RNA干扰α-突触核蛋白基因表达对甲基苯丙胺中毒大鼠神经毒性的影响及差异蛋白质的筛选和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     甲基苯丙胺(Methamphetamine, METH)是一种新型毒品,属于苯丙胺类神经兴奋剂(Amphetamine-Typed Stimulant, ATS),其盐酸盐为透明的结晶体,外观状如冰,俗称“冰毒”。因具有见效快、兴奋作用维持时间长、价格低廉、化学合成技术简单、多途径摄取等特点,METH的滥用及蔓延速度极快,成为当今我国危害最为严重和滥用的两大毒品之一。METH的滥用不仅给个人生理及心理带来极大痛苦,更给家庭和社会带来沉重负担。因此,对METH神经毒性损伤的机制及其防治手段的研究已成为世界面临的重大课题和研究热点。
     METH为拟交感胺类兴奋剂,具有中枢神经兴奋性、致幻、食欲抑制和拟交感神经能效应等药理、毒理学特性。大量临床资料表明,METH可引起体内重要实质器官的损害,包括心、脑、肺、肝、肾等,但更主要的是对中枢神经系统的毒性。METH滥用能引起明显的行为和精神改变,导致大脑黑质、纹状体、海马皮质多部位损伤,可致动物大脑多巴胺能及五羟色胺能末梢损伤,包括纹状体内多巴胺(DA)含量下降,多巴胺转运体(DAT)降低,酪氨酸羟化酶(TH)活性减少,5-HT及代谢产物的耗竭,单胺囊泡转运体2(VMAT-2)及多巴胺摄取位点缺失,导致神经元、轴索损伤,神经细胞凋亡。
     目前,关于METH的神经毒性机制尚未完全明确。现阶段的研究结果显示多种机制和途径参与了METH的神经毒性。这些机制主要包括:①过量多巴胺的氧化作用及氧化应激损伤;②谷氨酸的兴奋性作用所致的Ca2+超载和细胞稳态破坏;③线粒体损伤和功能障碍;④激活多条凋亡相关通路、诱发神经元凋亡等。其中氧化应激是METH所致神经毒性损伤的重要作用机制。
     在我们前一阶段的研究中,对METH注射后大鼠纹状体、皮质、海马等部位的差异表达蛋白质进行了鉴定,认为氧化应激、能量代谢障碍、蛋白酶体功能失调及凋亡等是METH神经毒性的主要机制。同时也发现METH大鼠模型纹状体区活性氧(ROS)、一氧化氮合酶(NOS)和过氧亚硝酸盐(ONOO)、NO和脂质过氧化产物丙二醛(MDA)明显增加,超氧化物歧化酶(SOD)含量下降,伴有神经元凋亡,发现二甲基精氨酸二甲基氨基水解酶(DDAH)表达增高,提出DDAH/ADMA/NOS系统可能是NO过表达引起的中枢神经系统损伤病理过程的重要调控机制。在上述研究中,我们首次发现METH大鼠模型组纹状体、皮质、海马三个脑区中a-突触核蛋白(a-synuclein, a-syn)表达明显升高。
     α-突触核蛋白由140个氨基酸构成的酸性可溶性蛋白,主要分布于神经元的核膜及突触前末梢。a-syn参与正常突触功能的维持,在调节突触可塑性和递质释放等方面有重要的作用;可以与许多信号蛋白、骨架蛋白、酶和离子等结合,有伴侣分子样活性的作用。a-syn基因敲除小鼠却未发现有明显功能损害和形态改变,表明其生理功能具有代偿机制。a-syn高浓度或过表达时又对神经元有细胞毒的效应。在高浓度时,a-syn形成细胞毒性更大的p-折叠寡聚物,这预示着该蛋白质的异常聚集和纤维化与帕金森病(PD)、阿尔茨海默病(AD)等神经退行性疾病密切相关。METH可导致大脑出现与上述神经退行性病变相类似的改变,并且METH使用者患PD的比率明显升高。最近的研究显示METH可以导致小鼠黑质纹状体区产生类似Lewys小体的包涵体。在PD等许多神经退行性疾病中,多巴胺递质释放减少、氧化应激、Ca2+超载、线粒体功能损伤和细胞凋亡等几种损伤机制密切相关、协同作用,而a-syn在其中扮演着重要的角色。当其浓度升高时既参与了神经损伤的启动,同时也变成损伤过程的效应蛋白,促进神经元变性直至死亡。a-syn的硝基化促进了其寡聚体的稳定性导致其毒性持续增强,因此,它有可能是METH神经毒性损伤中的靶蛋白。正如前面所述,METH所致神经损伤也包含上述几种损伤机制,而a-syn在皮质、海马和纹状体表达升高,这预示着a-syn与上述损伤机制之间也存在着必然的联系,作为重要的靶蛋白参与了神经损伤的过程。
     本课题组前一阶段通过RNAi技术沉默人多巴胺能神经细胞系SH-SY5Y细胞中a-syn基因,发现干扰a-syn表达可抑制METH引起的细胞活力下降、TH、 DAT、VMAT-2等基因水平下降、多巴胺耗竭和ROS、NOS、NO水平升高,能抵抗METH引起的线粒体△Ψm下降、MPTP开放、细胞外钙离子内流,抑制线粒体的细胞色素C释放进入胞浆,从而在一定程度上保护线粒体的正常功能、抵抗METH引起的细胞死亡。但这一结果尚未在体内得到验证,且a-syn究竟是通过何种路径参与METH的神经毒性损伤、其调控的靶蛋白究竟有哪些及其可能的机制尚未见报道,也正是本研究的目的。
     目前,RNA干扰(RNAi)技术已成为研究基因功能的主要工具,与传统的基因抑制相比,RNAi技术具有更强大、更持久地抑制基因表达的能力,其效能是反义寡核苷酸的100-10000倍,并且具有高度的序列特异性,无免疫原性,能克服蛋白抑制剂应用中所存在的不足。iTRAQ (isobaric tags for relative and absolute quantitation)技术是一种多肽体外标记技术。该技术采用4种或8种同位素的标签,通过特异性标记多肽的氨基基团,进行串联质谱分析,可同时比较4种或8种不同样品中蛋白质的相对含量或绝对含量。iTRAQ技术灵敏度高,样品需求量少,相对于传统技术能够筛选出更多的差异蛋白。
     因此,本研究拟利用RNAi技术在体内抑制a-syn的表达,为研究a-syn在METH介导的神经毒性损伤中的机制提供载体;并应用iTRAQ技术筛选差异蛋白并进行定性和定量分析,探讨这些蛋白和METH神经毒性之间的联系。
     目的:
     建立a-syn沉默大鼠模型,运用行为学、酶化学等方法,全面了解a-syn抑制后对METH导致的多巴胺系统和氧化应激系统损伤的影响;在此基础上,利用iTRAQ技术,筛选和鉴定出给予METH刺激及RNA干扰a-syn后,大鼠纹状体的差异表达蛋白质,结合已知蛋白质的功能,探讨a-syn在METH神经毒性机制中的作用。
