao S., Gu M., Boughton R.I., and Jiang M. Preparation of filled skutterudite nanowire by a hydrothermal method. Journal of Alloys and Compounds, 2002. 334(1-2): 313-316.
    [39] Chu Y, Tang X.F., Wan L., Zhao W.Y., and Zhang Q.J. Synthesis of nanp-skutterudite compound powder by cross-coprecipitation method. Journal of Inorganic Materials, 2006. 21(2): 298-302.
    [40] Liu H., Wang J., Hu X., Hao X., Wei J., and Gong B. Polycrystalline LaFe_3CoSb_(12) material manufactured by melt-freeze-annealing method. Progress in Crystal Growth and Characterization of Materials, 2000. 40(1-4): 285-291.
    [41] Nolas G.S. Semiconductor clathrates: a PGEC system with potential for thermoelectric applications. Materials Research Society Symposium - Proceedings, 1999. 545: 435-442.
    [42] Nolas GS., Cohn J.L., and Nelson E. Transport properties of tin clathrates. 18~(th) international conference on thermoelectrics. Baltimore, MD, USA: IEEE, Piscataway, NJ, USA, 1999. 493-495
    [43] Iversen B.B., Palmqvist A.E.C., Cox D.E., Nolas GS., Stucky G.D., Blake N.P., and Metiu H. Why are Clathrates Good Candidates for Thermoelectric Materials? Journal of Solid State Chemistry, 2000.149(2): 455-458.
    [44] Goldsmid H.J. and Nolas G.S. A review of the new thermoelectric materials. 20~(th) international conference on thermoelectrics, Beijing, 2001. 1-6.
    [45] Palmqvist A.E.C., Iversen B.B., Furenlid L.R., Nolas G.S., Bryan D., Latturner S., and Stucky G.D. Charge transfer and local structure in thermoelectric germanium clathrates. Boston, MA, USA: Materials Research Society, Warrendale, PA, USA, 2000. 51-56.
    [46] Meng J.F., Shekar N.V.C., Badding J.V., and Nolas G.S. Threefold enhancement of the thermoelectric figure of merit for pressure tuned Sr_8Ga_(16)Ge_(30). Journal of Applied Physics, 2001. 89(3): 1730-1733.
    [47] Nolas G.S., Cohn J.L., Kaeser M., and Tritt T.M. Thermal conductiviy of type I and II clathrate compounds. Sydney, NSW: Institute of Electrical and Electronics Engineers Inc. 2001.1311-1316.
    [48] Kishimoto K., Akai K., Muraoka N., Koyanagi T., and Matsuura M. Synthesis and thermoelectric properties of type-I clathrate Ge_(30)P_(16)Te_8. Applied Physics Letters, 2006. 89(17): 172106.
    [49] Herrmann R.F.W., Tanigaki K., Kawaguchi T, Kuroshima S., and Zhou O. Electronic structure of Si and Ge gold-doped clathrates. Physical Review B, 1999. 60(19): 13245.
    [50] Huo D.X., Sasakawa T., Muro Y., and Takabatake T. Thermoelectric properties of a clathrate compound Ba_8Cu_(16)P_(30). Applied Physics Letters, 2003. 82(16): 2640-2642.
    [51] Kuznetsov V.L., Kuznetsova L.A., Kaliazin A.E., and Rowe D.M. Preparation and thermoelectric properties of A_8~(II)B_(16)~(III)B_(30)~(IV) clathrate compounds. Journal of Applied Physics, 2000. 87(11): 7871-7875.
    [52] Saramat A., Svensson G, Palmqvist A.E.C., Stiewe C, Mueller E., Platzek D., Williams S.G.K., Rowe D.M., Bryan J.D., and Stucky G.D. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba_8Ga_(16)Ge(30). Journal of Applied Physics, 2006. 99(2):023708
    [53] Kim J.H., Okamoto N.L., Kishida K., Tanaka K., and Inui H. High thermoelectric performance of type-Ill clathrate compounds of the Ba-Ge-Ga system. Acta Materialia, 2006. 54(8): 2057-2062.
    [54] Avila M.A., Suekuni K., Umeo K., and Takabatake T. Carrier-tuning of single-crystalline Ba_8Ga_(16)Ge_(30). Physica B: Condensed Matter, 2006. 383(1): 124-125.
