玉米丝裂病遗传效应分析及其QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米丝裂病的发生严重影响了种子的发芽率及出苗率,由于病粒感染真菌后又大大影响了商品玉米的品质。四川农业大学玉米研究所选育的“高配合力、大穗、多抗、广适玉米自交系08-641”已组配了近20个经国家、省审定的玉米新品种,已成为西南、特别是四川玉米育种的骨干自交系,但正是由于玉米丝裂病对该自交系的危害,使得在我国西北地区配制的以该自交系为亲本的新杂交种的丝裂病发病率高达30~40%,严重影响了杂交一代种的发芽率,这在一定程度上影响了该自交系在西南地区玉米育种和生产上应用。本研究为探讨其遗传规律并为做进一步深入的研究打下基础,对玉米的这个性状进行了遗传研究。利用植物数量遗传学的方法对普通玉米自交系R08与975-12杂交组合的P_1、P_2、F_1、F_(2:3)、B_(1:2)和B_(2:2)六个世代群体的种子丝裂病进行了研究,同时利用R08与Es40组合和R08与99s2052-3-2-1组合的F_2群体和F_(2:4)家系采用复合区间作图法对玉米丝裂病QTL进行了检测。主要研究结果如下:
     1、R08×975-12组合种子玉米丝裂病的遗传符合1对加性主基因+加性-显性多基因模型。在F_(2:3)、B_(1:2)和B_(2:2)3个家系世代,主基因方差分别为201.4525,31.9877和31.9877;多基因方差依次为11.0397和81.1362。主基因加性效应值为11.3116;多基因加性效应值为-4.4719,显性效应值为10.8496。主基因遗传率在F_(2:3)和B_(1:2)两个分离家系群体中为81.31%和21.56%,多基因遗传率为4.46%与54.68%。其中,主基因遗传率在F_(2:3)世代中最大,为81.31%。
     2.R08×Es40组合中,利用115对SSR标记构建了覆盖玉米全基因组的分子标记遗传连锁图谱,该图谱覆盖玉米10条染色体,遗传图谱总长2178.6cM,平均间距18.9cM,标记偏分离分析结果表明,有19对标记(0.05水平)存在偏分离,标记偏分离比例为16.5%,能满足QTLs初级定位的要求。各连锁群上的SSR引物相对顺序大多数与玉米基因组数据库中提供的SSR染色体节点(bin)位置一致。
     采用复合区间作图法进行QTL定位及遗传效应分析,共检测到12个QTLs,分别位于1、2、4、5、7染色体上,分别命名为qSC-1-1、qSC-1-2、qSC-1-3、qSC-2-1、qSC-2-2、qSC-3-1、qSC-4-1、qSC-4-2、qSC-4-3、qSC-5-1、qSC-7-1、qSC-7-2。其位置分别为130.81、272.41、292.81、81.01、100.01、20.01、140.41、158.91、180.91,临近的连锁标记分别为bnlg1564、umc1144、umc2189、umc1004、umc1003、bnlg2047、mmc0371、mmc0371、umc2280、umc1815、phi328175、phi328175。
     其中在第1和第3染色体上分别检测到了一个主效QTL qSC-1-1和qSC-3-1,贡献率分别为36.91%和37.95%,其余的10个QTL贡献率在从4.22%到18.61%不等。基因作用方式分析表明,所检测到的12个QTL中,qSC-1-1、qSC-3-1、qSC-7-1为显性,qSC-1-2、qSC-1-3、qSC-2-2为加性,qSC-7-2为超显性,其余为部分显性。
     3.R08×99s2052-3-2-1组合中,利用86对SSR标记构建了覆盖玉米全基因组的分子标记遗传连锁图谱,该图谱覆盖玉米10条染色体,遗传图谱总长1706.1cM,平均间距19.8cM,标记偏分离分析结果表明,有12对标记(0.05水平)存在偏分离,标记偏分离比例为13.95%,能满足QTLs初级定位的要求。各连锁群上的SSR引物相对顺序大多数与玉米基因组数据库中提供的SSR染色体节点(bin)位置基本一致。
     采用复合区间作图法进行QTL定位及遗传效应分析,共检测到4个QTLs,分别位于2、3、5、6染色体上,分别命名为qSC-2-1、qSC-3-1、qSC-5-1、qSC-6-1。其位置分别为296.31、24.01、114.41、48.51,临近的连锁标记分别为umc1080、bnlg1754、umc1019、umc1006。
     其中在第3和第5染色体上分别检测到了一个主效QTL qSC-3-1和qSC-5-1,贡献率分别为39.42%和43.11%,其余的2个QTL贡献率分别为5.04%和7.29%。基因作用方式分析表明,所检测到的4个QTL中,qSC-3-1、qSC-5-1为显性,qSC-2-1、qSC-6-1为部分显性。
     4.在两个具有不同遗传背景的组合中均在第3条染色体相近位置上检测到了一主效QTL位点,位置分别为20.01cM与24.01cM,贡献率均大于30%,且加性效应与显性效应的值和方向都基本一致,这极可能说明在第3染色体上的确有真实存在有一个控制丝裂病性状的主效QTL;另外,在两个组合第2和第5染色体上也都检测到了QTL位点。
     5.通过对不同的组合的研究,不管是数量遗传的方法还是QTL的分析方法均表明丝裂病是由主基因加多基因控制的一种遗传性病害,可以互相印证和补充。
The ratio of germination and seedling was effected badly due to silk-cut, and thequality of commercial maize was impacted greatly after infection by epiphyte. Inbreedline 08-641 with the agronomy characters of high combining ability、big ear、multipleresist and wide adaptability, which was combinated abort 20 new maize varietiesauthorized by province or nation, has become main inbreed lines in southwestchina, especially in SiChuan province. As a result of harm by Silk-cut, the germinationrate of F1 