     方法:
     1.RNA干扰a-syn大鼠模型的建立
     成年雄性Wistar大鼠,随机分成4组,①对照组(control, CON);②模型组(model, model);③阴性病毒组(empty vector);④阳性病毒组(RNAi):使用本课题组前期合成并鉴定有效的a-syn-ShRNA重组病毒。利用脑立体定向注射技术向大鼠纹状体注射相应的物质,CON组和model组均注射生理盐水,empty vector组注射阴性病毒,RNAi组注射a-syn-ShRNA重组病毒。注射后二周,取各组大鼠纹状体检测a-syn的表达,实时荧光定量PCR、Western Blot分别检测a-syn在基因和蛋白水平的表达变化。
     2.RNA干扰a-syn对METH毒性损伤的影响
     利用成功建立的a-syn沉默大鼠模型,给予METH刺激,CON组腹腔注射生理盐水,model组、empty vector组和RNAi组动物腹腔注射METH,剂量15mg/kg,每天早8:00点、晚6:00点各注射一次,连续注射4天,共8次。观察动物的行为变化,体重、进食量、饮水量的变化;酶联免疫吸附试验方法(ELISA)检测各组大鼠纹状体多巴胺(DA)和络氨酸羟化酶(TH)的含量;TUNEL法检测细胞凋亡;酶化学方法检测ROS、NOS、NO的活性变化,分别用ROS荧光检测试剂盒、NOS活性检测试剂盒、NOS检测试剂盒检测。
     3.RNA干扰a-syn与METH神经毒性相关差异蛋白质的筛选和鉴定
     每组取6个纹状体组织,取适量纹状体组织,加入SDT裂解液,匀浆均匀后超声裂解:离心取上清,利用BCA法进行蛋白质浓度测定。各取20μg蛋白质样品进行SDS-PAGE电泳、考马斯亮蓝染色检测蛋白质量。各组取400μg样品进行酶解和肽段定量。分别取约64gg酶解后的肽段,用iTRAQ Reagent-4plexMultiplex Kit进行肽段标记后,采用纳升流速HPLC液相系统Easy nLC进行分离,用Q-Exactive质谱仪进行肽段的定性和定量分析。
     结果:
     1.RNA干扰a-syn大鼠模型成功建立。α-syn-shRNA重组慢病毒成功转染至大鼠纹状体细胞,可抑制a-syn基因mRNA表达达到80%,Western Blot实验也证实RNAi组大鼠纹状体内α-syn蛋白表达显著下降。
     2.METH注射后动物进食量明显减少(P<0.001),具有明显的食欲抑制作用,并可导致动物体重下降(P<0.001);METH导致动物出现明显的行为学改变,主要表现为好动、易激惹等,动物刻板行为评分明显高于对照组(P<0.001)。METH促进动物活动量增加,从而导致动物口渴口干,饮水量上升;RNAi组动物与model组比较,上述异常表现均有所减少(P<0.001)。
     3. METH注射后动物纹状体内DA含量和TH活性均明显下降,RNAi组动物与model组比较,DA含量和TH活性均显著上升(P<0.001)。
     4. METH注射后动物纹状体内ROS上升,RNAi组动物与model组比较,ROS含量显著下降(P<0.001)。
     5. METH注射后动物纹状体内NOS活性和NO含量均明显下降,RNAi组动物与model组比较,NOS活性和NO含量均显著上升(P<0.001)。
     6.利用iTRAQ技术鉴定到的蛋白质组2327个,其中65个蛋白同时在RNAi组和empty vector组以及model组CON组存在差异。这65个蛋白质中,包括9个细胞骨架蛋白、5个突触功能相关蛋白、5个细胞增殖和凋亡相关蛋白、3个泛素相关蛋白、2个核糖体蛋白和涉及神经递质、线粒体功能、能量代谢等功能的蛋白。
     结论:
     1.成功建立RNA干扰a-syn大鼠模型,在基因和蛋白水平都证实了a-syn表达量的下降。
     2.干扰a-syn表达可抑制METH中毒大鼠动物行为学上异常表现;通过提高TH的活性从而提高DA的含量,缓解METH导致的多巴胺系统的紊乱;直接抑制ROS的含量,通过降低NOS活性从而降低NO的含量,缓解METH导致的氧化应激和硝化应激的损伤。
     3.蛋白质精氨酸甲基转移酶5可能是a-突触核蛋白参与METH神经毒性的效应蛋白,通过上调蛋白质精氨酸甲基转移酶5活性而增加NO生成,增强氧化应激损伤;a-突触核蛋白通过调节泛素羧基端水解酶24和VCIP135的表达参与了泛素-蛋白酶体系统的调控。
     4.在甲基苯丙胺的神经毒性作用中,α-突触核蛋白扮演了重要角色,参与了氧化应激、凋亡、细胞骨架损伤和神经递质障碍等神经损伤过程。
Backgroud:
     Methamphetamine (METH) is an emerging addictive drug, belonging to Amphetamine-Typed Stimulants (ATS). METH can elicit a wide spectrum of pharmacological and toxicological responses, such as central excitability, hallucination, appetite repression and sympathomimetic effects. Due to its fast-acting and sustained effects, low cost, ease of production through chemical synthesis, METH has become one of the two heavily abused drugs, which poses a tremendous burden to the succumbed individuals, their family and the whole society as well. Therefore, it is imperative to elucidate the mechanisms underlying METH's neurotoxicity and addiction.