    [55] Latturner S., Bu X., Blake N., Metiu H., and Stucky G Gallium Antimonide-Doped Germanium Clathrate-A p-Type Thermoelectric Cage Structure. Journal of Solid State Chemistry, 2000.151(1): 61-64.
    [56] Matsui T., Furukawa J., Tsukamoto K., Tsuda H., and Morii K. Structure and properties of Ba_8Ga_(16)Ge_(30) clathrates by a novel synthesis method using CO gas reductive atmosphere. Journal of Alloys and Compounds, 2005. 391(1-2): 284-287.
    [57] Terasaki I., Sasago Y, and Uchinokura K. Large thermopower in a layered oxide NaCo_2O_4. 17~(th) International Conference on Thermoelecrics. Nagoya, Jpn: IEEE, Piscataway, NJ, USA, 1998. 567-569
    [58] Terasaki I., Sasago Y., and Uchinokura K. Large thermoelectric power in NaCo_2O_4 single crystals. Physical Review B, 1997. 56(20): R12685.
    [59] Nagira T., Ito M., Katsuyama S., Majima K., and Nagai H. Thermoelectric properties of (Na_(1-y)M_y)_xCo_2O_4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01-0.35). Journal of Alloys and Compounds, 2003. 348(1-2): 263-269.
    [60] Yakabe H., Fujita K., Nakamura K., and Kikuchi K. Thermoelectric properties of Na_xCoO_2(x approximately equals 0.5) system; focusing on partially substituting effects. 17~(th) International Conference on Thermoelecrics. Nagoya, Jpn: IEEE, Piscataway, NJ, USA, 1998. 551-558
    [61] Fujita K., Mochida T., and Nakamura K. High-temperature thermoelectric properties of Na_xCoO_2-x single crystals. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001. 40(7): 4644-4647.
    [62] Ito M., Nagira T., Furumoto D., Katsuyama S., and Nagai H. Synthesis of Na_xCo_2O_4 thermoelectric oxides by the polymerized complex method. Scripta Materialia, 2003. 48(4): 403-408.
    [63] Li S., Funahashi R., Matsubara I., Yamada H., Ueno K., and Sodeoka S. Synthesis and thermoelectric properties of the new oxide ceramics Ca_(3-x)Sr_xCo_4O_(9+λ) (x=0.0-1.0). Ceramics International, 2001. 27(3): 321-324.
    [64] Hicks L.D. and Dresselhaus M.S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993. 47(19): 12727.
    [65] Koga T., Rabin O., and Dresselhaus M.S. Thermoelectric figure of merit of Bi/Pb_(1-x)Eu_xTe superlattices. Physical Review B, 2000. 62(24): 16703-16706.
    [66] Venkatasubramanian R., Siivola E., Colpitts T., and O'Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001. 413(6856): 597-602.
    [67] Dresselhaus M.S., Chen G, Tang M.Y., Yang R.G., Lee H., Wang D.Z., Ren Z.F., Fleurial J.P., and Gogna P. New directions for nanoscale thermoelectric materials research. Boston, MA, United States: Materials Research Society, Warrendale, PA 15086, United States, 2006. 3-12.
    [68] Zhao X.Y., Shi X., Chen L.D., Zhang W.Q., Bai S.Q., Pei Y.Z., Li X.Y., and Goto T. Synthesis of Yb_yCo_4Sb_(12)/Yb_2O_3 composites and their thermoelectric properties. Applied Physics Letters, 2006. 89(9): 092121.
    [69] Kim W., Zide J., Gossard A., Klenov D., Stemmer S., Shakouri A., and Majumdar A. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Physical Review Letters, 2006. 96(4):045901
    [70] Hsu K.F., Loo S., Guo F., Chen W., Dyck J.S., Uher C, Hogan T., Polychroniadis E.K., and Kanatzidis M.G. Cubic AgPb_mSbTe_(2+m): Bulk thermoelectric materials with high figure of merit. Science, 2004. 303(5659): 818-821.
    [71] Hansen M. and Anderko K. Constitution of the Binary Alloys. McGrww-Hill, New York, 1958,1100.
    [72] Brebrick R.F. and Allgaier R.S. Composition Limits of Stability of PbTe. The Journal of Chemical Physics, 1960.32(6): 1826-1831.
