北京西山奥陶系岩溶水数值模拟及地下水开采环境效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京西山奥陶系岩溶水分布在北京西山山区及山前地带,属于大清河水系大石河流域和永定河水系,水质优良,开发潜力高,是北京市的重要后备水源之一。为了合理开发利用该区地下水资源,缓解由于地下水开采所引发的地质环境问题,本文通过收集整理该区气象水文数据、基础地质数据、水文地质数据等相关资料,以水文地质学、地下水动力学理论为基础,在GIS技术支持下,综合分析地下水水位数据、水文地质钻孔及剖面、抽水试验结果、水化学及同位素结果,系统研究了西山奥陶系岩溶水的补径排特征,进一步探明了该区水文地质条件;在此基础上,结合RS技术与GIS空间分析方法及可视化技术确定了该区水文地质参数的分区及取值,并采用数值模拟技术构建了以奥陶系岩溶水为主体的概念模型和数值模型,通过评价西山奥陶系岩溶水补给资源量及可采资源量,确定了该区地下水的最佳开采方案,研究结果可以为西山地区奥陶系岩溶水资源的合理开发利用提供科学依据。在模型的构建及运用过程中,主要针对以下内容进行了研究并取得了相关结论:
     1、构造对奥陶系岩溶水径流模式的影响
     研究区褶皱断裂众多,对奥陶系岩溶水的补径排条件起着重要的控制作用,本次研究通过分析收集的相关资料,采用地下水水位曲线法、地下水水化学方法及数值模拟方法,着重分析了香峪向斜及永定河断裂对奥陶系岩溶水径流模式的影响,提出了西山奥陶系岩溶水径流模式的新认识:香峪向斜具有明显的阻水作用,军庄地区奥陶系岩溶水不能以深循环的形式通过该向斜,永定河断裂则是重要的导水通道,军庄地区奥陶系岩溶水接受补给后,约有75%的水量会沿着该断裂向八宝山断裂进行径流,并最终向玉泉山地区进行排泄,其余25%的水量则沿着香峪向斜北翼向温泉地区径流。
     2、奥陶系岩溶水资源评价
     研究区已有奥陶系岩溶水资源评价主要围绕水源地建设进行,较少考虑奥陶系岩溶水的系统性。本文利用数值模型,从地下水补给资源量及可采资源量两个角度对北京西山奥陶系岩溶水资源进行了首次系统评价。结果表明:
     2000年-2012年,奥陶系岩溶水系统年均补给量约为11777×104m3/a,其中永定河河道渗漏补给和大气降水入渗补给是主要补给源:永定河河道年均渗漏补给量约为9027×104m3/a,约占总补给量的76%;年均大气降水补给量约为2472×104m3/a,占总补给量的21%。其他补给源还包括边界侧向流入、大石河侧向补给以及其他含水层的越流补给,但补给量少,仅占总补给量的3%左右。
     北京西山奥陶系岩溶水年均可采资源量约为8422×104m3/a,最大可采资源量约为11699×104m3,最小可采资源量仅为3657×104m3。目前奥陶系岩溶水已经超采,其年均超采量约为2868×104m3/a。
     3、地下水最佳开采方案
     本次研究以北京市供水规划为基础,依据不同目标设计了现状开采方案、理想开采方案(按年均可采资源量开采)以及逐年压采方案,并对不同方案进行了模拟预测。结果表明:2013年-2030年预测期内,现状开采条件下,北京西山地下水开采量达34962×104m3/a,但水位下降速度快,地下水超采比较严重,其中第四系地下水超采4465×104m3/a,奥陶系岩溶水超采量约为442×104m3/a;理想开采方案和压采方案条件下,地下水水位都有所回升,地下水系统处于正均衡状态;从开采量来看,理想开采方案开采量约为27988×104m3/a,分期压采方案开采量约为28521×104m3/a。对比地下水开采量、地下水水位变化以及地下水水均衡状况可知,分期压采是研究区地下水最佳开采方案。
     4、地下水开采环境效应分析
     研究区已有地质环境问题主要包括:沙河地区地面沉降、玉泉山地区奥陶系岩溶水水质污染以及洼里地区岩溶塌陷风险,而已有研究主要考虑该区供水安全,对地下水开采导致的地质环境问题关注相对较少。本次研究利用数值模型对不同开采方案进行了模拟,并对诱发的地质环境问题进行了分析,结果表明:
     按方案一现状开采量进行开采,2013年-2030年,沙河地区第四系承压水水位不断下降,其年均下降速率最小值约为1.7m/a,超过水位下降速率临界值1m/a,地面沉降发生风险大;玉泉山地区奥陶系岩溶水和第四系地下水水位下降速率均约为1.2m/a,奥陶系岩溶水补给第四系地下水水量为144×104m3/a,第四系地下水补给奥陶系岩溶水水量约为64×104m3/a,奥陶系岩溶水水质污染风险较大;洼里地区水位下降速度约为0.87m/a,预测末期,洼里砾岩地下水水位低于洼里砾岩顶板标高,岩溶塌陷风险大。
     方案二按年均可采资源量进行开采,沙河地区第四系承压水水位下降趋势得到了遏制,预测末期水位和预测初期水位基本一致,地面沉降风险较小;玉泉山地区奥陶系岩溶水和第四系地下水水位回升速度分别为0.08m/a和0.02m/a,不存在第四系地下水补给奥陶系岩溶水现象,奥陶系岩溶水越流补给第四系地下水水量约为925×10-4m3/a;洼里砾岩地下水预测末期水位达10.6m,高于洼里砾岩顶板标高,预测期内岩溶塌陷风险小。