     It has been shown by many clinical studies that METH intoxication causes serious damage of a number of vital organs such as the heart, brain, lung, live and kidney. However, the brain is the most affected organ. METH abuse causes overt psychobehaviral changes, affording lesions in multiple areas such as substantia nigra, striatum and hippocampus. It is demonstrated that dopaminergic and5-HT-ergic termini in the brain were damaged by METH abuse, resulting in decreased level of dopamine (DA), dopamine transporter (DAT) and tyrosine hydroxylase (TH) activity, exhaustion of5-HT and its metabolites, depletion of dopamine binding sites on vesicular monoamine transporter2(VMAT-2), resulting in axonal damage and neuronal demise.
     The mechanisms underlying the neurotoxicity of METH are still not well understood, however, it has been shown that the following cascades are involved:1) oxidative stress damage by excessive dopamine oxidation,2) calcium overload and disrupted cellular homeostasis resulted from glutamate-induced excitotoxcity,3) mitochondrial damage and malfunction4) activation of apoptotic pathways, oxidative stress is considered one of the most important mechanisms underpinning METH-induced neurotoxicity.
     In our previous study, we have investigated the differentially expressed genes in the rat striatum, cortex and hippocampus after METH injection. The results showed that oxidative stress, perturbed energy metabolism, proteasome dysfunction and apoptosis are responsible for the neurotoxicity of METH. In addition, in striatum of METH-injected rat, we found that ROS, NOS, ONOO-、NO, MDA and DDAH were significantly increased, whereas SOD level was decreased. These findings suggest that NO may afford damage to the CNS through DDAH/ADMA/NOS pathway. Of notice, we found that the expression of a-synuclein (a-sys) was remarkably increased in the striatum, cortex and hippocampus of METH-injected rat.
     Physiologically, a-sys is an acidic soluble protein localized in neuronal nuclear membrane and presynaptic terminus, consisting of140amino acid residues.α-sys plays pivotal role in neural transmission and plasticity, capable of binding to a number of signaling molecules, scaffold proteins, enzymes, irons and chaperones. a-sys knock-out mouse shows no overt phenotype, suggesting potential redundancy may exist in vivo. High concentration or overexpression of a-sys is toxic to neurons. At high concentration, a-sys forms oligomers of P-sheet, which are more neurotoxic, hinting that abnormal aggregation and fibrillogenesis may underline neurodegenerative disorders such as Parkinson's disease (PD), and Alzheimer's disease. METH-injected brains show neuopathological changes similar to what was observed in the aforementioned neurodegenerative diseases, moreover, the incidence of PD is increased in METH abusers. Recently, striatal Lewys body-like inclusions have been observed in METH-injected mouse. Reduced dopamine release, oxidative stress, calcium overload, mitochondrial damage and apoptosis are contributing together to the pathogenesis of PD, for which a-sys plays an important role. When a-sys is of high concentration, it engages in the initiating the process of neuronal damage, in return, a-sys itself becomes an effector protein to drive neurodegeneration and neuronal loss. Nitration of a-sys makes its oligomer more stable and neurotoxic. Therefore, a-sys is a potential target of METH-induced neurotoxicity.
     We found that in dopaminergic cell line SH-SY5Y, silencing α-sys via RNAi inhibited METH-induced cell viability reduction, downregulation of TH,DAT, VMAT-2, dopamine exhaustion, elevation of ROS,NOS and NO, reduction of mitochondrial ΔΨm, calcium influx and cytochrome C release to cytosol, preventing METH-induced cell death. However, it is unclear as to how a-sys is involved in METH-induced neurotoxicity and what the target proteins are. Therefore, we aim to sort out these questions.
     RNAi has become an instrumental tool to delineate gene function. Compared with antisense-mediated gene suppression, RNAi is more potent, sustained in terms of silencing off target genes (100to10,000times more potent), providing high sequence-specificity and avoidance of immunogenicity. iTRAQ (isobaric tags for relative and absolute quantitation) is an in vitro polypeptide labeling technique that is based on the covalent labeling of the N-terminus and side chain amines of peptides from protein digestions with tags of varying mass of4to8different istotopes, enabling simultaneous quantification and comparison of proteins from4or8different samples when coupled with tandem mass spectrometer. Due to its higher sensitivity, iTRAQ can identify more differentially regulated proteins.
     Therefore we aim to knock down a-sys expression using RNAi, which may serve as a good platform to study the role played by a-sys in METH-induced neurotoxicity. Furthermore, iTRAQ technique will be utilized to identify differentially expressed proteins, whose roles in METH-induced neurotoxicity will be investigated.
     Aims:
     To establish rat model of a-sys-RNAi, in which the effect of knockdown of a-sys gene expression on METH-induced dopaminergic toxicity and oxidative stress damage will be investigated using behavioral and enzymology methods. In addition, proteins differentially regulated in the striatum in response to a-sys RNAi in METH-induced neurotoxicity rat model will be identified using iTRAQ technique and their roles with respect to a-sys in the pathogenesis of METH-induced neurotoxicity will be characterized.