combinated by 08-641 was relatively low. The incidence of the disease achieved30-40% for F1 combineted by 08-641 in northwest china, so its implication was impactedin a certain extent. Some genetic studies were developed in order to investigatethe genetic basis of the character and make preparation for the studyafterwards. In this study, inheritance of silk-cut of the crossR08×975-12(Zea mays L.) was detected by applying the major gene pluspoly-gene model of quantitative traits to a joint analysis ofmulti-generations (P_1, P_2, F_1, B_(1:2), B_(2:2) and F_(2:4)). And silk-cut QTL of maize weredetected by CIM method, using F_2 population and F_(2:4) family.
     1. The results indicated that silk-cut in the cross R08×975-12 wascontrolled by one major gene with additive major gene effects plus polygenewith additive-dominance effects(the D-2 model). Genetic variance values ofthe major gene in B_(1:2), B_(2:2) and F_(2:3) populations were estimated as 201.4525,31.9877 and 31.9877, while those of polygene were 11.0397 and 81.1362,respectively. And the additive effects values of major geneand polygene wereestimated as 11.3116 and -4.4719, while the dominance effects value ofpolygene was 10.8496. Heritability values of the major gene in B_(1:2) and F_(2:3)populations were estimated as 21.56% and 81.31%, while those of polygene were4.46% and 54.68%, respectively.
     2. A genetic linkage map containing 115 SSR markers was constructed, whichcovered 2178.6cM totally, with an average of 18.9cM, in cross R08×Es40. Allthe markers were analyzed for the genetic segregation distortion, 19markers(at 0.05 level) were segregation distortion, and the ratio was 16.5%. By compared analyse, the SSR linkage map can be used for QTL mapping. Therelative order of SSR bin on the genetic linkage map was consistent with maizeGDB.
     In cross R08×Es40, 12 QTLs of silk-cut were detected by CIM method. TheseQTLs distributed on the chromosome 1、2、4、5 and 7, were named as qSC-1-1、qSC-1-2、qSC-1-3、qSC-2-1、qSC-2-2、qSC-3-1、qSC-4-1、qSC-4-2、qSC-4-3、qSC-5-1、qSC-7-1、qSC-7-2, respectively. Their position was 130.81、272.41、292.81、81.01、100.01、20.01、140.41、158.91、180.91, respectively, and their nearerlinkage marker was bnlg1564、umc1144、umc2189、umc1004、umc1003、bnlg2047、mmc0371、mmc0371、umc2280、umc1815、phi328175、phi328175、respectively.
     Two major QTLs, qSC-1-1 and qSC-3-1, were detected on the chromosome1 and 3, its contribution to phenotypic variations was 36.91% and 37.95%. Thecontributions to phenotypic variations for other 10 QTL varied from 4.22% to18.61%. The indication for the way of gene action was that among all the 12QTL, qSC-7-2 with overdominance effects, qSC-1-2、qSC-1-3 and qSC-2-2 withadditive effects, qSC-1-1、qSC-3-1 and qSC-7-1 with dominance, the others withpartial dominance effect on the character.
