胸腺五肽干粉吸入剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胸腺五肽(Thymopentin,TP5)是一个人工合成的寡肽,为胸腺生成素Ⅱ的免疫活性中心。TP5可诱导T细胞的分化、增殖和成熟,活化或调节不同T细胞亚群的数目和功能,实现对整个机体免疫系统的双向调节。临床上采用肌内或静脉注射给药,用于恶性肿瘤、慢性肝炎、严重感染、糖尿病及自身免疫性疾病等的治疗与辅助治疗。本文研究了用于肺部给药的TP5干粉吸入剂,可作为注射剂的替代给药方式,以解决长期频繁注射引起的患者依从性差的问题。
     本文首先建立了包含制剂理化性质和雾化性能两类指标的干粉吸入剂质量评价体系。制剂理化性质包括引湿性、水分含量、粒子表面形态、粒度及其分布、密度和流动性的测定;雾化性能指标为排空率和体外沉积率。以扫描电镜、激光散射、热重分析及双级液体碰撞器等作为分析手段。选择HPLC法测定TP5含量,该方法专属性好,重现性、精密度、回收率均符合规定,TP5在0.15 mg·mL~(-1)~2.25 mg·mL~(-1)浓度范围内,浓度与峰面积线性关系良好,回归方程及相关系数为A=910687·C-53447,r=0.9999。
     采用肺灌洗法提取大鼠肺表面的酶,灌洗液(bronchoalveolar lavage fluid,BALF)收率大于80%,酶解反应重现性良好。实验结果表明肺部酶对TP5有较强的水解能力,在稀释10倍的BALF中TP5半衰期为49.2 min;稀释300倍的BALF对TP5仍有水解能力,但反应速率降低。在选定的反应条件下,酶解反应呈零级过程。考察了常用的吸入剂添加剂,如乳糖、甘露醇、氨基酸、泊洛沙姆188及壳聚糖等对TP5酶解速率的影响,结果表明亮氨酸和苯丙氨酸可延长TP5的酶解半衰期至原来的2倍以上,分别为112.7 min和136.2 min;壳聚糖也有类似作用,可使TP5半衰期延长至85 min,且酶抑制效果与其分子量无关。上述辅料的酶抑制机制为:辅料分子与TP5分子在溶液中带相反电荷,两者通过静电引力作用形成离子复合物;复合物可改变TP5分子的伸展性,并使空间位阻增加,从而阻碍了酶催化中心与TP5分子的结合,使酶解反应速率降低。经分析可能有两种肺酶参与TP5水解:中性内肽酶从肽链的C末端水解掉两个氨基酸残基,氨肽酶从肽链N末端水解掉精氨酸。两种酶解途径中,内肽酶的催化速率要高于氨肽酶。
     制备了以甘露醇、乳糖和亮氨酸为载体的TP5普通干粉吸入剂,对不同处方组成的吸入剂的理化性质及吸入性能进行考察,结果表明处方组成可显著影响吸入剂的理化性质,进而影响粉末的雾化性能。流动性良好且具有较小空气动力径的轻质粉末表现出较好的吸入效果。亮氨酸能降低粉末密度,提高干粉吸入剂体外沉积率。当处方中亮氨酸含量>63%时,粉雾剂获得较佳的雾化性能。另外,处方中加入少量F68可以显著改善粉末的流动性。优化的处方组成为TP5/甘露醇/亮氨酸=10/18/72,含2%的F68,其振实密度为0.31 g·cm~(-3),空气动力径为1.9μm,体外沉积率达为45%。
     采用喷雾干燥法制备TP5壳聚糖微球,以收率、粉末流动性对处方进行初步评价,结果表明微球处方中必须加入一定量的亮氨酸才能满足肺部吸入要求。优选的处方为TP5/壳聚糖/亮氨酸=10/45/45,含2%F68。另外发现TP5在喷雾干燥过程中与壳聚糖相互作用,形成了不可逆的复合物,导致粉末中药物含量下降至75%。
     制备了含壳聚糖纳米粒的TP5干粉吸入剂。首先利用离子凝胶化法制备TP5壳聚糖纳米粒,对制备工艺进行单因素考察。以纳米粒粒径和包封率为指标,分别考察了CS和TPP溶液的浓度、CS与TPP质量比、pH值和药物加入量对纳米粒质量的影响,结果表明上述因素均对纳米粒的粒径和包封率均有影响。最终确定壳聚糖纳米粒的处方为:CS:TPP为3:1,CS:TP5为2:1。纳米粒粒径为276.1±50.7 nm,包封率为17.2%,载药量为5.4%。载药纳米粒的酶解实验显示TP5部分被物理包裹入纳米粒,部分吸附于纳米粒表面。将载药的纳米粒与亮氨酸以76:24的质量比混合后喷雾干燥,制得含纳米粒的干粉吸入剂。此干粉吸入剂与壳聚糖微球相比,粉末的流动性和排空率相当,但引湿性显著下降。含量测定的结果显示药物百分含量提高至97%,表明将药物载入纳米粒后再喷雾干燥减少了TP5的损失。
     在处方中药物比例均为20%时,含高浓度亮氨酸的普通干粉吸入剂沉积率最高,达41.2%,壳聚糖微球的沉积率为25.4%,略高于含纳米粒的干粉吸入剂(20.8%)。
     采用多指标综合评价法优化TP5干粉吸入剂的制备工艺,极差分析结果表明,雾化压力对吸入剂的质量影响最大,其他工艺因素依次为干燥风速>供液速度>入口温度,最佳工艺条件为雾化压力:190 kPa;干燥风速:0.7 m~3·min~(-1);供液速度:7.0mL·min~(-1);入口温度110℃。
     应用HPLC结合微渗析法测定大鼠肺粘液中TP5的局部药代动力学。实验结果表明,微渗析探针的相对回收率与传递率不等,相对回收率较低,其平均值为3.7%。考察了大鼠气管内滴注TP5溶液及气管内给予不同处方组成的TP5干粉吸入剂后,TP5在肺粘液层中的浓度-时间变化情况。结果显示,干粉吸入剂可迅速溶解于肺粘液中。经过剂量校正后,普通干粉吸入剂、壳聚糖微球、含纳米粒的干粉吸入剂在肺粘液中的AUC_(ELF)/dose分别为25.15±10.98,14.94±7.35和8.81±6.11,均大于溶液剂滴注的AUC_(ELF)/dose 1.55±1.02;干粉吸入剂在肺内的滞留时间分别为8.92±1.19 min,10.71±1.18 min和8.94±2.74 min,高于溶液剂的6.71±1.49 min。说明粉末雾化给药有效延长了TP5在肺部的滞留时间,有利于增加药物的吸收。
     进行了干粉吸入剂给药后大鼠体内的药效学研究。以环磷酰胺为造模药物,建立大鼠免疫抑制模型。分别以静脉注射TP5及肺部吸入TP5的方式对免疫失衡大鼠进行治疗。选择外周血中T细胞亚群CD_4~+/CD_8~+比值作为检测指标,采用流式细胞术对各组大鼠进行测定。实验结果显示,大鼠连续三天腹腔注射环磷酰胺后,血中CD_4~+/CD_8~+均值由正常的1.84下降至1.03,说明造模成功。免疫抑制大鼠经过静脉注射TP5或给予不同处方吸入剂干预后,其CD_4~+/CD_8~+均值分别恢复至2.29,1.94,1.52和1.81,说明肺部吸入TP5可产生与静脉注射相同的疗效。不同处方的干粉吸入剂疗效与体外沉积率有一定相关性,处方组成为TP5/甘露醇/亮氨酸的粉末体外沉积率最高,治疗效果最好。
     考察大鼠肺部连续给予TP5干粉吸入剂的安全性,结果表明吸入剂对肺部有一定的刺激性。组织学检查显示支气管及肺泡上皮的通透性有所改变,有炎性细胞浸润,但无严重刺激性及成纤维细胞增生现象,损伤具有可恢复性。经统计分析,含TP5/甘露醇/亮氨酸的干粉吸入剂及含壳聚糖纳米粒的干粉吸入剂刺激性较小,与空白对照组相比无显著性差异,说明这两种处方的安全性更高。结合药效学实验结果,处方组成为TP5/甘露醇/亮氨酸=20/16/64(2%F68)和TP5纳米粒/亮氨酸=74/26(含20%TP5,w/w)的TP5干粉吸入剂更适于肺部给药。
Thymopentin(TP5),a synthetic pentapeptide(Arg-Lys-Asp-Val-Tyr),consists of the residues 32-36 of the 49-amino acid human hormone thymopoietin.This pentapeptide exhibits a similar biological activity to thymopoietin and is,therefore,considered to be the active sequence.TP5,acting as an immunomodulator,can bring the immune dysequilibrium,which may be either hyperresponsiveness or hyporesponsiveness,towards normal state.A multitude of in vivo studies have shown the efficacy of TP5 treatment for the therapy of a variety of diseases,including primary and secondary immune deficiencies, autoimmunity,infections,cancer,hepatitis and AIDS.TP5 has been used clinically in the form of injections and a course of TP5 treatment usually lasts weeks to months.However, the long-term and repeated injections are associated with problems of poor patient compliance.Therefore,the development of a TP5 dry powder inhalation(DPI) would expand the range of delivery strategies available to the physician,and potentially overcome some of the drawbacks of the other alternative delivery routes.