     方案三按分期压采方案进行开采,沙河地区第四系承压水水位回升速度达到了0.3m/a,地面沉降发生风险降低;玉泉山地区奥陶系岩溶水水位和第四系水位不断回升,其中奥陶系岩溶水补给第四系地下水水量达到了1450×104m3/a,奥陶系岩溶水水质污染风险小;洼里砾岩地下水预测末期水位9.7m,高于洼里砾岩顶板标高,,发生岩溶塌陷的风险较小。
Beijing Xishan Ordovician karst water is one of the most importment back-up water sources in Beijing. The karst water distributes in Beijing Xishan Mountain and piedmont area, and be-longs to Dashi River basin of Daqing River system and Yongdinghe River system. The water quality is excellent and the mining potential is high. To exploit the water source scientigically and legitimately and ease the geological environment problems caused by the groundwater over-exploitation, some meteorological and hydrological data, basic geological data, hydro-geological data and other related data are collected and managed by the GIS software. Based on the Hydrogeology, groundwater dynamics theory, combined with the analysis of groundwater level data, hydrogeological drilling and profilem, pumping test results, water chemistry and iso-topic results, the system features of the Karst water's supply, run-off and excretion are re-searched and makes the hydrogeological condition more distinct. On the basis, the conceptual model and numerical model of Ordovician karst water as main are builted with RS, GIS and nu-merical simulation. With the model, the resources of the Ordovician karst water is evaluated, and the best exploitation plan is determined. The results can prove scientific basis for grounderwater exploitation. In the process of building model, some conclusions are acquired as follows:
     1.The runoff pattern analysis of Ordovician karst water affected by the geological structure
     Numerous folds and faults distribute in the study area and control the boundary of Ordovi-cian karst water. By analysing the related data, with the groundwater level curve, groundwater chemistry methods and numerical simulation, the affection of the Xiangyu syncline and the Yongding River fracture to the run-off patterns of Ordovician karst water is paid close atten-tion.The results show that: the karst water can not go through the syncline and the Yongding River fracture is an important water channel. About75%of the water will go along the fault to Babaoshan fracture, and the other25%of the water will run along the north owing of the syn-cline to Wenquan area.