     3. A genetic-linkage map containing 86 SSR markers was constructed, whichcovered 1706.1cM totally, with an average of 19.8cM, in crossR08×99s2052-3-2-1. All the markers were analyzed for the genetic segregationdistortion, 12 markers(at 0.05 level) were segregation distortion, and theratio was 13.95%. By compared analyse, the SSR linkage map can be used forQTL mapping. The relative order of SSR bin on the genetic linkage map wasconsistent basically with maize GDB.
     In cross R08×99s2052-3-2-1, 4 QTLs of silk-cut were detected by CIMmethod. These QTLs distributed on the chromosome 2、3、5 and 6, were namedas qSC-2-1、qSC-3-1、qSC-5-1、qSC-6-1, respectively. Their position was 296.31、24.01、114.41、48.51, respectively, and their nearer linkage marker wasumc1080、bnlg1754、umc1019、umc1006, respectively.
     Two major QTLs, qSC-3-1 and qSC-5-1, were detected on the chromosome 3 and 5, its contribution to phenotypic variations was 39.42% and 43.11%. Thecontributions to phenotypic variations for other two QTL were 5.04% and 7.29%.The indication for the way of gene action was that among all the 4 QTL,qSC-3-1and qSC-5-1 with dominance effects, qSC-2-1 and qSC-6-1 with partialdominance effect on the character.
     4. QTL was detected on chromosome 3 in different combinations withdifferent genetic background. Its position were close, and the contributionrates were greater than 30%. The value and direction of gene action wereconsistent basically. All of these showed a major QTL which controlledcharacter of silk-cut for maize was true being on chromosome3. In addition,QTLs were also detected on chromosome3, 5.
     5. Silk-cut was abiotic disease which controlled by major gene plus minorgene by research of different genetic background and different methods. Thejoint segregation analysis and QTL method all have their superiority and theycould be confirmed and supplemented by each other.
引文
[1] Odvody, G. N., Spencer, N., and Remmers, J. 1997. A description of silk cut, a stress-related loss of kernel integrity in preharvest maize. Plant Dis. 81:439-444.
    [2] 荣廷昭,潘光堂,黄玉碧.数量遗传学.北京:中国科学技术出版社.2003.
    [3] Elston R C and J Stewart. The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data. Genetics, 1973, 73: 695~711.
    [4] Morton N E and C J Maclean. Analysis of family resemblance. Ⅲ. Complex segregation of quantitative traits. Am. J. Hum. Genet., 1974, 26: 489~503.
    [5] Elkind Y and A Cahaner. A mixed model for the effects of single gene, polygene and their interaction on quantitative traits. 1. The model and experimental design.Theor Appl Genet, 1986,72: 377~383.
    [6] Elkind Y and A Cahaner. A mixed model for the effects of single gene, polygene and their interaction on quantitative traits. 2. The effects of the major gene and polygenes on tomato fruit softness. Theor Appl Genet, 1990, 64: 205~213.
    [7] 莫惠栋.质量-数量性状的遗传分析Ⅰ.遗传组成和主基因基因型鉴别.作物学报,1993,19(1):1~6.
    [8] 莫惠栋.质量-数量性状的遗传分析Ⅱ.世代平均数和遗传方差.作物学报,1993,19(3):193~200.
    [9] Loisel P, B Goffinet, H Monod et al. Detection a major gene in an F2 population. Biometrics, 1994, 50: 512~516.
    [10] 姜长鉴,莫惠栋.质量-数量性状的遗传分析Ⅳ.极大似然法的应用.作物学报,1995,21(6):641~648.
    [11] 盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:科学出版社.2003.
    [12] 黎裕,王天宇,贾继增.玉米抗病虫性的分子标记研究进展.生物工程进展,2001,21(3):42-48.
    [13] 唐巍,欧阳潘.植物DNA分子标记技术的研究和应用.大自然探索.1998.17(63):16-21.
    [14] 周亦华,陈正华.分子标记在植物学中的应用及前景.武汉植物学研究.1999.17(1):75-86.
    [15] 王天宇,黎裕.分子标记技术在玉米基因定位和辅助选择中的应用.玉米科 学.2000.8(4):3-8.
    [16] 李汝玉.简单序列重复(SSR)及其在农作物研究中的应用.山东农业科学.1999.4:45-48.
    [17] 万平,刘大钧.SSRs标记与植物遗传育种研究(综述).安徽农业大学学报.1998.25(1):92-95.
    [18] 曾莉娟,郑成术.SSR技术及其应用.热带农业科学.2001.6:56-59.
    [19] 汤继华,胡彦民,季洪强.玉米C型Cms育性恢复基因Rf4的SSR标记河南农业学学报.2001.35(1):1-3.