     Firstly,a quality evaluation system including two types of index,physicochemical properties(i.e.hygroscopicity,moisture content,morphology,particle size and distribution,density and flowability) and aerosol characteristics(emitted dose and respirable fraction),was established.Analyses by scanning electron microscopy,laser diffractometry,thermogravimetry,Twin Stage Impactor were performed to characterize the manufactured powders.HPLC method was developed for the assay of TP5 in vitro. The stability,specificity and reproducibility of the method were good.The concentration of TP5 showed a good linear relationship to peak area in the range of 0.15 mg·mL~(-1)-2.25 mg·mL~(-1).The regression equation was A=910687·C- 53447,with a correlation coefficient of 0.9999.
     Bronchoalveolar lavage was employed to extract the enzyme on rat lung surface. More than 80%of bronchoalveolar lavage fluid(BALF) was recovered.Lung enzyme presented a strong proteolysis to TP5.The degradation half-time of TP5 in 10%BALF was 49.2 min.BALF showed proteolytic activity with decreased reaction rate even though it was diluted 300 times.Under the selected reaction conditions,the enzymatic cleavage of TP5 followed zero order.Some commonly used additives for inhalation,such as lactose, mannitol,aminoacids,poloxamer 188 and chitosan,were selected to study the influence of additives on the stability of TP5 in BALF.The results revealed that leucine and phenylalanine could decrease proteolysis rate and prolong the degradation half-time of TP5 to 112.7 min and 136.2 min,respectively.In addition,chitosan showed a similar effect and prolonged the degradation half-time to 85 min,which was independent of its molecular weight.The fact that the three additives and TP5 were with opposite charges in solution and therefore attracted each other electronically to form an ionic complex assumably explained the mechanism of their enzyme inhibitions.The ionic complex could restrict the flexibility of TP5 molecule or induce its steric hindrance.Both explanations can possibly contribute to hinder the attack of enzyme on TP5 molecule.Two kinds of lung enzyme, neutral endopeptidase and aminopeptidase,were possibly involved in the enzymatic cleavage of TP5.The former cleaved two aminoacid residues from C-terminal and the latter hydrolyzed TP5 from N-terminal with a smaller rate.
     Dry powders were produced by co-spray drying TP5 with lactose or mannitol as a bulking agent,leucine as a dispersibility enhancer and poloxamer 188 as a drug stabilizer. The results revealed that formulation compositions greatly influenced the physicochemical characteristics of the powders,which in turn affected their aerodynamic behavior.A higher loading of leucine in the formulations(>63%by dry weight) improved the aerosolization properties of the powders by producing aerodynamically lighter particles.The optimum formulation,which had a tapped density of 0.31 g·cm~(-3),an aerodynamic diameter of 1.9μm and an in vitro deposition of 45%,was obtained by combining TP5/mannitol/leucine(TP5-ML) in the ratio of 10/18/72.In addition,it was interesting to find that poloxamer 188 had a significant impact on improving the powder flowability rather than stabilizing TP5.
     TP5-loaded chitosan microspheres were prepared by spray drying.The primary evaluations were performed by choosing yield and flowability as indexes.It was found that leucine was necessary in formulation to enhance the powder dispersibility.The optimum formulation consists of TP5/chitosan/leucine 10/45/45(TP5-MP).However, chitosan had a negtively effect on the recovery of TP5 from spray-dried powders,which may be due to formation of a partially irreversible complex between the peptide and chitosan during the spray-drying process.