     Methods:
     1. The establishment of rat model of a-sys-RNAi
     Adult male Wistar rats were randomized into four groups,①Control (CON);②Model;③Empty vector;④RNAi:a-sys-ShRNA lentiviruses were produced and characterized in our previous work. The intended substances were delivered into rat striatum via stereotaxic injection as following:saline for CON and Model groups,) for Empty vector group, a-sys-ShRNA lentivirus for RNAi group。Striatum was collected2weeks postinjection and a-sys expression was examined using real-time quantitative PCR and Western blot.
     2. The effect of a-sys-RNAi on METH-induced neurotoxicity in vivo
     Saline was intraperitoneally administered to rats in CON group, while METH (15mg/kg, one injection at8am and6pm respectively,4consecutive days,8injection in total) was intraperitoneally injected to rats in Model, Empty vector and RNAi groups. Animal behavior, weight, food intake and water consumption were closely monitored. Striatal DA and TH levels were assayed with ELISA; activity of ROS, NOS was examined with fluorescence enzymology assay kits.
     3. The identification and characterization of differentially expressed proteins in METH-induced neurotoxicity in response to α-sys-RNAi
     Striatal tissues from various groups (n=6/group) were homogenized using SDT lysis buffer, sonicated and spun, protein concentration of the supernatants was measured using BCA method. Subsequently, the quality of the protein was checked by subjecting20ug protein sample to SDS-PAGE and Coomassie blue staining.400microgram protein was subjected to trypsin digestion and peptide quantification.64microgram of tryptic peptides were labeled using iTRAQ Reagent-4plex Multiplex Kit and separated through nanoflow liquid chromatography system (Easy nLC), followed by peptide identification and validation through Q-Exactive mass spectrometer.
     Results:
     1. Establishment of a-sys-RNAi rat model:a-sys mRNA level was reduced80%in a-sys-shRNA lentivirus transduced rat striatum, striatal a-sys protein level was also significantly decreased as evidenced by Western blot.
     2. Food intake was significantly (p<0.001) after METH injection, confirming METH's suppression of appetite; animal weight loss was significant (p<0.001). Behavioral changes observed in METH-injected rat manifested as hyperactivity and irritability, with stereotypical behavior score was higher than control group (p<0.001). Water consumption was also increased in METH-injected rats, presumably due to increased activity. These abnormalities were all lessened in RNAi group.
     3. Striatal DA level and TH activity were significantly decreased in METH-injected rats, while DA level and TH activity in RNAi-treated rats were significantly higher than METH-injcted rats (p<0.001)
     4. Striatal ROS level was significantly increased ater METH injection, while ROS in RNAi treated rats were significantly decreased compared with METH-injected rats (p<0.001)
     5. Striatal NOS activity and NO level were significantly lowered in METH-injected rat, while NOS activity and NO level were increased in RNAi rats compared with METH-injected rats(p<0.001).
     6Using iTRAQ techniques, a total of2327proteins in striatum were identified,65of which were associated with a-syn. Among these65proteins,9proteins are cytoskeleton proteins,5proteins are involved in synaptic transmission,5proteins are involved in cell proliferation and apoptosis,3proteins are concerned with ubiquitin,2 proteins are ribosomal proteins.
     Conclusions
     1. Rat model a-sys-RNAi was established and a-sys knockdown were confirmed at transcriptional and translational level.
     2. METH-induced behavioral phenotypes were suppressed by RNAi-mediated silencing of a-sys. This was accompanied with increased TH activity and DA level, decreased ROS, reduced NOS activity and NO level.
     3. a-syn knockdown led to downregulation of protein arginine methyltransferase5(PRMT5), resulting in NO production; a-syn regulates ubiquitin-proteasome system through regulating ubiquitin carboxyl-terminal hydrolase24and VCIP135
     4. a-syn plays a pivotal role in METH-induced neurotoxicity, contributing to oxidative stress, apoptosis, cytoskeletal damage and synaptic transmission dysfunction.
引文
[1]郭东文,郑继旺.认识冰毒远离冰毒.中国药物滥用防治杂志,1998,4:14-17
    [2]刘志民.“新型毒品”及其危害.药物不良反应杂志,2005,7(4):272-273
    [3]蔡志基.全球毒品问题的现状与动向.中国药物依赖性杂志,1999,8(1):7
    [4]刘志民.苯丙胺类中枢兴奋剂滥用防治.中国药物滥用防治杂志,2002,38:4-14
    [5]刘铁桥,郝伟.苯丙胺类兴奋剂概介.国外医学精神病分册,2001,28(30):129-134
    [6]寇清,何卫平.急性甲基苯丙胺中毒34例临床分析.中国急救医学,2003,23(5):338-339
    [7]KamijoY, SomaK, Nishida M, et al. Acute liver failure following intravenous methamphetamine. VetHum Toxicol,2002,44(4):216-7
    [8]Winslow, BT, Voorhees KI, Pehl KA. Methamphetamine abuse. Am Fam Physician,2007,76(8):1169-74.
    [9]Purohit V, Rapaka R, Shurtleff D. Drugs of abuse, dopamine, and HIV-associated neurocognitive disorders/HIV-associated dementia. Mol Neurobiol,2011,44(1):102-110.
    [10]Ciccarone D. Stimulant abuse:pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim Care.2011,38(1):41-58.
    [11]王雪,黄明生,李静,等.甲基苯丙胺的机体毒性研究.中国药物滥用防治杂志,2003,9(3):43-44
    [12]Elisabeth R.Garwood, Wosen Bekele et al. Amphtamine expousre is elevated in Parkinson's disease Neurotoxicology.2006,233-238
    [13]Lazzeri G, Lenzi P, Busceti CL, et al. Mechanisms involved in the formation of dopamine-induced intracellular bodies within striatal neurons.Journal of Neurochemistry.2007,101(5):1414-27.
    [14]Fornai F, Lenzi P, Gesi M, et al. Similarities between methamphetamine toxicity and proteasome inhibition. Ann N Y Acad Sci.2004,1025:162-70.
    [15]Kita T, Shimada K, Mastunari Y, et al. Methamphetamine-induced striatal dopamine neurotoxicity and cyclooxygenase-2 protein expression in BALB/c mice.Neuropharmacology.2000,39(3):399-406.