    [20] 郭小平,赵元明,刘毓侠.SSR技术及其在植物遗传育种中是应用.华北农学报.1998.13(3):73-76.
    [21] 李莉,杨RAPD和SSR标记对不同样点(产地)水稻品种分析的比较.徽农业科学.2000.28(2):129-131.
    [22] 马渐新,周荣华,懂玉琛.用微卫星标记定位一个未知的小麦抗条锈病基因.科学通报.1999.44(14):1513-1517.
    [23] 严长杰,徐辰武,裔传灯.利用SSR标记定位水稻糊化温度的QTLs.遗传学报.2001.28(1)1006-1011.
    [24] 胡英考,辛志勇.小麦合成种M53抗白粉病基因的RAPD和SSR标记.作物学报.2001.27(4)415-419.
    [25] 赵淑清,武维华.DNA分子标记和基因定位.生物技术通报.2000.6:1-4.
    [26] 何光华,王文明,刘国庆.利用SSR标记定位明恢63的2对恢复基因.遗传报.2002.29(9):798-802.
    [27] 袁玲,祝莉莉,何光存.稻米品质性状基因的SSR标记定位.武汉大学学报,2002,48(4):507-510.
    [28] 席章营,张桂权.SSR标记及其在作物遗传育种中的应用.河南农业大学学报,2002,36(3):293-297
    [29] F. Carriero, G. Fontanazza, F Cellini. Identification of simple sequence repeat (SSRs) in olive (Olea europaea L.). Theor Appl Genet. 2002. 104: 301-307.
    [30] 杨俊品,荣廷昭.玉米数量性状RFLP分子标记研究进展.玉米科学.1999.7(1):18-24.
    [31] 吴长明,孙传清,陈亮等.应用RFLP图谱定位分析稻迷粒形的QTL.农业科学, 2002,27(5):3-7.
    [32] 黄烈健,向道权,杨俊品等.玉米RFLP连锁图谱构建及大斑病QTL定位.遗传学报,2002,29(12):1100-1104.
    [33] 邵映田,牛永春,朱立煌等.小麦抗条锈病基因Yr10的AFLP标记.科学报,2001,46(8):669-672.
    [34] 缪颖.AFLP分子标记及其应用(综述).亚热带植物通讯,1999,28(2)55-60.
    [35] 马育华.植物育种的数量遗传学基础.南京:江苏科学技术出版社,1982.
    [36] 荣廷昭等.农业试验与统计分析.成都:四川科学技术出版社,1993.
    [37] 朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报(生命科学版),26(1),2000.
    [38] 盖均镒,章元明,王建康.QTL混合遗传模型扩展至2对主基因+多基因时的联合世代分析.作物学报,2000,26(4)385-391.
    [39] 章元明,盖均镒.利用DH或RIL群体检测QTL体系并估计其遗传效应.遗传学报,2000,27(7):634-640.
    [40] 吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析.作物学报,2000,6(4):501-507.
    [41] 喻树讯,袁有禄.数量性状遗传研究的新进展.棉花学报,2002,14(3):180-184.
    [42] 李宏.QTL定位的研究方法.生物学通报,2002,37(6):34-35.
    [43] Zhuchenko A A,Korol A B,Andryushchenko V K. Linkage between loci of quantitative characters and marker loci. Genetika,1979,14:771-778.
    [44] Darvasi A, Weller J I. On the use of the moments method of estimation to obtain approximate maximum likelihood estimates of linkage between a genetic marker and a quantitative locus. Heredity, 1992,68:43-46.
    [45] Luo Z W, Kearsey M J.Maximum likelihood estimation of linkage between a marker gene and a quantitative locus.Heredity, 1989,63:401-408.
    [46] Luo Z W, Woollians J A.Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F2 populations.Heredity,1993,70:245-253.
    [47] Kearsey M J, Hyne V. QTL analysis:a simple 'marker-regression' approach.Theor Appl Genet, 1994,89:698-702.
    [48] Hyne V, Kearsey M J. QTL analysis: further uses of 'marker regression'. Theor Appl Genet, 1995,91:471-476.
    [49] Wu W R, Li W M. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theor Appl Genet, 1994,89:535-539
    [50] Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor Appl Genet, 1989,78:613-618.
    [51] Knapp S J,Bridges W C, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps. Theor Appl Genet, 1990,79:583-592.
    [52] Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage map. Genetic, 1989,121:185-199.
    [53] Jensen J. Estimation of recombination parameters between a quantitative trait locus and two marker gene loci. Theor Appl Genet, 1989,78:613-618.
    [54] Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps. Theor Appl Genet, 1990,79:583-592.