     To obtain a DPI containing nanoparticles,TP5-loaded chitosan nanoparticles were prepared firstly by an approach of ionic gelation.Briefly,a cross-linking reaction based on electronical attraction between chitosan and TPP occurred to form drug-containing nanoparticles.Taking the particle size and entrapment efficiency as indicator,we inspected the concentration of CS and TPP,the mass ratio of CS and TPP,pH value as well as the addition of drugs,and finally determined the formula:chitosan:TPP 3:1, chitosan:TP5 2:1.The resultant nanoparticles had a particle size of 276.1±50.7 run,an entrapment efficiency of 17.2%and a loading capacity of 5.4%.The result of proteolytic experiments indicated that partial TP5 was physically encapsulated in nanoparticles and the other part was absorbed on the surface of nanoparticles.DPI containing nanoparticles (TP5-NP) was produced by co-spray drying the mixture of TP5-loaded nanoparticles and leucine at a ratio of 76:24.By comparison with chitosan microspheres,TP5-NP showed a lower hygroscopicity and a similar flowability and emitted dose.Recovery of TP5 from powder TP5-NP increased significantly,indicating encapsulation had a positive effect on the chemical stability of TP5 during the spray-drying process.
     With a same TP5 proportion of 20%by dry weight,TP5-ML,which contained more leucine,performed a higher in vitro deposition of 41.2%.The respirable fractions of TP5-MP were 25.4%,more than that of TP5-NP.
     Multi-index evaluation was performed to optimize the preparation process of TP5 DPI.The extreme difference demonstrated that the factors affecting the quality of DPIs following the order of atomizing pressure>air flow>feed flow rate>inlet temperature. According to the Z-score results,the statistical optimization of the spray drying variables was:atomizing pressure 190 kPa;air flow 0.7 m~3·min~(-1);feed flow rate 7.0 mL·min~(-1) and inlet temperature 110℃.
     Microdialysis coupled with HPLC was used to study the pharmacokinetics of TP5 in rat epithelial lung fluid(ELF).It was found that the recovery detected by gain was not equal to that by loss.The mean in vitro recovery of probe was 3.7%.The local pharmacokinetics of TP5 DPIs in ELF after tracheal administration was investigated.For comparison,the pharmacokinetic behavior of TP5 solution after intratracheal instillation was also investigated.The values of AUC_(ELF)/dose obtained from TP5-ML,TP5-MP and TP5-NP were 25.15±10.98,14.94±7.35 and 8.81±6.11,respectively,which was higher than that of solution instillation,1.55±1.02.Furthermore,solutions showed a shorter residence time in ELF,which could be prolonged by DPIs to 8.92±1.19 min, 10.71±1.18 min and 8.94±2.74 min,respectively.Increasing the residence time is favorable to the absorption of TP5 in lung.
     Pharmacodynamics study in vivo was executed by giving the rats TP5 DPIs periodically,which were injected with immunosuppressant(Cyclophosphamide,CTX) three days before the administration.CTX caused an evident decrease of CD_4~+/CD_8~+ in blood from the normal level of 1.84 to 1.03.After administrating TP5 for seven days,the CD_4~+/CD_8~+ was reversed,which showed TP5 DPIs had the same effects as what TP5 injection acted.DPIs with different formulations presented various therapy effectiveness, which were related to their in vitro depositions.
     The stimulation tests revealed that DPIs caused slight lung injury after sequential administration of seven days.Histopathologic findings demonstrated more infiltrating neutrophils and destructive changes of the alveolar wall.But neither serious injury nor pulmonary fibrosis was observed.The statistical analysis showed that groups of TP5-ML, TP5-NP and control were not significantly different,indicating powder TP5-ML and powder TP5-NP had a better tolerance.
     In conclusion,two DPI formulations,TP5-ML and TP5-NP,were preferred to the pulmonary delivery for TP5.
引文
[1]G.Goldstein,M.P.Scheid,E.A.Boyse,D.H.Schlesinger,J.Van Wauwe.A synthetic pentapeptide with biological activity characteristic of the thymic hormone thymopoietin[J].Science,1979,204:1309-1310.
    [2]盛家琦,贾杰,胡晓愚.胸腺五肽的研究与应用[J].厂矿医药卫生,1999,15(2):68-70.
    [3]蒋定文,李楚芳.胸腺五肽研究进展[J].《国外医学》预防、诊断、治疗用生物制品分册,1999,22(2):69-72.
    [4]朱祥林,王军.注射用胸腺五肽[J].中国新药杂志,1999,8(8):547.
    [5]B.Bodey,B.Bodey Jr,S.E.Siegel,H.E.Kaiser.Review of thymic hormones in cancer diagnosis and treatment[J].Int.J.Immunopharmacology,2000,(22):261-273.
    [6]袁晓佳.胸腺五肽三甲基壳聚糖口服纳米粒的研究.四川大学硕士学位论文:2005年.
    [7]Y.S.Yin,D.W.Chen,M.X.Ma,Z.Lu,H.Y.Hu.Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of Thymopentin[J].J.Control.Rel.,2006,(116):337-345.
    [8]J.Wang,W.L.Lu,G.W.Liang,K.C.Wu,C.G.Zhang,X.Zhang,J.C.Wang,H.Zhang,X.Q.Wang,Q.Zhang.Pharmacokinetics,toxicity of nasal cilia and immunomodulating effects in Sprague-Dawley rats following intranasal delivery of thymopentin with or without absorption enhancers[J].Peptides,2006,(27):826-835.
    [9]J.Hilsted,S.Madsbad,A.Hivdberg,M.H.Rasmussen,T.Krarup,H.Ipsen,B.Hansen,M.Pedersen,R.Djurup,B.Oxenboll.Intranasal insulin therapy:the clinical realities[J].Diabetologia,1995,38:680-684.
    [10]高静.胸腺五肽肺部吸入粉雾剂的研制及其药效学研究.第二军医大学博士学位论文:2005年.
    [11]S.A.Shoyele,A.Slowey.Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery[J].Int.J.Pharm.,2006,(314):1-8.
    [12]M.A.Hollinger.Respiratory Pharmacology and Toxicology[M].W.B.Saunders,Philadelphia,1985,1-20.
    [13]N.Benowitz,R.P.Forsyth,K.L.Melmon,M.Rowland.Lidocaine disposition kinetics in monkey and man I.Prediction by a perfusion model[J].Clin.Pharmacol.Ther.,1974,(16):87-98.
    [14]X.D.Ang,J.K.A.Ma,C.J.Malanga,Y.Rojanasakul.Characterization of proteolytic activities of pulmonary alveolar epithelium[J].Int.J.Pharmaceut.,2000,(195):93-101.
    [15]A.L.Adjei,P.K.Gaupta(Eds.).Inhalation Delivery of Therapeutic Peptides and Proteins[M].Dekker,New York.1997.