    [16]Marie Balikova. Hair analysis for drugs of abuse plausibility of interpretation. Biomed Pap Med Fac Uniy Palacky Olomouc Czech Repub.2005,149 (2):199-207.
    [17]Lee NE, Taylor MM, Bancroft E, et al. Risk factors for community-acquired methicillin-resistant staphylococcus aureus skion infections among HIV-positive men who have sex with men.Clin infect Dis 2005,40(10):1529-1534.
    [18]Garwood ER, Bekele W, McCulloch CE, et al. Amphetamine exposure is elevated in Parkinsion's disease. "Neuro Toxicology.2006,1003-1006.
    [19]Zolkowska D, Jain R, Rothman RB, et al. Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. J Pharmacol Exp Ther.2009,329(2):738-46.
    [20]Volkow ND, Chang L, Wang GJ, et al. Association of dopamine transpoter reduction with psychomotor impairment in methamphetamine abusers Am. J. Psychiary.2001,158(3):377-382.
    [21]Higuchi M, Suzuki Y, Yatani Y, et al. Augmentation of serotonin release by sustained exposure to MDMA and methamphetamine in rat organotypic mesencephalic slice cultures containing raphe serotonergic neurons. J Neurochem.2008,106(6):2410-20.
    [22]Zhu J, Xu W, Wang J, et al. The neurokinin-1 receptor modulates the methamphetamine-induced striatal apoptosis and nitric oxide formation in mice. J Neurochem.2009,111(3):656-68.
    [23]Tian C, Murrin LC, Zheng JC. Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells. PLoS One.2009,4(5):e5546.
    [24]Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol.2009,88:101-19.
    [25]Graham DG, Tiffany SM, Bell WR, et al. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine,6-hydroxydopamine and related compounds toward C-1300 neuroblastoma cells in vitro. Mol Pharmacol, 1978,14(4):644-653.
    [26]李艳红,王慧君,乔东访.METH对大鼠纹状体小胶质细胞及NOS的影响.南方医科大学学报,2008,28(10):1789-1791.
    [27]Bowyer JF, Clausing P, Gough B. Nitric oxide regulation of methamphetamine-induced dopamine release in caudate/putamen. Brain Res.1995,699(1):62-70.
    [28]Tokunaga I, Ishigami A, Kubo S. The peroxidative DNA damage and apoptosis in methamphetamine-treated rat brain. J Med Invest,2008,55(3-4):241-5.
    [29]Gluck MR, Moy LY, Jayatilleke E, et al. Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J Neurochem.2001,79(1):152-60.
    [30]Cadet J L, Brannock, C. Free radicals and the pathobiology of brain dopamine systems. Neurochem Int,1998,32(2):117-131.
    [31]Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA,1996, 93(5):1956-1961.
    [32]宋健文,刘增甲,王慧君等.N-乙酰半胱氨酸减轻大鼠纹状体METH神经毒性.中国药理学通报,2009,25(6):765-9.
    [33]Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med,1994,330(9):613-22.
    [34]Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine induced nigrostriatal dopaminergic toxicity. Science,1989, 243(4889):398-400.
    [35]Taizo Kita, George C, Wagner, et al. Current Research on Methamphetamine-Induced Neurotoxicity:Animal Models of Monoamine Disruption. J Pharmacol Sci,2003,92(3):178-195.
    [36]Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther,1998,287 (1):107-114.
    [37]Virmani A, Gaetani F, Imam S, et al. Possible mechanism for the neuroprotective effects of L-carnitine on methamphetamine-evoked neurotoxicity. Ann N Y Acad Sci,2003,993:197-207; discussion 287-8.
    [38]Wu CW, Ping YH, Yen JC. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicol Appl Pharmaco,2007, 220(3):243-51.
    [39]Deng X, Cai NS, McCoy MT, et al. Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology,2002,42(6):837-45.
    [40]Bachmann RF, Wang Y, Yuan P, et al. Common effects of lithium and valproate on mitochondrial functions:protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol,2009,12(6):805-22.
    [41]Hsu M, Srinivas B, Kumar J, et al. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite:implications for Parkinson's disease. J Neurochem,2005,92(5):1091-1103.
    [42]Stumm G, Schlegel J, Schafer T, et al. Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. FASEB J,1999, 13(9):1065-1072.
    [43]Jayanthi S, Deng X, Bordelon M, et al. Methamphetamine causes differential egulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J,2001,15(10):1745-1752.
    [44]Tsao LI, Ladenheim B, Andrews AM, et al. Delta opioid peptide [D-Ala2, D-leu5] enkephalin blocks the long-term loss of dopamine transporters induced by multiple administrations of methamphetamine:Involvement of opioid receptors and reactive oxygen species. J Pharmacol Ex p Ther,1998, 287(1):322-31.
    [45]Cadet J, Jayanthi S, Deng X. Speed kills:cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J,2003,17(13):1775-1788.
    [46]Wang SF, Yen JC, Yin PH, et al. Involvement of oxidative stress-activated JNK signaling in the methamphetamine-induced cell death of human SH-SY5Y cells. Toxicology,2008,246(2-3):234-41.
    [47]Li X, Wang H, Qiu P, et al. Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain. Neurochem Int,2008,52 (1-2):256-264.
    [48]李学锋,邱平明,金贺等.甲基苯丙胺对大鼠相关脑区神经毒性研究.解剖学杂志.2007,30(1):63-5.
    [49]陈汉,王慧君,李学锋等.甲基苯丙胺对大鼠脑组织中NO、SOD、MDA的影响.中国药物依赖性杂志.2007,16(2):102-4.
    [50]李艳红,王慧君,乔东访.甲基苯丙胺对大鼠纹状体小胶质细胞及NOS的影响.南方医科大学学报.2007,27(4):427-31.