    [55] Haley C S, Knott S A. A somple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 1992,69:315-324.
    [56] Martinez O, Curnow R N. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet, 1992,85:480-488.
    [57] Xu S Z. A comment on the simple regression method for interval mapping. Genetics, 1995,141:1657-1659
    [58] Xu S Z. Further investigation in the regression method of mapping quantitative trait loci. Heredity, 1998,80:364-373.
    [59] 林鸿宣,钱惠荣,熊振民,等.几个水稻品种抽穗期主效基因与微效基因的定位.遗传学报,1996,23:205-213.
    [60] Yano M, Hqrushima Y, Nagaruma Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet, 1997,95:1025-1032.
    [61] Redona E D, Mackill D J. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet, 1998,96:957-963.
    [62] Tanksley S D, Ganai M W, Prince J C, et al. High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics, 1992,132:1141-1160.
    [63] Fulton T M, Berk-Bunn T, Emmatty D, et al. QTL analysis of an advanced backcross of lycoperslean peruvianum to the cultivated tomato and comparisons with QTLs found in other elite species. Yheor Appl Genet, 1997,95:881-894.
    [64] Edwards M D. Helentjaris T, Wright S,et al.Molecular-marker-facilitated investigation of quantitative trait loci in maize. Theor Appl Genet, 1992,83:765-774.
    [65] Goldman I L, et al. Quantitative trait loci influencing protein and starch concentration in an Illinois Long Term Selection maize strains. Theor Appl Genet, 1993,87:217-240.
    [66] Schon C C. RFLP mapping in maize quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci,1994,34:378-389.
    [67] Ragot M,et al. Molecular-marker-mediated characterization of favorable exotic alleles at quantitative trait loci in maize. Crop Sci, 1995,35:1306-1315.
    [68] Xia X C, Melchinger A E, Kuntze L,et al. Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology, 1999,89(8):660-667.
    [69] Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics,1993,134:1277-1288.
    [70] Jesen R C. Controlling the type Ⅰ and type Ⅱ errors in mapping quantitative trait loci. Genetics,1994,138:871-881.
    [71] Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Nat 1 Acad Sci, 1993,90:10972-10976.
    [72] Jiang C J, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trail loci. Genetic, 1995,140:1111-1127.
    [73] 吴为人,李维明,翁清妹,等.应用混合分布模型研究水稻株高的遗传.生物数学学报,1999,14(3):314-318.
    [74] Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996,92:230-244.
    [75] Kao C H, Zeng Z B. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics, 1997,53:653-665.
    [76] 朱军.复杂数量性状基因定位的混合线性模型方法(全国作物育种学术讨论会论文集).北京,中国农业科技出版社,1998,11-20.
    [77] Yan J Q, Zhu J, He C X, et al. Quantitative trait loci analysis for developmental behavior of tiller number in rice(Oryza sativa L.). Theor Appl Genet, 1998, 97: 267-274.
    [78] 杨典洱,王岳光,张承亮等.植物抗性基因研究新趋势.生物技术通报,2001,(6): 2-4.
    [79] 周元昌,陈启锋,吴为人等.作物QTL定位研究进展.福建农业大学学报,2000,(2):138-144.
    [80] 阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展.植物学通报,2003,20(1):10-22.
    [81] 莫慧栋.数量性状遗传基础研究的回顾与思考.扬州大学学报,2003,24(2):24-31
    [82] Melchinger A E, Kuntze L, Gumber R K, Lubberstedt T, Fuchs E. Genetic basis of resistance to sugarcane mosaic virus in European Maize germplasm. Theor Appl Genet, 1998, 96: 1151—1161.
    [83] Lu X W, Brewbaker J L1 Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana ( Kuhn ) Clintl. Maize Genetics Cooperation Newsletter, 1999, 73: 36.
    [84] Lubberstedt T, Xia X C, Tan G, Liu X, Melchinger A E1 QTL mapping of resistance to Sphacelotheca reiliana in maizel. TheorAppl Genet, 1999, 99: 593-598.
    [85] H. G. Welz and H. H. Geiger. Genes for resistance to northern corn leaf blight in diverse maize populations, Pant Breeding, 2000, 119(1): 1-14
    [86] 黎裕,戴法超,景蕊莲,王天宇,杜金友,贾继增.玉米弯孢菌叶斑病抗性的QTL分析,中国农业科学2002,35(10):1221-1227.
    [87] 尹小燕,王庆华,杨继良,金德敏,王飞,王斌,张举仁.玉米大斑病抗性基因Ht2的精细定位,科学通报,2002,47(23):1811.