    [16]C.LiCalsi,T.Christensen,J.V.Bennett,E.Phillips,C.Withama.Dry powder inhalation as a potential delivery method for vaccines [J].Vaccine,1999,(17):1796-1803.
    [17]P.R.Byron.Determinants of drug and polypeptide bio-availability from aerosols delivered to the lung [J].Adv.Drug Deliv.Rev.,1990,5:107-132.
    [18]K.Taylor,O.McCallion.Ultrasonic nebulizers for pulmonary drug delivery [J].Int.J.Pharm.,1997,153:93-104.
    [19]M.A.Johnson,S.P.Newman,R.Bloom,N.Talaee,S.W.Clarke.Delivery of albuterol and ipratropium bromide from two nebulizer systems in chronic stable asthma [J].Chest,1989,96:6-10.
    [20]LP.Tansey.Challenges in the development of metered dose inhaler aerosols using ozone friendly propellants [J].Spray Technol.Marketing,1994,(4):26.
    [21]K.Taylor.Pulmonary drug delivery.In:Aulton,M.E.(Ed.),Pharmaceutics,The Science of Dosage Form Design [M].Churchill Livingstone,Edinburgh,2002,473-488.
    [22]M.P.Timsina,G.P.Martin,C.Marriott,D.Ganderton,M.Yianneskis.Drug delivery to the respiratory tract using dry powder inhalers [J].Int.J.Pharm.,1994,101:1-13.
    [23]Task Group on Lung Dynamics,Health Phys.,1966,12:173.
    [24]S.A.Shoyele,S.Cawthorne,Particle engineering techniques for inhaled biopharmaceuticals [J].Adv.Drug Deliv.Rev.,2006,58:1009-1029.
    [25]K.A.Johnson.Preparation of peptide and protein powders for inhalation [J].Adv.Drug Deliv.Rev.,1997,26:3-15.
    [26]P.Labrude,M.Rasolomanana,C.Vigneron,C.Thiron,B.Chailott.Protective effect of sucrose on spray drying of oxyhemoglobin [J].J.Pharm.Sci.,1989,78:223-229.
    [27]B.Bittner,T.Kissel.Ultra atomization for spray drying:a versatile technique for the preparation of protein loaded biodegradable microspheres [J].J.Microencapsul,1999,16:325-341.
    [28]K.Imamura,M.Iwai,T.Ogawa,T.Sakiyama,K.Nakanishi.Evaluation of hydration states of protein in freeze-dried amorphous sugar matrix [J].J.Pharm.Sci.,2001,90:1955-1963.
    [29]J.Geigert.Overview of the stability and handling of recombinant protein drugs [J].J.Parenteral Sci.Tech.,1989,43:220-224.
    [30]P.C.Seville,T.P.Learoyd,H.-Y.Li,I.J.Williamson,J.C.Birchall.Amino acid-modified spray-dried powders with enhanced aerosolisation properties for pulmonary drug delivery [J].Powder Technology,2007,178:40-50.
    [31]S.Suarez.Facilitation of pulmonary insulin absorption by HMAP:pharmacokinetics and pharmacodynamics in rats [J].Pharm.Res.,2001,18,1677-1684.
    [32]M.Adler,M.Unger,G.Lee.Surface composition of spray dried particles of bovine serum albumin/trehalose/surface [J].Pharm.Res.,2000,17:863-870.
    [33]H.Okamoto,H.Todo,K.Iida,K.Danjo.Dry Powders for Pulmonary Delivery of Peptides and Proteins [J].K.ONA,2002,20:71-82.
    [34]H.Todo,H.Okamoto,K.Iida,K.Danjo.Effect of additives on insulin absorption from intratracheally administered dry powders in rats[J].Int.J.Pharm.,2001,220:101-110.
    [35]K.Iida,Y.Hayakawa,H.Okatomo,K.Danjo,H.Luenberger.Influence of Storage Humidity on the in Vitro Inhalation Properties of Salbutamol Sulfate Dry Powder with Surface Covered Lactose Carrier[J].Chem.Pharm.Bull.,2004,52(4):444-446.
    [36]M.J.Pikal,D.R.Rigsbee.The stability of insulin in crystalline and amorphous solids:observation of greater stability for the amorphous form[J].Pharm.Res.1997,14:1379-1387.
    [37]M.C.Kuo,V.Tep,B.Yang,C.B.Lalor,N.Kadrichi,D.Lechuga-Ballesteros,A.Clark.Effect of hygroscopic growth inhibitors on dry powder aerosol performance and bioavailability.In:Presented at AAPS Annual Meeting and Exposition,Toronto,Ont.,Canada,November 10-14,2002.
    [38]F.Ungaro,G.D.Rosa,A.Miro,F.Quaglia,M.I.L.Rotonda.Cyclodextrins in the production of large porous particles:Development of dry powders for the sustained release of insulin to the lungs[J].Eur.J.Pharm.Sci.,2006,28:423-432.
    [39]F.Mohamed,C.F.van der Walle.PLGA microcapsules with novel dimpled surfaces for pulmonary delivery of DNA[J].Int.J.Pharm.,2006,311:97-107.
    [40]T.P.Learoyd,J.L.Burrows,E.French,P.C.Seville.Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate[J].Eur.J.Pharm.Biopharm.,2008,68(2):224-234.
    [41]田治科,潘一斌,黄雅琴.吸入粉雾剂给药装置的研究进展[J].中国药业,2005,14(1):23-24.
    [42]I.J.Smitha,M.Parry-Billings.The inhalers of the future? A review of dry powder devices on the market today[J].Pulmonary Pharmaco.& Thera.2003,16:79-95.
    [43]汤仲明,刘秀文,柴彪新,屠敏.蛋白质多肽类药物药代动力学研究的方法学和实验设计[J].中国药理学与毒理学杂志,1996,10(3):161-168.
    [44]A.Yamamoto,T.Fujita,S.Muranishi.Pulmonary absorption enhancement of peptides by absorption enhancers and protease inhibitors[J].J.Control.Release,1996,41:57-67.
    [45]E.J.Eisenberg,P.Conzentino,W.M.Eickhoff,K.C.Cundy.Pharmacokinetic Measurement of Drugs in Lung Epithelial Lining Fluid by Microdialysis:Aminoglycoside Antibiotics in Rat Bronchi[J].J.Pharmacological and Toxicological Methods,1993,29(2):93-98.