    [73] Brebrick R.F. and Gubner E. Composition Stability Limits of PbTe. II. The Journal of Chemical Physics, 1962. 36(5): 1283-1289.
    [74] Strauss A.J. Effect of Pb- and Te-saturation on carrier concentrations in impurity-doped PbTe. Journal of Electronic Materials, 1973. 2: 553-556.
    [75] Antcliffe GA. and Wrobel J.S. Spontaneous and lase emission from Pb_(1-x)Sn_xTe diodes prepared by Sb diffusion. Applied Physical Letter, 1970.17:290-292.
    [76] Silberg E. and Zemel A. Cadmium diffusion studies of PbTe and Pb_(1-x)Sn_xTe. Journal of The Electrochemical Society, 1979. 8: 99-112.
    [77] Crocker A.J. The role of sodium in lead telluride. Journal of Physics And Chemistry of Solids, 1967.28: 1903-1910.
    [78] Dughaish Z.H. Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B: Condensed Matter, 2002. 322(1-2): 205-223.
    [79] H. W.J. and E. B.K. New semiconducting ternary compoiunds. Journal of Physics and Chemistry of Solids, 1957.3(1/2): 157-157.
    [80] Hockings E.F. The thermal conductivity of silver antimony telluride. Journal of Physics and Chemistry of Solids, 1959.10: 341-342.
    [81] R.W.Armstrong, Jr. J.W.F., and Tiller W.A. A structrual study of the compound AgSbTe_2. Journal of Applied Physics, 1960. 31(11): 1954-1959.
    [82] Wolfe R., Wernick J.H., and Haszko S.E. Anomalous Hall Effect in AgSbTe_2. Journal of Applied Physics, 1960. 31(11): 1959-1964.
    [83] McHugh J.P., Tiller W.A., Haszko S.E., and Wernick J.H. Phase Diagram for the Pseudobinary System Ag_2Te-Sb_2Te_3. Journal of Applied Phyiscs, 1961. 31(12): 1785-1785.
    [84] Irie T. Thermoelectric properties of the single-phase of AgSbTe_2. Journal of The Physical Society of Japan, 1962.17: 1810-1811.
    [85] Rosi F.D., Hockings E.F., and Lindenblad N.E. Semiconductor materials for thermoelectric power generation. Advanced Energy Conversion, 1961.1: 151-151.
    [86] Semiconductor materials for thermoelectric power generation up to 700℃ : Rose, F. D., J. P. Dismukes and E. F. Hockings, RCA, princeton, New Jersey, Thermoelectricity, Electrical Engineering, reprint, pp. 1-10, illus. Solar Energy, 1962. 6(4): 169-169.
    
    [87] Christakudis G.C, Plachkova S.K., Shelimova L.E., and Avilov E.S. Thermoelectric figure of merit of some compositions in the system (GeTe)_(1-x)[(Ag_2Te)_(1-y)(Sb_2Te_3)_y]_x. in proceedings of the 8th international conference on thermoelectric energy conversion. Nancy, France, 1989. 125-128
    [88] R. J. Buist P. Thermoelectric Handbook. Edited by D. M. Rowe CRC. Boca Raton, F1, 1995: 189.
    [89] Maier R.G. The pisuobinary phase diagram of AgSbTe_2-PbTe. Zeitschrift Fur Metallkunde, 1963. 54(5): 311-312
    [90] Quarez E., Hsu K.F., Pcionek R., Frangis N., Polychroniadis E.K., and Kanatzidis M.G. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb_mSbTe_(2+m). The myth of solid solutions. Journal of the American Chemical Society, 2005.127(25): 9177-9190.
    [91] Rodot M.H. and Dupouy M.G. AgSbTe_2-PbTesolid solution thermoelectrical properties. Academie des sciences, 1959. 9: 1872-1874.
    [92] Irie T., takahama T, and Ono T. The thermoelectric properties of AgSbTe_2-AgBiTe_2, AgSbTe_2-PbTe and -SnTe systems. Japanese Journal of Applied Physics, 1963. 2(2): 72-82.