    [88] 于永涛,宋燕春,黎裕,石云素,马峙英,池书敏,王天宇.玉米种质资源1-121和Mo17抗亚洲玉米螟的QTL分析,植物遗传资源学报2003,4(2)94~98
    [89] 吴建宇,汤继华,夏宗良,等.一个抗玉米矮花叶病新基因位点的发现和细胞学定位[J].植物病理学报,2002,32(1):55—58.
    [90] 王凤格,李明顺,刘贤德,王振华,张世煌,李新海,袁力行,韩晓清.玉米抗甘蔗花叶病毒QTL的初步研究,作物学报,2003,29(1):69-74.
    [91] Zhang S H, Li X H, Wang Z H, C,eorge M L, Jeffers D, Wang F G, Liu X D, Li M S. Yuan L X. QTL mapping for resistance to SCMV in Chinese maize germplasm. Maydica. 2003. 48: 307—312.
    [92] 陈旭,李新海,郝转芳,王振华,田清震,李明顺,白丽,张世煌.玉米抗矮花 叶病QTL定位,作物学报,2005,31(8):983-998.
    [93] 张吉民,刘成,石云素,宋燕春,白宝璋,黎裕,王天宇,干旱胁迫和正常灌溉条件下玉米开花相关性状的QTL分析,植物遗传资源学报2004,5(2):161~165.
    [94] 李雪华,李新海,郝转芳,田清震,张世煌,干旱条件下玉米耐旱相关性状的QTL一致性图谱构建,中国农业科学,2005,38(5):882—89.
    [95] 高世斌,冯质雷,李晚忱,荣廷昭.干旱胁迫下玉米根系性状和产量的QTLs分析,作物学报,2005,31(6):718-722.
    [96] 杨华,杨俊品,荣廷昭,谭君,邱正高.玉米抗纹枯病QTL分子标记定位,科学通报,2005,50(8):772-776.
    [97] Thomas D Brooks, W Paul Williams, Gary L Windham, Martha C Willcox, Hamed K Abbas. Quantitative Trait Loci Contributing Resistance to Aflatoxin Accumulation in the Maize Inbred Mp313E, Crop Science, 2005, 45(1): 171-173.
    [98] Thomas D. Brooks, Martha C. Willcox, W. Paul Williams, and Paul M.Buckley, Quantitative Trait Loci conferring resistance to Fall Armyworm and Southwestern Corn Borer Leaf feeding damage, Crop Science, 2005, 45: 2430-2434
    [99] 石红良,姜艳喜,王振华,李新海,李明顺,张世煌,玉米抗丝黑穗病QTL分析.作物学报,2005,31(11):1449-1454.
    [100] 刘小红,张红伟,张红梅,郑祖平,荣廷昭,王富荣,谭振波.玉米抗矮花叶病QTL的定位分析,西南农业大学学报(自然科学版),2006,28(4):544-548.
    [101] 赵茂俊,张志明,高世斌,李晚忱,荣廷昭,潘光堂.玉米抗纹枯病QTL定位,作物学报,2006,32(5):698-702.
    [102] Zhao M J, Zhang Z M, Zhang S H, Li W C, Daniel P. J., Rong T Z, Pan G T. Quantitative trait loci for resistance to banded leaf and sheath blight in Maize. Crop Science,2006,46:1039-1045.
    [103] 赵茂俊,张志明,张世煌,李晚忱,Maria Luz C.George,潘光堂.玉米SSR连锁图谱构建及抗纹枯病基因定位,高技术通讯,2005,15(5):71-76.
    [104] 张帆,玉米穗粒腐病遗传效应分析及抗性QTL定位,2006,四川农业大学博士论文.
    [105] 兰海,普通玉米主要营养品质、种子休眠性的遗传研究,2006,四川农业大学博士论文.
    [106] Shurtleff, M. C., ed. 1980. Silk-Cut. Page 86in: Compendium of Corn Diseases. 2nd ed. American Phytopathological Society, St. Paul,MN.
    [107] Ullstrup, A. J. 1950. Diseases of dent corn inlndiana. Stn. Circ. 359. Purdue Univ. Agric. Exp. Stn., Lafayette, IN.
    [108] Ullstrup, A. J. 1966. Corn diseases in theUnited States and their control. Agric. Handb. No. 199. Agric. Res. Serv. U.S. Dept. Agric. In Cooperation with Purdue Univ. Agric. Exp.Stn.