    [46]J.P.Tischio,J.E.Patrick,H.S.Weintraub,M.Chasin,G.Goldstein.Short in vitro half-life of thymopoiefin 32-36 pentapeptide in human plasma[J].Int.J.Peptide Protein Res.,1979,14:479-484.
    [1]《化学药物质量标准建立的规范化过程技术指导原则》,编号:【H】GPH1-1,2005.
    [2]《吸入制剂质量控制研究技术指导原则》,编号:【H】GPH9-1,2007.
    [3]胸腺五肽质量标准.国家食品药品监督管理局,YBH20942005.
    [4]R.Vanbever,J.D.Mintzes,J.Wang,J.Nice,D.Chen,R.Batycky,R.Langer,D.A.Edwards.Formulation and physical characterization of large porous particles for inhalation[J].Pharm.Res.,1999,16:1735-1742.
    [5]W.C.Hinds.Aerosol Technology[M].John Wiley and Sons,New York,1982.
    [6]J.T.Carstensen.Pharmaceutical Principles of Solid Dosage Forms[M].Technomic Publishing,Lancaster,PA,1993.
    [7]林锦明,张东春,魏红.热分析技术在药学领域中的应用[J].第二军医大学学报,2001,22(11):1043-1044.
    [8]J.H.Volker,W.M.Bernd.Stability of thesynthetic pentapeptide Thymopentin in aqueous solution:Effectof pH and buffer on the degradation[J].Int.J.Pharm.,1991,70(1):29-34.
    [9]何伟玲,张志荣,蒋学华,聂宇,吴芳.制剂工艺条件下的胸腺五肽稳定性评价[J].四川大学学报,2003,34(2):292-294.
    [10]尹雅姝,陈大为,乔明曦,刘莹,赵秀丽.RP-HPLC法测定胸腺五肽溶液的稳定性[J].沈阳药科大学学报,2007,24(2):89-93.
    [11]C.Bosquillon,C.Lombry,V.Preat,R.Vanbever.Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance[J].J.Control.Release,2001,70:329-339.
    [12]A.J.Hickey,N.M.Concessio,M.M.Van Oort,R.M.Platz.Factors influencing the dispersion of dry powders as aerosols[J].Pharm.Technol.,1994,18:58-64.
    [13]J.C.Hooton.An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles[J].Pharm.Res.,2004,21:953-961.
    [14]M.J.Pikal,D.R.Rigsbee.The stability of insulin in crystalline and amorphous solids:observation of greater stability for the amorphous form[J].Pharm.Res.1997,14:1379-1387.
    [15]H.-K.Chan.Inhalation drug delivery devices and emerging technologies[J].Expert Opin.Ther.Patents,2003,13:1333-1343.
    [16]H.-K.Chan,N.Chew.Novel alternative methods for the delivery of drugs for asthma treatment[J].Adv.Drug Deliv.Rev.,2003,55:793-805.
    [17]H.-K.Chan.Dry powder aerosol delivery system:current and future research directions[J].J.Areosol Med.,2006,19(1):21-27.
    [18]J.Elversson,A.Millqvist-Fureby.In situ coating—An approach for particle modification and encapsulation of proteins during spray-drying[J].Int.J.Pharm.,2006,323:52-63.
    [19]毛磊编著.药用气雾剂[M].中国医药科技出版社,北京,1997.
    [20]J.Broadhead,S.K.Edmond Rouan,C.T.Rhodes.Dry-powder inhalers:evaluation of testing methodology and effect of inhaler design[J].Pharmaceutica Acta Helvetiae,1995,70:125-131.
    [21]G.W.Hallworth,D.G.Westmoreland.The twin impinger:a simple device for assessing the delivery of drugs from metered dose pressurized aerosol inhalers[J].J.Pharm.Pharmacol.1987,39:966-972.
    [1]Y.S.Bakhle,J.R.Vane,eds.Lung biology in health and disease,Vol.4[M].Marcel Dekker,New York,1977.
    [2]S.D.Kashi,V.H.L.Lee.Enkephalin hydrolysis in homogenates of various absorptive mucosae of the albino rabbit:similarities in rates and involvement of aminopeptidases[J].Life Sci.,1986,38:2019-2028.
    [3]L.Y.Wang,D.Toledo-Velasquez,D.Schwegler-Berry,J.K.H.Ma,Y.Rojanasakul.Transport and hydrolysis of enkephalins in cultured alveolar epithelial monolayers[J].Pharm.Res.,1993,10:1662-1667.
    [4]B.J.Forbes,C.G.Wilson,M.Gumbleton.Extraction of peptidase substrates by the isolated and perfused rat lung[J].Pharm.Sci.1995,1:569-72.
    [5]C.Lombry.Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules [J].Am.J.Physiol.Lung Cell Mol.Physiol.,2004,286:1002-1008
    [6]R.H.Hastingsl.Clearance of different-sized proteins from the alveolar space in humans and rabbits [J].J.Appl.Physiol.,1992,73:1310-1316
    [7]R.Vanbever.Performance-driven,pulmonary delivery of systemically acting drugs[J].Drug Discovery Today:Technologies,2005,2(1):39-46.
    [8]H.Todo,H.Okamoto,K.Iida,K.Danjo.Effect of additives on insulin absorption from intratracheally administered dry powders in rats[J].Int.J.Pharm.,2001,220:101-110.
    [9]Y.N.Pang,M.Sakagami,P.R.Byron.The pharmacokinetics of pulmonary insulin in the in vitro isolated perfused rat lung:Implications of metabolism and regional deposition[J].Eur.J.Pharm.Sci.,2005,25:369-378.
    [10]K.Morimoto,Y.Uehara,K.Iwanaga,M.Kakemi.Effects of sodium glycocholate and protease inhibitors on permeability of TRH and insulin across rabbit trachea[J].Pharmaceutica Acta Helvetiae,2000,74:411-415.
    [11]R.Bahhady,K.-J.Kim,Z.Borok,E.D.C,W.-Ch.Shen.Characterization of protein factor(s) in rat bronchoalveolar lavage fluid that enhance insulin transport via transcytosis across primary rat alveolar epithelial cell monolayers[J].Eur.J.Pharm.Biopharm.,2008,69(3):808-16.
    [12]史菲,邱晨.大鼠支气管肺泡灌洗术标准化操作的探讨[J].中国现代医学杂志.2002,12(24):67-69.
    [13]P.C.Seville,T.P.Learoyd,H.-Y.Li,I.J.Williamson,J.C.Birchall.Amino acid-modified spray-dried powders with enhanced aerosolisation properties for pulmonary drug delivery[J].Powder Technology,2007,178:40-50.