     2. Resources assessment of Ordovician karst water
     The resources evaluation results of Ordovician karst water using the numerical model show that:from2000to2012, the average annual recharge is about11777×104m3/a, which Yongding riverleakage recharge accounts for about76%, the average annual of precipitation supply is about2472×104m3/a; the annual recoverable resources of about8422×104m3/a, the most recov-erable resources is about11699x104m3/a and the least recoverable resources is only about36572×104m3/a. Recently, the karst water has been exploited redundantly and the average annual water balance is about-2868×104m3/a.
     3. The research of optimum exploitation
     According to the different status of the target,3programs are designed including status quo exploitation, ideal exploitation (according to the average annual amount of recoverable resource and reducing exploitation yearly. All the programs are simulated using the numerical models.The results show that:from2013to2030, in program1, about34962×l04m3water will be exploited every year, but the water level drops quickly, the water balance of Ordovician karst water is about-4465×104m3/a and that of Quaternary groundwater is about-442×104m3/a; the ground-water level in program2and program3is rising and both water balance is positive,which indi-cates that program2and program3will not cause a large drawdown. Consider the quantity of exploitation, the gorounderwater level and the balance of the groundwater sysytem, the amount of water supplied in program3is the most (28521×104m3/a), and program2is about27988×104m3/a, so program3can be used as the best mining plan.
     4. Analysis of Environmental impaction caused by groundwater exploitation
     The geological environment problems in study area include land subsidence in Shahe, Or-dovician Karst Water pollution in Yuquan Mountain and karst collapse risk in Wali. The differ-ent simulation results show that:
     As status puo mining plan,the confined water level of Quaternary is falling in Shahe area and the annual rate is about1.7m/a, exceeds the critical rate of decline(lm/a) and will induce land subsidence disaster; Ordovician karst water and Quaternary water level decline in Yuquan Mountain area, the annual rate is about1.2m/a, the Ordovician karst water and Quaternary groundwater can recharge each other, which will lead to the pollution of Ordovician karst wa-ter.The recharge water is about144x104m3/a from Ordovician karst water to Quaternary groundwater, and about64×10m/a from Quaternary groundwater to Ordovician karst water; The groundwater level drops fastest (0.87m/a), the groundwater level below the Wali conglom-erate gravel rock roof elevation, karst collapse risk will be high.
     According to program2, the confined water level decline has been effectively curbed in Shahe area, and the water level rise slowly; Under the program, Ordovician karst water and Quaternary groundwater level in Yuquan Mountain is recovering, the recovery rate was0.08m/a and0.02m/a respectively. There is no water from Quaternary groundwater to Ordovician karst water, and about925×10m3/a from the Ordovician karst water to Quaternary groundwater;The final level of the groundwater in Wali area is high up to10.6m, higher than Wali conglomerate roof elevation, which means the karst collapse risk is low.
     Under program3,the confined water level rises rapidly, reaching0.3m/a, which indicates that the risk of the occurrence of ground subsidence is smaller;the Ordovician karst water level and the Quaternary groundwater level continue to recover in YuQuan mountain, the water from Ordovician karst groundwater to Quaternary water reached1450×104m3/a, Ordovician Karst Water pollution risk will reduce; the final water level is about9.7m in Wali area, and the karst collapse risk is also very small.
引文
[1]田雨,雷晓辉,孙甲岚,等.南水北调通水前北京市水资源情势及应对措施[J].南水北调与水利科技,2011,9(2):60-63.
    [2]http://www.bjnews.com.cn/feature/2013/08/21/279502.html
    [3]北京市统计局,国家统计局北京调查总队《北京市2012年国民经济和社会发展统计公报》,2013
    [4]http://www.envir.gov.cn/info/2001/1/121638.htm
    [5]王晓红,刘文臣,沈媛媛,等.北京西山岩溶水应急水源地水文地质特征及开采潜力分析[J].中国岩溶,2011,30(2):216-221.
    [6]王大纯,张人权,史毅红.水文地质学基础[M].地质出版社,1980.