    [93] Irie T. Lattice thermal conductivity of disordered alloys of ternary compound semiconductors Cu_2(Sn,Ge)(Se,S)_3(Ag,Pb,Sb)Te_2,and (Ag,Sn,Sb)Te_2. Japanese Journal of Applied Physics, 1966. 5(10): 854-859.
    [94] Lin H., Bozin E.S., Billinge S.J.L., Quarez E., and Kanatzidis M.G. Nanoscale clusters in the high performance thermoelectric AgPb_mSbTe_(m+2). Physical Review B, 2005. 72(17): 174113
    [95] Hazama H., Mizutani U., and Asahi R. First-principles calculations of Ag-Sb nanodot formation in thermoelectric AgPb_mSbTe_(2+m) (m=6,14,30). Physical Review B, 2006. 73(11): 115108
    [96] Hoang K., Mahanti S.D., Androulakis J., and Kanatzidis M.G. Electronic structure of AgPb_mSbTe_(m+2) compounds-Implications on thermoelectric properties. Boston, MA, United States: Materials Research Society, Warrendale, PA 15086, United States, 2006. 181-185
    [97] Harman T.C., Taylor P. J., Walsh M.P., and LaForge B.E. Quantum dot superlattice thermoelectric materials and devices. Science, 2002. 297(5590): 2229-2232.
    [98] Chen N., Gascoin F., Snyder G.J., Muller E., Karpinski G., and Stiewe C. Macroscopic thermoelectric inhomogeneities in (AgSbTe_2)_x(PbTe)_(1+x). Applied Physics Letters, 2005. 87(17): 171903
    [99] Kosuga A., Kurosaki K., Muta H., Stiewe C, Karpinski G, Muller E., and Yamanaka S. Microscale Seebeck scanning of polycrystalline samples of n-type AgPb_(18)SbTe_(20) and p-type AgPb_9Sn_9SbTe_(20). Materials Transactions, 2006. 47(6): 1440-1444.
    [100] Bilc D., Mahanti S.D., Quarez E., Hsu K.-F., Pcionek R., and Kanatzidis M.G. Resonant States in the Electronic Structure of the High Performance Thermoelectrics AgPb_mSbTe_(2+m): The Role of Ag-Sb Microstructures. Physical Review Letters, 2004. 93(14): 146403-4.
    
    [101] Borisova L. Density-of-States Effective Mass in Solid Solutions of the (Ag_(x/2)Pb_(1-x)Sb_(x/2))Te Type. Physica Status Solidi (b), 1984.126(2): K155-K158.
    [102] M. Baleva S.D.S. On the Optical Properties and Electronic Structure of Solid Solutions of (Ag_(x/2)Pb_(1-x)Sb_(x/2))Te Type. Physica Status Solidi (b), 1981.104(2): 737-741.
    [103] Prado S.J., Marques G.E., and Trallero-Giner C. Electronic structure in narrow-gap quantum dots. Brazilian Journal of Physics, 1999. 29(4): 730-733.
    [104] Bilc D.I., Mahanti S.D., and Kanatzidis M.G. Electronic transport properties of PbTe and AgPb_mSbTe_(2+m) systems. Physical Review B, 2006. 74(12)
    [105] Androulakis J., Hsu K.F., Pcionek R., Kong H., Uher C, Dangelo J.J., Downey A., Hogan T., and Kanatzidis M.G. Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb_(1-y)Sn_y)_mSbTe_(2+m). Advanced Materials, 2006.18(9): 1170-1173
    [106] Kosuga A., Kurosaki K., Muta H., and Yamanaka S. Thermoelectric properties of p-type (AgSbTe_2)_x(Pb_(0.5)Sn_(0.5)Te)_(1-x)(x=0.05, 0.09, 0.2). Journal of Alloys and Compounds, 2006. 416(1-2): 218-221.
    [107] Androulakis J., Pcionek R., Quarez E., Palchik O., Kong H., Uher C, Dangelo J.J., Hogan T., Tang X., Tritt T, and Kanatzidis M.G. Nanostructuring and its influence on the thermoelectric properties of the AgSbTe_2-SnTe quaternary system. Boston, MA, United States: Materials Research Society, Warrendale, PA 15086, United States, 2006. 187-194.