    [51]宋健文,刘增甲,谭晓辉.N—乙酰半胱氨酸减轻大鼠纹状体甲基苯丙胺神经毒性.中国药理学通报.2009,25(6):765-9.
    [52]刘增甲,宋健文,王慧君.甲基苯丙胺慢性中毒对脑纹状体区损伤作用的初步研究.中国新药杂志.2009,18(8):733-6.
    [53]Perez RG, Waymire JC, Lin E, et al. A role of alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci,2002,22(8):3090-9.
    [54]Sato S, Chiba T, Sakata E, et al.14-3-3eta is a novel regulator of parkin ubiquitin ligase. EMBO J.2006,25(1):211-21.
    [55]Souza JM, Giasson BI, Lee VM, et al. Chaperone like activity of synueleins. FEBS Lett,2000:474(1):116-9.
    [56]Kuhn M, Haebig K, Bonin M, et al. Whole genome expression analyses of single-and double-knock-out mice implicate partially overlapping functions of alpha-and gamma-synuclein.Neurogenetics.2007,8(2):71-81.
    [57]Webb JL, Ravikumar B, Atkins J, et al. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem.2003 Jul 4;278(27):25009-13.
    [58]Schwarz L, Goldbaum O, Bergmann M, et al. Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes. J Mol Neurosci.2012 Jun;47(2):256-66.
    [59]Seo JH, Rah JC, Choi SH, et al. Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J.2002, 16(13):1826-8.
    [60]Wu B, Liu Q, Duan C, et al. Phosphorylation of alpha-synuclein upregulates tyrosine hydroxylase activity in MN9D cells. Acta Histochem.2009,13.
    [61]张晓录,于顺,陈彪,张逢春等.帕金森病病因蛋白质:α-突触核蛋白对酪氨酸羟化酶活性的影响.中国临床康复.2005,9(13):34-36.
    [62]Ma QL, Chan P, Yoshii M, et al. Alpha-synuclein aggregation and neurodegenerative diseases. J Alzheimers Dis.2003,5(2):139-48.
    [63]Sidhu A, Wersinger C, Vernier P. alpha-Synuclein regulation of the dopaminergic transporter:a possible role in the pathogenesis of Parkinson's disease.FEBS Lett.2004,565(1-3):1-5.
    [64]Choi DY, Zhang J, Bing G. Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiol Aging.2010,31(9):1649-53.
    [65]Sulzer D. Clues to how alpha-synuclein damages neurons in Parkinson's disease. Mov Disord.2010,25(S1):S27-S31.
    [66]Demuro A, Mina E, Kayed R, et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem.2005,280(17):17294-300.
    [67]Danzer KM, Haasen D, Karow AR, et al. Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci.2007,27(34):9220-32.
    [68]Lashuel HA, Lansbury PT Jr. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys.2006,39(2):167-201.
    [69]Green JD, Kreplak L, Goldsbury C, et al. Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. J Mol Biol.2004,342(3):877-87.
    [70]Hsu LJ, Sagara Y, Arroyo A, et al. alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol.2000,157(2):401-10.
    [71]Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science.2003,302(5646):819-22.
    [72]Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev.2005,126(3):365-79.
    [73]Parihar MS, Parihar A, Fujita M, et al. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol.2009, 41(10):2015-24.
    [74]Sapru MK, Yates JW, Hogan S, et al. Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol.2006, 198(2):382-90.
    [1]Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC. Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi [J].Exp Neurol,2006,198:382-390.
    [2]包新民,舒斯云著.大鼠脑立体定位图谱.北京:人民卫生出版社,1991
    [3]Irina, N.K., Jean, L.C.. Methamphetamine toxicity and messengers.of death. Brain. Res.2009,60,379-407.
    [4]Lundblad M, Decressac M, Mattsson B, Bjorklund A. Impaired neurotransmission caused by overexpression of a-synuclein in nigral dopamine neurons. Proc Natl Acad Sci.2012,109(9):3213-3219.
    [5]Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron,2000,25:239-252.
    [6]Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R, Lu B, Nussbaum RL. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci,2002,22:8797-8807.
    [7]Chadchankar H, Ihalainen J, Tanila H, Yavich L. Decreased reuptake of dopamine in the dorsal striatum in the absence of a-synuclein. Brain Res,2011, 1382:37-44.
    [8]Kita T, Shimada K, Mastunari Y, Wagner GC, Kubo K, Nakashima T. Methamphetamine-induced striatal dopamine neurotoxicity and cyclooxygenase-2 protein expression in BALB/c mice.Neuropharmacology. 2000,39(3):399-406.
    [9]Marie Balikova. Hair analysis for drugs of abuse plausibility of interpretation. Biomed Pap Med Fac Uniy Palacky Olomouc Czech Repub.2005,149 (2):199-207.
    [10]Lee NE, Taylor MM, Bancroft E, Ruane PJ,Morgan M, McCoy L, Simon PA.Risk factors for community-acquired methicillin-resistant staphylococcus aureus skion infections among HIV-positive men who have sex with men.Clin infect Dis 2005,40(10):1529-1534.
    [11]Garwood ER, Bekele W, McCulloch CE, Christine CW. Amphetamine exposure is elevated in Parkinsion's disease. Neuro Toxicology.2006,1003-1006.
    [12]Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V, Prisinzano TE, Baumann MH. Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. J Pharmacol Exp Ther. 2009,329(2):738-46.
    [13]Xiromerisiou Q Dardiotis E, Tsimourtou V, et al. Genetic basis of Parkinson disease. Neurosurg Focus.2010,28(1):E7.
    [14]Fahn S.Parkinson's disease:10 years of progress,1997-2007. Mov Disord. 2010,25(S1):S2-S14.
    [15]Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alphasynuclein gene identified in families with Parkinson's disease. Science,1997, (5321):2045-7.
    [16]Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L., Riess, O.,1998. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet.18, 106-108.
    [17]Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 2004,55,164-173.
    [18]Seo JH, Rah JC, Choi SH, et al.Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J.2002, 16(13):1826-8.