    [14]M.Adler,M.Unger,G.Lee.Surface composition of spray dried particles of bovine serum albumin/trehalose/surface[J].Pharm.Res.,2000,17:863-870.
    [15]J.Elversson,A.Millqvist-Fureby.In situ coating—An approach for particle modification and encapsulation of proteins during spray-drying[J].Int.J.Pharm.,2006,323:52-63.
    [16]周少华,洪艳,房国坚,蒋玉燕,毕忆群,杨连华,陈勇.壳聚糖纳米粒制备及表征与其抗肿瘤的生物学效应[J].中国组织工程研究与临床康复,2007,11(48):9688-9691.
    [17]窦志芳,冯前进,闫娟丽,张亚中,何金洋.壳聚糖免疫调节作用的研究进展[J].中华中医药学刊,2007,25(10):2075-2076.
    [18]车小琼,孙庆申,赵凯.甲壳素利壳聚糖作为天然生物高分子材料的研究进展[J].高分子通报,2008,2:45-49.
    [19]T.P.Learoyd,J.L.Burrows,E.French,P.C.Seville.Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate[J].Eur.J.Pharm.Biopharm.,2008,68(2):224-234.
    [20]毛磊编著.药用气雾剂[M].中国医药科技出版社,北京,1997.
    [21]X.D.Yang,J.K.A.Ma,C.J.Malanga,Y.Rojanasakul.Characterization of proteolytic activities of pulmonary alveolar epithelium[J].Int.J.Pharm.,2000,195:93-101.
    [22]B.Forbes,C.G.Wilson,M.Gumbleton.Temporal dependence of ectopeptidase expression in alveolar epithelial cell culture:implications for study of peptide absorption[J].Int.J.Pharm.,1999,180:225-34.
    [23]D.A.Wall,A.T.Lanutti.High levels of exopeptidase activity are present in rat and canine bronchoaiveolar lavage fluid[J].Int.J.Pharm.,1993,97:171-81.
    [24]B.J.Forbes,C.G.Wilson,M.Gumbleton.Extraction of peptidase substrates by the isolated and perfused rat lung[J].Pharm.Sci.,1995,1:569-72.
    [25]J.D.Funkhouser,S.D.Tangada,M.Jones,O.Seung-Jun,R.D.Peterson,p146 type II alveolar epithelial cell antigen is identical to aminopeptidase N[J].Am.J.Physiol.,1991,260:L274-249.
    [26]M.J.Ramírez-Expósito,J.M.Martínez-Martos,I.Prieto,F.Alba,M.Ramirez.Angiotensinase activity in mice fed an olive oil-supplemented diet[J].Peptides,2001,22:945-952.
    [27]J.A.Griswold,C.V.Beall,C.R.F.Baker,JR.,D.T.Little,G.H.Little,F.J.Behal.Bradykinin metabolism in the liver and lung of the rat[J].J.Sur.Res.,1996,66:12-20.
    [28]C.Ersahin,A.M.Szpaderska,W.H.Simmons.Rat and mouse membrane aminopeptidase P:structure analysis and tissue distribution[J].Arch.Biochem.Biophys.,2003,417:131-140.
    [29]S.D.Tangada,R.D.A.Peterson,J.D.Funkhouser.Regulation of expression of aminopeptidase N in fetal rat lung by dexamethasone and epidermal growth factor[J].Biochimica & Biophysica Acta,1995,1268:191-199.
    [30]A.Grenha,B.Seijo,C.Remu(?)án-López.Microencapsulated chitosan nanoparticles for lung protein delivery[J].Eur.J.Pharm.Sci.,2005,25:427-437.
    [31]J.L.Eréz-Arellano,M.N.Barrios,T.Martín,M.L.Sánchez,A.Jiménez,J.M.González-Buttrago.Hydrolytic enzyme of the alveolar macrophage in diffuse pulmonary interstitial disease[J].Respiratory Med.,1996,90:159-166.
    [32]C.Bosquillon,V.Préat,R.Vanbever.Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rats[J].J.Control.Release,2004,96:233-244.
    [33]S.Kobayashi,S.Kondo,K.Juni.Critical factors on pulmonary absorption of peptides and proteins (diffusional barrier and metabolic barrier)[J].Eur.J.Pharm.Sci.,1996,4:367-372.
    [34]J.P.Evans,N.Tudball,P.A.Dickinson,S.J.Fair,I.W.Kellaway.Transport of a series of D-phenylalanine-glycine hexapeptides across rat alveolar epithelia in vitro[J].J.Drug Target 1998,6:251-9.
    [35]J.S.Patton.Mechanisms of macromolecule absorption by the lungs[J].Adv.Drug Deliv.Rev., 1996,19:3-36.
    [36]S.Kobayashi,S.Kondo,K.Juni.Study on pulmonary delivery of salmon calcitonin in rats:effects of protease inhibitors and absorption enhancers[J].Pharm.Res.,1994,11:1239-1243.
    [37]S.Guerin,B.Mari,N.Belhacene,B.Rossi,J.F.Peyron,P.Auberger.CD10(endopeptidase 24.11)is a thymic peptide-degrading enzyme possibly involved in the regulation of thymocyte functions[J].Cell.Immu.,1997,175:85-91.
    [38]L.Kisfaludy,O.Nyeki,I.Schon,L.Denes,J.Ember,L.Szporny,G.Hajos,B.Szende.Immuno-regulating peptides:I.Synthesis and structure-activity relationship of thymopentin analogs[J].Hoppe-Seyler's Z.Physiol.Chem.,1983,364:933-940.
    [39]G.A.Heavner,T.Audhya,D.Kroon,G.Goldstein.Structural requirements for the biological activity of thymopentin analogs[J].Arch.Biochem.Biophys.,1985,242:248-255.
    [40]I.H.Segel原著,吴经才,张光兴,静天玉译.生物化学计算[M].科学出版社,北京,1983.
    [41]沈同,王镜岩著.生物化学第二版[M].高等教育出版社,北京,1999.
    [42]A.Bak,M.Fich,B.D.Larsen,S.Frokjaer,G.J.Friisa.N-terminal 4-imidazolidinone prodrugs of Leu-enkephalin:synthesis,chemical and enzymatic stability studies[J].Eur.J.Pharm.Sci.,1999,7:317-323.
    [43]A.Tronde,E.Krondahl,H.Euler-Chelpind,P.Brunmark,U.H.Bengtsson,G.Ekstr(o|¨)m,H.Lennern(a|¨)s.High airway-to-blood transport of an opioid tetrapeptide in the isolated rat lung after aerosol delivery[J].Peptides,2002,23:469-478.