    [108] Poudeu P.F.P., D'Angelo J., Downey A.D., Short J.L., Hogan T.P., and Kanatzidis M.G. High thermoelectric figure of merit and nanostructuring in bulk p-type Na_(1-x)Pb_mSbyTe_(m+2). Angewandte Chemie - International Edition, 2006. 45(23): 3835-3839.
    [109] L. Borisova S.D. Kinetic coefficients in solid solutions of the (Ag_(x/2)Pb_(1-x)Sb_(x/2))Te type. Physica Status Solidi (a), 1979. 53(1): 403-407.
    [110] Kosuga A., Kurosaki K., Uno M., and Yamanaka S. Electrical properties of Ag_(1-x)Pb_(18)SbTe_(20)(x=0, 0.1. 0.3). Journal of Alloys and Compounds, 2005. 386(1-2): 315-318.
    [111] Kosuga A., Uno M., Kurosaki K., and Yamanaka S. Thermoelectric properties of Ag_(1-x)Pb_(18)SbTe_(20)(x=0, 0.1, 0.3). Journal of Alloys and Compounds, 2005. 387(1-2): 52-55.
    [112] Kosuga A., Uno M., Kurosaki K., and Yamanaka S. Thermoelectric properties of stoichiometric Ag_(1-x)Pb_(18)SbTe_(20)(x=0, 0.1, 0.2). Journal of Alloys and Compounds, 2005. 391(1-2): 288-291.
    [113] Wang H., Li J.F., Nan C.W., Zhou M., Liu W.S., Zhang B.P., and Kita T. High-performance Ag_(0.8)Pb_(18+x)SbYe_(20) thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006. 88(9): 092104
    [114] Kanazidis M.G. and Hsu H. F. Silver-containing p-type semiconductor.2005.US Patent, 0076944A1, 2005
    [115] Sootsman J., Pcionek R., Kong H., Uher C., and Kanatzidis M.G. Phase segregation and thermoelectric properties of AgPb_mSbTe_(m+2)(m=2, 4, 6, and 8). Boston, MA, United States: Materials Research Society, Warrendale, PA 15086, United States.2006. 293-298.
    [116] Sootsman J.R., Pcionek R. J., Kong H.J., Uher C., andKanatzidis M.G. Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation. Chemistry of Materials, 2006. 18(21): 4993-4995.
    [117] Ravich Y.I., Efimova B.A., and Tamarchenko V.I. Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides Ⅱ. Experiment. Physica Status Solidi (b), 1971.43(2): 453-469.
    [118] Zhu P.W., Imai Y., Isoda Y., Shinohara Y., Jia X.P., and Zou G.T. Enhanced thermoelectric properties of PbTe alloyed with Sb_2Te_3. Journal of Physics-Condensed Matter, 2005. 17(46): 7319-7326.
    [119] C.M.Bhandari. Minimizing the thermal conductivity. Handbook of Thermoelectrics Ed. D. M. Rowe CRC press, 1995: 55-66.
    [120] Weider H.H.李达汉译,半导体材料电磁性能参数的测量计量出版社,北京,1986.156-158.
    [121] Kittel C. Introduction to solid-state physics 6th ed. wiley 1986
    [122] Paul L.V.d. Philips Research Report. 1961.20:220
    [123] Look D.C. Electrical characterization of GaAs materials and devices. Wiley, 1989:184
    [124] Xue J. and Taylor R. An Evaluation of Specific Heat Measurement Methods using the Laser Flash Technique. International Journal of Thermophysics, 1993.14(2): 313-320.
    [125] Parker W.J., Jenkins R.J., Butler C.P., and Abbott G.L. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. Journal of Applied Physics, 1961.32(9): 1679-1684.
    [126] 梁敬魁.粉末衍射法测定晶体结构(下册).北京:科学出版社,2003.813.
    [127] 邱安宁,蒋意靖,张澜庭,吴建生.添加Ag、Sb对PbTe化合物组织与结构的影响.中国有色金属学报,2006.10:1756-1760.
    [128] Sato Y., Fujimoto m., and Kobayashi A. Effects of Heat Treatment on Lead Telluride under Tellurium Pressure. Japanese Journal of Applied Physics, 1963.2(11): 688-694.
    [129] Hazama H., Mizutani U., and Asahi R. First-principles calculations of Ag-Sb nanodot formation in thermoelectric AgPb_mSbTe_(2+m)(m=6,14,30) Physical Review B, 2006. 73: 115108.