    [109] Ullstrup, A. J. 1977. Diseases of corn. Pages391-483 in: Corn and corn improvement. No.18 Agron. Ser. G. F. Sprague, D. A. Fuccillo, L.S. Perelman, and M. Stelly, eds. Am. Soc. Agron., Madison, WI.
    [110] 高之仁.数量遗传学.成都:四川大学出版社,1986.
    [111] 章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法.作物学报,2000,26(6):699-706.
    [112] 宋芸,夏燕莉,魏昕,张志明,赵茂俊,荣廷昭,潘光堂.四种玉米幼胚培养性状的基因效应分析.中国农业科学,2006,39(1):18-22.
    [113] 兰海,高世斌,樊庆琦,曹墨菊,唐祈林,潘光堂,荣廷昭.玉米种子休眠性的数量遗传分析,作物学报,2006,32(10):1586-1588.
    [114] Bassam B J, Caetano-Anolles G, Gresshoff P M. Fast and sensitive staining of DNA in polyacrylamide gels. Anal Biochem, 1991,196: 80~83
    [115] Jane M. Meer, Kenneth F. Manly, Robert H. Cudmore, Jr (2002) QTX software for genetic mapping of Mendelian markers and quantitative trait loci. Roswell Park Cancer Institute September.
    [116] Stuber C W.Mapping and manipulating quantitative traits in maize.Trends Genet, 1995, 11: 477~481.
    [117] 聂永心,张丽,潘光堂,荣廷昭.四川省常用玉米自交系SSR遗传多样性分析.分子植物育种,2005,3(1):43-51.
    [118] 刘峰,吴晓雷.大豆分子标记在RIL群体中的偏分离分析.遗传学报.2000,27(10):883~887.
    [119] 张德水,庄炳昌.栽培大豆与半野生大豆杂种F2群体中RFLP标记的偏分离及其形成原因.遗传学报.1997,24(4):362~367.
    [120] Pereira M G, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R. Construction of a RFLP map in sorghum and comparative mapping in maize. Genome, 1994, 37:236-243.
    [121]Heun M, Kennedy A E, Anderson J A, Lapitan N L V, Sorrells M E, Tanksley S D. Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome, 1991, 34:437-447 .
    [122]Devaux P, Kilian A, Kleinhofs A. Comparative mapping of the barely genome with male and female recombination-derived, doubled-haploid populations. Mol Gen Genet, 1995,249:600-608.
    [123]Paterson A, Lander E, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Rssolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721-726.
    [124] Ky C L, Barre P, Lorieux M, Thouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M. Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). TheorAppl Genet, 2000,101:669-676.
    [125]Vogl C, Xu S. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics, 2000. 155:1439-1447.
    [126]Lu H J, Romero-Severson R, Bernardo. Chromosome regions associated with segregation distortion in maize. Theor Appl Genet, 2002,105: 622-628.
    [127] Micic Z, Hahn V, Bauer E, Schon C C, Melchinger A E, 2005. QTL mapping of resistance to Sclerotinia midstalk rot in RIL of sunflower population NDBLOS_(sel) × CM625, TheorAppl Genet, 110:1490-1498.
    
    [128]Qian Q, Li Y H, Zeng D L. 2001. Isolation and genetic characterization of a fragile plant mutant in rice (Oryza sativa L). Chinese Science Bulletin, 46(15): 1273-1276.
    [129]Lorieux M, Goffinet B, Perrier X, Lanaud C. 1995a. Maximum-likelihood models for mapping genetic markers with segregation distortion. 1. Backcross populations. Theor Appl Genet, 90:73-80.
    [130]Lorieux M, Perrier X, Goffinet B, Lanaud C. 1995b. Maximum-likelihood models for mapping genetic markers with segregation distortion. 2. F_2 populations. Theor Appl Genet, 90:81-89.
    [131]Konishi, T, Abe K, Matuura S, Yano Y. 1990. Distorted segregation of the esterase isozyme genotypes in barley (Hordeum vulgare L.) Genet, 65:411-416.
    [132] Faris J D, Laddomada B, Gill BS, 1998. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics, 149: 319-327.
    [133]Kumar L S. 1999. DNA markers in plant improvement: an overview. Biotechnol Adv, 17:143-182.
    [134] Aitken K S, Jackson P A, Mclntyre C L, 2005. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. 110: 789~801.
    [135] Bentolila S, Hardy T, Guitton C. Comparative genetic analysis of F2 plants and anther culture derived plants of maize. Genome, 1992, 35: 575~582.
    [136] Gardiner J M, Coe E H, Melia-Hancock S, Hoisington D A, Chao S. Development of a core RFLP map in maize using an immortalized F_2 population. Genetics, 1993, 134: 917~930.