    [1]C.Bosquillon,C.Lombry,V.Préat,R.Vanbever.Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance[J].J.Control.Release,2001,70:329-339.
    [2]P.C.Seville,T.P.Learoyd,H.-Y.Li,I.J.Williamson,J.C.Birchall.Amino acid-modified spray-dried powders with enhanced aerosolisation properties for pulmonary drug delivery[J].Powder Technology,2007,178:40-50.
    [3]H.Steckel,H.G.Brandes.A novel spray-drying technique to produce low density particles for pulmonary delivery[J].Int.J.Pharm.,2004,278:187-195.
    [4]C.M.Lehr,J.A.Bouwstra,E.H.Schacht,H.E.Junginge r.In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers[J].Int.J.Pharm.,1992,78:43-48.
    [5]B.I.Florea,M.Thanou,H.E.Junginger,G.Borchard.Enhancement of bronchial octreotide absorption by chitosan and N-trimethylchitosan shows linear in vitro/in vivo correlation[J].J.Control.Release,2005,110:353-361.
    [6]K.St(?)hl,M.Claesson,P.Lilliehorn,H.Lind(?)n,K.B(a|¨)ckstr(o|¨)m.The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation[J].Int.J.Pharm.,2002,233:227-237.
    [7]Y.-F.Maa,P.-A.Nguyen,J.D.Andya,N.Dasovich,T.D.Sweeney,S.J.Shire,C.C.Hsu.Effect of spray drying and subsequent processing conditions on residual moisture content and physical biochemical stability of protein inhalation powders[J].Pharm.Res.,1998,15:768-775.
    [8]N.R.Rabbani,P.C.Seville.The influence of formulation components on the aerosolisation properties of spray-dried powders[J].J.Control.Release,2005,110:130-140.
    [9]胡富强,袁弘,戴缨,胡绍渝.载体对粉雾剂粉末流动性的影响[J].中国药学杂志,2002,37(2):115-118.
    [10]赵应征,鲁翠涛,梅兴国.常用多指标综合评价法在优选实验中的应用[J].医学研究生学报,2004,17(7):624-626.
    [11]刘定远.医药数理统计方法[M].第三版.北京:人民卫生出版社,2006:170-180.
    [12]J.Raula,J.A.Kurkela,D.P.Brown,E.I.Kauppinen.Study of the dispersion behaviour of L-leucine containing microparticles synthesized with an aerosol flow reactor method[J].Powder Technol.,2007,177:125-132.
    [13]M.B.Ranade.Adhesion and removal of fine particles on surfaces[J].Aerosol Sci.Technol.,1987,7:161-176.
    [14]M.B.Chougule,B.K.Padhi,K.A.Jinturkar,A.Misra.Development of Dry Powder Inhalers[J].Recent Patents Drug Deliv.& Formulation,2007,1:11-21.
    [15]D.A.Edwards,G.Caponetti,J.S.Hrkach,N.Lotan,J.Anes,A.A.Ben-Jebria,R.S.Langer.US20050244341 (2005).
    [16]S.A.Shoyele,S.Cawthorne.Particle engineering techniques for inhaled biopharmaceuticals [J].Adv.Drug Deliv.Rev.,2006,58:1009-1029.
    [17]K.A.Johnson.Preparation of peptide and protein powders for inhalation [J].Adv.Drug Deliv.Rev.,1997,26:3-15.
    [18]J.Elversson,A.Millqvist-Fureby.In situ coating—An approach for particle modification and encapsulation of proteins during spray-drying [J].Int.l J.Pharm.,2006,323:52-63.
    [19]P.Labrude,M.Rasolomana,C.Vigneron.Protective effect of sucrose on spray drying of oxyhemoglobin [J].J.Pharm.Sci.,1989,78:223-229.
    [20]M.Maury,K.Mruphy,S.Kumar.Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer [J].Eur.J.Pharm.Biopharm.,2005,59:565-573.
    [21]C.C.Hsu,S.S.Wu,A.J.Walsh.The preparation of recombinant human deoxyribonuclease powder:comparative studies of spray drying versus lyophilization and application of microwave drying [C].Proceedings from the 10th International Drying Symposium (IDS'96),~(1996') Vol.B:1229-1236.
    [22]H.Yamamoto,Y.Kuno,S.Sugimoto,H.Takeuchi,Y.Kawashima.Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions [J].J.Control.Release,2005,102:373-381.
    [23]T.P.Learoyd,J.L.Burrows,E.French,P.C.Seville.Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate [J].Eur.J.Pharm.Biopharm.,2008,68(2):224-34.
    [24]A.Grenha,C.Remu(?)(?)n-L(?)pez,E.L.S.Carvalho,B.Seijo.Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins [J].Eur.J.Pharm.Biopharm.,2008,69(1):83-93.
    [25]X.M.Zeng,G.P.Martin,C.Marriott.Particle Interaction in Dry Powder Formulations for Inhalation [M].1st ed.Taylor and Francis,London,2001.
    [26]B.Bittner,T.Kissel.Ultrasonic atomization for spray-drying:a versatile technique for the preparation of protein loaded biodegradable microspheres [J].J.Microencapsul.,1999,16:235-341.
    [27]M.K.Barron,T.J.Young,K.P.Johnston,R.O.Williams.Investigation of processing parameters of spray freezing into liquid to prepare polyethylene glycol polymeric particles for drug delivery [J].AAPS PharmSciTech,2003,4,E12.
    [28]M.Yang,S.Velaga,H.Yamamoto,H.Takeuchi,Y.Kawashima,L.Hovgaard,M.van de Weert,S.Frokjaer.Characterisation of salmon calcitonin in spray-dried powder for inhalation Effect of chitosan [J].Int.J.Pharm.,2007,331:176-181.
    [29]T.Hirofumi,Y.Hiromitsu,K.Yoshiaki.Mucoadhesive nanoparticlate systems for peptide drug delivery [J].Adv.Drug Deliv.Rev.,2001,47:39-49.
    [30]N.Tsapis,D.Bennett,B.Jackson,D.A.Weitz,D.A.Edwards.Trojan particles:large porous carriers of nanoparticles for drug delivery[J].Proc.Natl.Acad.Sci.,2002,99:12001-12005.
    [31]W.H.Finlay,K.W.Stapleton,P.Zuberbuhler.Fine particle fraction as a measure of mass depositing in the lung during inhalation of nearly isotonic nebulized aerosols[J].J.Aerosol Sci.,1997,28:1301-1309.