    [130] G.W.Henger and E.A.Peretti. Constitution of the lead- and antimony-rich regions of the antimony-lead-tellurium ternary system. Journal of the Less-Common Metals, 1965. 8: 124-135.
    [131] Dawar A.L., Taneja O.P., S.K.Paradkar, Kumar P., and P.C.Mathur. Electrical effects of thallium, sodium and silver impurities on lead telluride thin films. Applications of surface science, 1982. 11/12: 583-597.
    [132] Wald F. Constitutional investigations in the silver-lead-tellurium system. Journal of the Less-Common Metals, 1967.13: 579-590.
    [133] E.I.Rogacheva. Non-stoichiometry and properties of ternary semiconductor phases of variable composition based on Ⅳ-Ⅵ compounds. Journal of Physics and Chemistry of Solids, 2005.66: 2104-2111.
    [134] Mott N.F. and Jones H. The theory of the properties of metals and alloys. Oxford university press, London, 1936
    [135] Heremans J.P., Thrush C.M., and Morelli D.T. Thermopower enhancement in PbTe with Pb precipitates. Journal of Applied Physics, 2005.98(6): 063703-6.
    [136] Herring C. Effect of Random inhomogeneities on electrical and galvanomagnetic measurements. Journal of applied phyiscs, 1960.31: 1939.
    [137] Fel L.G. and Bergman D.J. Thermoelectric power factor of a composite medium. 18th international conference on thermoelectrics. Nagoya, Jpn: IEEE, Piscataway, NJ, USA.1998.55-58
    [138] David J.B. and Ohad L. Thermoelectric properties of a composite medium. Journal of Applied Physics, 1991.70(11): 6821-6833.
    [139] L.I.anatychuk. Thermoelectricity, vol I. Physics of thermoelectricity. Institute of Thermoelectricity, Acadamy of Sciences and Ministy of Education of Ukraine, Ukraie, 1998: 187.
    [140] Parrott J.E. The thermal conductivity of sintered semiconductor alloys. Journal of physical Chemistry, 1969. 2: 147.
    [141] Fujikane M., Kurosaki K., Muta H., and Yamanaka S. Electrical properties of alpha- and beta-Ag_2Te. Journal of Alloys and Compounds, 2005. 387(1-2): 297-299.
    [142] Taylor RF. and Wood C. Thermoelectric properties of Ag_2Te and Ag_2Se. Advanced Energy Conversion, 1961.1: 141-145.
    [143] Harman T.C., Reeder R.E., Walsh M.P., LaForge B.E., Hoyt C.D., and Turner G.W. High electrical power density from PbTe-based quantum-dot superlattice unicouple thermoelectric devices. Applied Physics Letters, 2006. 88(24)
    [144] Zhang W., Chen L., and Li X. High temperature thermoelectric properties of AgPb_(18+x)SbTe_(20). Key Engineering Materials, 2007. 336-3381: 857-859.
    [145] Allgaier R.S. Magnetoresistance in PbS, PbSe, and PbTe at 295 K, 77.4 K, and 4.2 K. Physical Review, 1958.112(3): 828-836.
    [146] Allgaier R.S. and Scanlon W.W. Mobility of Electrons and Holes in PbS, PbSe, and PbTe between Room Temperature and 4.2K. Physical Review, 1958.111(4): 1029-1037.
    [147] Mahanti S.D. and Bilc D. Electronic structure of defects and defect clusters in narrow band-gap semiconductor PbTe. Journal of Physics-Condensed Matter, 2004. 16(44): S5277-S5288.
    [148] P. G. Rustamov M.A.A.C.I.A. Effect of partial substitution of lead by gallium, indium and thallium on thermoelectric properties of PbTe. Physica Status Solidi (a), 1972. 12(2): K103-K107.
    [149] K. P. Mann D.S.S.Z. Doping of PbTe with Ga during Growth from the Vapour Phase. Crystal Research and Technology, 1986. 21(10): 1273-1280.
    [150] Skipetrov E., Zvereva E., Kovalev B., and Slynko E. Effect of gallium doping on the electronic structure of lead-telluride-based alloys. Physica Status Solidi B-Basic Research, 2004. 241(1): 120-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700