    [19]Rao DD, Vorhies JS, Senzer N, et al. siRNA vs. shRNA:similarities and differences[J]. Adv Drug Deliv Rev,2009,61(9):746-759.
    [20]Sliva K, Schnierle BS. Selective gene silencing by viral delivery of short hairpin RNA [J]. Virol J.2010,7:248.
    [21]Kuhn M, Haebig K, Bonin M, et al. Whole genome expression analyses of single-and double-knock-out mice implicate partially overlapping functions of alpha-and gamma-synuclein.Neurogenetics.2007,8(2):71-81.
    [1]Seiden, LS., and Vosmer, G. Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine. Pharmacol. Biochem. Behav.1984,21,29-31
    [2]Cappon, G. D., Pu, C., and Vorhees, C. V. Time-course of methamphetamine induced neurotoxicity in rat caudateputamen after single-dose treatment. Brain Res.2000,863,106-111
    [3]Fukumura, M., Cappon, G. D., Pu, C., Broening, et al. A single dose model of methamphetamine-induced neurotoxicity in rats:effects on neostriatal monoamines and glial fibrillary acidic protein. Brain Res.1998,806,1-7
    [4]Sonsalla, P. K., Gibb, J. W., and Hanson, G. R. Roles of D1 and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems. J. Pharmacol. Exp. Ther.1986,238,932-937
    [5]Chapman, D. E., Hanson, G. R., Kesner, R. P., et al. Long-term changes in basal ganglia function after a neurotoxic regimen of methamphetamine. J. Pharmacol. Exp. Ther.2001,296,520-527
    [6]Cho, A. K., Melega, W. P., Kuczenski, R., et al. Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse. Synapse 2001,39, 161-166
    [7]Logan BK. Amphetamine:an update on forensic issues. J Anal Toxicol,2001, 25:400-404
    [8]Yamamoto BK, Raudensky J.The role of oxidative stress, etabolic compromise, and inflammation in neuronal injury produced by amphetamine-related drugs of abuse. J Neuroimmune Pharmacol,2008,3:203-217.
    [9]陈汉,张戎,丁萍,等.METH对体外培养的海马神经细胞的毒性作用[J].西北国防医学杂志,2008,29(4):283-285.
    [10]Green JD, Kreplak L, Goldsbury C, et al. Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. J Mol Biol.2004,342(3):877-87.
    [11]李学锋,王慧君.甲基苯丙胺对大鼠行为和脑组织多巴胺及其代谢产物含量的影响.毒理学杂志,2007,21(2):113-114..
    [12]Hotchkiss AJ, Morgan ME, Gibb JW. The long-term effects of multiple doses of methamphetamine on neostriatal tryptophan hydroxylase, tyrosine hydroxylase, choline acetyltransferase and glutamate decarboxylase activities. Life Sci 1979,25:1373-1378.
    [13]Hotchkiss AJ, Gibb JW. Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J. Pharmacol. Exp. Ther 1980,214:257-262.
    [14]Morgan ME, Gibb JW. Short-term and long-term effects of methamphetamine on biogenic amine metabolism in extra-striatal dopaminergic nuclei. Neuropharmacology 1980,19:989-995.
    [15]Peng, X., Tehranian, R., Dietrich, P., Stefanis, L., Perez, R.G.,2005. Alpha-synuclein activation of proteinphosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J. Cell. Sci.,118, 3523-3530.
    [16]Yu, S., Zuo, X., Li, Y., Zhang, C., Zhou, M., Zhang, Y.A., Ueda, K., Chan, P., 2004. Inhibition of tyrosine hydroxylase expression in alpha-synuclein-transfected dopaminergic neuronal cells. Neurosci. Lett.367,34-39.
    [17]Masliah, E., Rockenstein, E., Veinbergs, I., et al.2000. Dopaminergic loss and inclusion body formation in α-synuclein mice:implications for neurodegenera-tive disorders. Science.287,1265-1269.
    [18]Kirik, D., Rosenblad, C., Burger, C., Lundberg, C., Johansen, T.E., Muzyczka, N., Mandel, R.J., Bjorklund, A.,2002. Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. J. Neurosci.22,2780-2791.
    [19]Graham DG, Tiffany SM, Bell WR, et al. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine,6-hydroxydopamine and related compounds toward C-1300 neuroblastoma cells in vitro[J].Mol Pharmacol,1978,14(4):644-653.
    [20]Chen HM, Lee YC, Huang CL, Liu HK, Liao WC, Lai WL, Lin YR, Huang NK. Methamphetamine downregulates peroxiredoxins in rat pheochromocytoma cells. Biochem. Biophys. Res. Commun.2007,354:96-101.
    [21]Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev.2005,126(3):365-79.
    [22]Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol.2009,41(10):2015-24.
    [23]A Ledo, J Frade, RM Barbosa, et al. Antioxidant activity of carotenoids. Molecular Aspects of Medicine.2003,24,345-351
    [24]AJ Susswein, A Katzoff, N Miller, et al. Nitric Oxide and Memory. Neuroscientist.2004,10,153-162
    [25]Huang EP. Synaptic plasticity:a role for nitric oxide in LTP. Curr. Biol.1997,7, 141-143
    [26]Brown GC. Regulation of mitochondrial respiration by nitrix oxide inhibition of cytochrome c oxidase. Biochem. Biophys. Acta.2001,1054,46-57
    [27]Benzing, W.C. and Mufson, E.J., Increased number of NADPH-d-positive neurons within the substantia innomiinnominata in Alzheimer's disease, Brain Res.1995,30,351-355
    [28]Hensley, K., Maidt, M.L., Yu, Z., Sang, H., Markesbery, W.R. and Floyd, R.A., Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation, J. Neurosci.,1998,18,126-8132.
    [29]Smith, M.A., Harris, R.P.L., Sayre, L.M., Beckman, J.S. and Perry, G., Widespread peroxynitrite-mediated damage in Alzheimer's disease, J. Neurosci., 1997,17,2653-2657.