    [32]J.O.-H.Sham,Y.Zhang,W.H.Finlay,W.H.Roa,R.L(o|¨)benberg.Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung[J].Int.J.Pharm.,2004,269:457-467.
    [33]A.Grenha,B.Seijo,C.Remu(?)án-López.Microencapsulated chitosan nanoparticles for lung protein delivery[J].Eur.J.Pharm.Sci.,2005,25:427-437.
    [34]王春,杨连生,扶雄.壳聚糖基纳米载药微粒的研究进展[J].现代食品科技,2007,23(4):90-93.
    [35]徐连敏,陈改清.壳聚糖纳米粒的研究进展[J].国外医学药学分册,2002,29(6):329-332.
    [36]林爱华,平其能.壳聚糖载药纳米粒研究进展[J].中国药业,2006,15(2):25-27.
    [37]郑爱萍,王奎书,郝睿,李明光,王坚成.胸腺五肽pH-敏感壳聚糖纳米粒的制备、体外释放及生物活性[J].中国药学杂志,2007,42(9):679-685.
    [38]Q.Gan,T.Wang.Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release[J].Colloid.Surfaces B:Biointerfaces,2007,59:24-34.
    [39]徐咏梅,杜予民.低分子量壳聚糖纳米粒子缓释蛋白质药物性能的研究[J].武汉大学学报(理学版),2003,49(4):470-474.
    [40]K.A.Janes,M.P.Fresneau,A.Marazuela,A.Fabra,M.J.Alonsoa.Chitosan nanoparticles as delivery systems for doxorubicin[J].J.Control.Release,2001,73:255-267.
    [1]M.Sakagami,K.Sakon,W.Kinoshita,Y.Makino.Enhanced pulmonary absorption following aerosol administration of mucoadhesive powder microspheres[J].J.Control.Release,2001,77:117-129.
    [2]J.P.Tischio,J.E.Patrick,H.S.Weintraub,M.Chasin,G.Goldstein.Short in vitro half-life of thymopoietin 32-36 pentapeptide in human plasma[J].Int.J.Pept.Protein Res.,1979,14:479-484.
    [3]丁平田,徐晖,郑俊民.微渗析技术在药代动力学和药物代谢研究中的应用[J].药学学报,2002,37(4):316-320.
    [4]余自成,陈红专.微透析技术在约物代谢和药代动力学研究中的应用[J].中国临床药理学杂志,2001,17(1):76-80.
    [5]E.J.Eisenberg,P.Conzentino,W.M.Eickhoff,K.C.Cundy.Pharmacokinetic measurement of lung epithelial lining fluid by microdialysis:aminoglycoside antibiotics in rat bronchi[J].J.Pharmacological Toxicological Methods,1993,29(2):93-98.
    [6]何海冰,唐星,崔福德.血液微渗析技术研究酮洛芬在大鼠体内的药代动力学[J].药学学报,2006,41(5):452-456.
    [7]J.Chen,X.M.Wang,J.Wang,G.L.Liu,X.Tang.Evaluation of brain-targeting for the nasal delivery of ergoloid mesylate by the microdialysis method in rats[J].Eur.J.Pharm.Biopharm.,2008,68:694-700.
    [8]H.Okamoto,M.Aoki,K.Danjo.A novel apparatus for rat in vivo evaluation of dry powder formulations for pulmonary administration[J].J.Pharm.Sci.,2000,89:1028-1035.
    [9]P.A.Evrard,G.Deridder,P.K.Verbeeck.Intravenous microdialysis in the mouse and the rat:development and pharmacokinetic application of a new probe[J].Pharm.Res.,1996,13(1):12-17.
    [10]M.A.Hollinger.Respiratory Pharmacology and Toxicology[M].W.B.Saunders,Philadelphia,1985,1-20.
    [11]N.Benowitz,R.P.Forsyth,K.L.Melmon,M.Rowland.Lidocaine disposition kinetics in monkey and man I.Prediction by aperfusion model[J].Clin.Pharmacol.Ther.,1974,(16):87-98.
    [12]A.L.Adjei,P.K.Gaupta(Eds.).Inhalation Delivery of Therapeutic Peptides and Proteins[M].Dekker,New York.1997.
    [13]K.Morinoto,Y.Uehara,K.Iwanaga,M.Kakemi.Tracheal barrier functions on the permeability for hydrophilic drugs and dipeptides[J].Biol.Pharm.Bull.,1999,22:510-514.
    [14]K.Morimoto,Y.Uehara,K.Iwanaga,M.Kakemi.Effects of sodium glycocholate and protease inhibitors on permeability of TRH and insulin across rabbit trachea[J].Pharmaceutica Acta Helvetiae,2000,74:411-415.
    [1]盛家琦,贾杰,胡晓愚.胸腺五肽的研究与应用[J].厂矿医药卫生,1999,15(2):68-70.
    [2]杨进.流式细胞仪工作原理及临床应用[J].医疗设备信息,200l,1:15-16.
    [3]宋芳,王建军,李俊平.T细胞在胸腺内的分化发育[J].包头医学院学报,2001,17(1):75-77.
    [4]张旭,王笑茹.人体组织及体液中CD_4~+与CD_8~+T淋巴细胞的检测及其临床意义[J].承德医学院学报,1995,12(2):173-175.
    [5]阮光萍.T细胞亚群检测的临床意义[J].医学综述,2000,6(7):292-293.
    [6]A.Grenha,B.Seijo,C.Remu(?)án-López.Microencapsulated chitosan nanoparticles for lung protein delivery[J].Eur.J.Pharm.Sci.,2005,25:427-437.
    [1]中药、天然药物刺激性和溶血性研究的技术指导原则.指导原则编号:【Z】GPT4-1,2005.
    [2]闫国和,古德全,林远,冉新泽,魏永江.制作鼠组织优质石蜡切片方法的探讨[J].第三军医大学学报,2002,24(7):875.
    [3]C.M.Derks,D.Jacobovitz-Derks.Embolic pneumopathy induced by oleic acid.A systematic morphologic study[J].Am.J.Pathol.,1977,87(1):143-158.
    [4]黄洁,楚东岭,傅恩清,金发光.肺泡表面活性物质(PS)对盐酸吸入性肺损伤的治疗进展[J].现代生物医学进展,2009,9(1):175-177.
    [5]张青,毛宝龄,钱桂生,陈正堂,徐剑铖,李琦.油酸和内毒素两次打击大鼠急性肺损伤动物模型研究[J].第三军医大学学报,2000,22(6):603-604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700