    [137] Sibov S T, de Souza Jr C T, Carcia A A F, Garcia A F, Silva A R, Mangolin C A. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation. Hereditas, 2003, 139: 96~106.
    [138] 杨俊品,荣廷昭,黄烈健,等.玉米分子遗传框架图谱构建.作物学报.2004,30(1):82~87.
    [139] Xu Y, Zhu L, Xiao J et al. Chromosomal regions associated with segregation distortion of molecular markers in F_2, backcross, doubled-haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet, 1997, 253: 535~545.
    [140] 严建兵,汤华,黄益勤,等.玉米F_2群体分子标记偏分离的遗传分析.遗传学报,2003,30(10):913~918.
    [141] 张帆,万雪芹,潘光堂.玉米F2群体分子标记偏分离的遗传分析.作物学报,2006,32(9):1391-1396.
    [142] Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet, 2002, 105: 622~628.
    [143] Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1991, 8(1): 2-37.
    [144] Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1993, 10(1):7-39.
    [145] Coe E H, Polacco M. Gene list and working maps. Maize Genet Coop Newslett, 1995, 694(1): 157-191.
    [146] Bubeck DM, Goodman M M, Beavis W D, Grant D. Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci. 1993,33:838-847.
    [147] 曹如槐.玉米对青枯病抗性遗传规律的研究.遗传,1996,18(2):4-6.
    [148] 任春梅,高必达,何迎春.水稻抗纹枯病的研究进展.植物保护.2001.27(4):32-36.
    [149] 王永军.大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺性状及品质性状QTL分析中的应用(博士学位论文).南京农业大学,2001.
    [150] 徐云碧,朱立煌.分子数量遗传学,1994,中国农业出版社,北京.
    [151] Chen E, Senior L, Shu H, et al.Maize simple repetitive DNA sequences: Abundance and allele variation, 1996, Genome, 39: 866-873.
    [152] Tanksly SD, Annu.Rev.Mapping polygenes.Genet, 1993, 27: 205-233.
    [153] Martin G B, Brommonschenkel S H, Chunwongse J, et al.Map-based cloning of a protein kinase gene conferring disease resistance in tomato.Science, 1993, 262: 1432-1436.
    [154] Mindrinos M, F Katagiri, G L Yu, et al.Thaliana Disease Resistance Gene RPS2 Encodes a Proteio Containing a Nucleotide-binding Site and Leucine-rich Repeats. Cell, 1994, 78: 1089-1099.
    [155] Wenyuan Song, Guo-liang, Wang, Li-Li Chen, et al. A Receptor kinase-like protein encoded by the rice disease resistance gene, Xa21.Science, 1995, 270: 1804-1806.
    [156] Chin E, Senior L, Shu H, et al.Maize simple repetitive DNA sequences: Abundance and allele variation, 1996, Genome, 39: 866~873.
    [157] 方宣均等.作物DNA标记辅助育种.科学出版社.北京.2001,P126-138.
    [158] Tanksly S D, Hewitt J.Use of molecular markers in breeding for soluble solids cntent in tomator reexamination.Theor. Appl. Genet. 1988, 66: 241-247.
    [159] White, Donald G. (ed.). 1999. Noninfectious or Abiotic Diseases. in Compendium of Corn Diseases (3rd Edition). APS Press, The American Phytopathological Society.
    [160] 王晓明,戴法超,玉米病虫害田间手册,中国农业科学技术出版社,2002
    [161] 孙祖东,盖钧镒.大豆抗斜纹夜蛾幼虫的遗传研究,作物学报,2000,26(3):341-346
    [162] 詹秋文,盖钧镒,章元明,孙祖东.大豆对斜纹夜蛾幼虫抗性遗传的发展表达过程,遗传学报,2001,28(10):956-963
    [163] 詹秋文,盖钧镒,章元明,喻德跃.大豆对食叶性害虫的抗性遗传,中国农业科学,2002,35(8):1016-1020
    [120] 王建设,朱立宏,张红生,盖钧镒.杂交稻抗白叶枯病的遗传机制,作物学报,2000,26(1):1-8.
    [164] 戚存扣,盖钧镒,章元明.甘蓝型油菜芥酸含量的主基因+多基因遗传,遗传学报, 2001, 28 (2): 182-187.
    [165] Gai J Y, Wang J K. Identification and estimation of QTL model and effects. Theor Appl Genet 1998, 97:1162-1168.
    [166] Wang J K, Gai J Y. Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001, 122: 9-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700