    [30]Su, J.H., Deng, G. and Cotman, C.W., Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer's disease brain, Brain Res.,1997,774,193-199.
    [31]Tohgi, H., Abe, T., Yamazaki, K., Murata, T., Ishizaki, E. and Isobe, C., Alteration of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease, Neurosci. Lett.,1999,269, 52-54.
    [32]Ma QL, Chan P, Yoshii M, et al. Alpha-synuclein aggregation and neurodegenerative diseases. J Alzheimers Dis.2003,5(2):139-48.
    [33 Liu Y, Qiang M, Wei Y, et al. A novel molecular mechanism for nitrated alpha-synuclein-induced cell death. J Mol Cell Biol.2011,3(4):239-49.
    [34]Choi DY, Zhang J, Bing G. Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiol Aging.2010,31(9):1649-53.
    [1]Jacek R Wis'niewski et al. Universal sample preparation method for proteome analysis. NATURE METHODS,VOL.6 NO.5,MAY 2009,359
    [2]Sandberg A et.al. Tumor proteomics by multivariate analysis on individual pathway data for characterization of vulvar cancer phenotypes.Mol Cell Proteomics.2012 Jul;11(7):M112.016998.
    [3]Thermo Scientific. Xcalibur Proteome Discoverer Version 1.3 User Guide.May 2011
    [4]Richard, D. U. et. al. Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS.Nature Protocols
    [5]Ross P L, Huang Y N, Marchese J N, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J]. Mol Cell Proteomics,2004,3(12):1154-1169
    [6]Schwacke J H, Hill E G, Krug E L, et al. iQuantitator:a tool for protein expression inference using iTRAQ. BMC Bioinformatics,2009,10:342
    [7]Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK.Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein[J]. J Neurosci,2011,31(41):14508-20
    [8]Pickart CM. Mechanisms underlying ubiqnitination. Annu Rev Biochem, 2001(70):503-33.
    [9]Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT., Jr The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell.2002; 111:209-218.
    [10]Cartier AE, Ubhi K, Spencer B, Vazquez-Roque RA, Kosberg KA, Fourgeaud L, Kanayson P, Patrick C, Rockenstein E, Patrick GN, Masliah E.Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy. PLoS One.2012;7(4) e34713.
    [11]XIE M, CHEN Q C, LIAO X M. The protective effects of ubiquitin C-terminal hydrolase Ll on neurons[J]. Progr Biochem Biophys,2010,37(10):1054-1058.
    [12]Schwarz L, Goldbaum O, Bergmann M, et al. Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes. J Mol Neurosci.2012 Jun;47(2):256-66.
    [13]Seo JH, Rah JC, Choi SH, et al. Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J.2002, 16(13):1826-8.
    [14]Li Y, Trush MA. DNA damage resulting from the oxidation of hydroquinone by copper:role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis 1993;14:1303-1311.
    [15]Carnell MJ, Insall RH. Actin on disease-Studying the pathobiology of cell motility using Dictyostelium discoideum[J]. Semin Cell Dev Biol,2011, 22(1):82-8.
    [16]Bamburg JR, Bloom GS. Cytoskeletal pathologies of Alzheimer disease[J]. Cell Motil Cytoskeleton,2009,66(8):635-49.
    [17]Hirano A. Hirano bodies and related neuronal inclusions[J]. Neuropathol Appl Neurobiol,1994,20(1):3-11.
    [18]Blanc LA. Detection of actin cleavage in Alzheimer's disease[J]. Am J Pathol, 1998,152(2):329-32.
    [19]Chen Z, Naito M, Mashima T, et al. Activation of actin-cleavable interleukin 1,8-converting enzyme (ICE) family protease CPP-32 during chemotherapeutic agent-induced apoptosis in ovarian carcinoma cells[J]. Cancer Res,1996, 56(22):5224-5229.
    [20]Mashima T, Naito M, Noguchi K, et al. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene,1997,14(9):1007-1012.
    [21]Heasman SJ, Ridley AJ. Mammalian Rho GTPases:new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol.2008 Sep;9(9):690-701
    [22]Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration:integrating signals from front to back. Science.2003 Dec 5;302(5651):1704-9.
    [23]Dan I, Watanabe NM, Kusumi A. The Ste20 group kinases as regulators of MAP kinase cascades.Trends Cell Biol.2001 May;11(5):220-30.
    [24]Luhovy AY, Jaberi A, Papillon J, et al. Regulation of the Ste20-like kinase, SLK: involvement of activation segment phosphorylation. J Biol Chem.2012 Feb 17;287(8):5446-58
    [25]张晓录,于顺,陈彪,张逢春等.帕金森病病因蛋白质:α-突触核蛋白对酪氨酸羟化酶活性的影响.中国临床康复.2005,9(13):34-36.
    [26]Ma QL, Chan P, Yoshii M, et al. Alpha-synuclein aggregation and neurodegenerative diseases. J Alzheimers Dis.2003,5(2):139-48.
    [27]Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell,2003,112(4):453-465.
    [28]Dewitt DC, Rhoades E. a-Synuclein Can Inhibit SNARE-Mediated Vesicle Fusion through Direct Interactions with Lipid Bilayers. Biochemistry.2013
    [29]Dil Kuazi A, Kito K, Abe Y, et al. NEDD8 protein is involved in ubiquitinated inclusion bodies. J Pathol.2003 Feb;199(2):259-66.
    [30]Flower RJ, Rothwell NJ. Lipocortin-1:cellular mechanisms and clinical relevance[J]. Trends Pharmacol Sci,1994,15(10):71-76.
    [31]McKanna JA. Lipocortin 1 in apoptosis:mammary regression[J]. Anat Rec, 1995,242(1):1-10.
    [32]Meldrum BS. Glutamate as a neurotransmitter in the brain. review of physiology and pathology. Journal of Nutrition,2000,130, 1007S-1015S.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700