    [7]北京市水文地质工程地质大队,北京市昆明湖-洼里地区基岩供水水文地质初勘报告[R],1980.
    [8]北京市水文地质工程地质公司,北京市房山县磁家务地区401所供水水文地质勘查报告[R],1981.
    [9]北京市水文地质工程地质公司,北京市玉泉山地区基岩供水水文地质勘察总结报告[R],1981.
    [10]北京市水文地质工程地质公司,北京市温泉~沙河地区基岩供水水文地质普查勘探报[R],1982.
    [11]北京市水文地质工程地质公司,北京市云岗地区航天工业部三院供水水文地质勘察报告[R],1987.
    [12]北京市水文地质工程地质大队,北京市第三水厂改扩建工程供水水文地质勘察报告[R],1998.
    [13]北京市水文地质工程地质大队,北京市石景山区自来水公司杨庄水厂改建工程供水水文地质勘察报告[R],2000.
    [14]北京市水文地质工程地质大队,北京市洼里地区供水水文地质勘查评价报告[R],2004.
    [15]Ghasemizadeh R, Hellweger F, Butscher C, et al. Review:Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico[J]. Hydrogeology journal,2012,20(8):1441-1461.
    [16]White W B. Groundwater flow in karstic aquifers[J]. The handbook of groundwater engineering,1998, 18:1-18.
    [17]Atkinson T C. Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain)[J]. Journal of Hydrology,1977,35(1):93-110.
    [18]Streltsova T D. Storage properties of fractured formations[J]. Hydrologic Problems in Karst Regions, 1976.
    [19]王腊春,章海生.贵州省岩溶区管道流及其水动力特征[J].中国岩溶,1995,14(4):315-322.
    [20]成建梅,陈崇希.广西北山岩溶管道—裂隙—孔隙地下水流数值模拟初探[J].水文地质工程地质,1998,25(004):50-54.
    [21]陈崇希.岩溶管道—裂隙—孔隙三重空隙介质地下水流模型及模拟方法研究[J].地球科学:中国地质大学学报,1995,20(4):361-366.
    [22]Mangin A. Contribution a l'etude hydrodynamique des aquiferes karstiques[D]. Laboratoire souterrain du Centre national de la recherche scientifique,1975.
    [23]Williams P W. The role of the subcutaneous zone in karst hydrology[J]. Journal of hydrology,1983, 61(1):45-67.
    [24]White W B. Conceptual models for carbonate aquifers:revisited[J]. Hydrologic Problems in Karst Re-gions,1977.
    [25]Ford D C, Williams P W. Karst hydrogeology and geomorphology[M]. John Wiley & Sons,2007.
    [26]Worthington S R H. Karst hydrogeology of the Canadian rocky mountains[J].1991.
    [27]Shuster E T, White W B. Seasonal fluctuations in the chemistry of lime-stone springs:A possible means for characterizing carbonate aquifers[J]. Journal of Hydrology,1971,14(2):93-128.
    [28]White W B, White E L. Ground water flux distribution between matrix, fractures, and conduits:con-straints on modeling[J]. Speleogenesis and evolution of Karst aquifers,2005,3(6).
    [29]The handbook of groundwater engineering[M]. CRC press,2010.
    [30]Witherspoon P A, Wang J S Y, Iwai K, et al. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resources Research,1980,16(6):1016-1024.
    [31]Witthuser K, Reichert B, Hotzl H. Contaminant transport in fractured chalk:Laboratory and field ex-periments[J]. Ground Water,2003,41(6):806-815.
    [32]Sauter M. Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm, SW. Germany)[J].2005.
    [33]Li G. Analytical solution of advective mixing in a conduit[J]. Ground water,2009,47(5):714-722.
    [34]Liedl R, Sauter M, Huckinghaus D, et al. Simulation of the development of karst aquifers using a cou-pled continuum pipe flow model[J]. Water Resources Research,2003,39(3).
    [35]Faulkner J, Hu B X, Kish S, et al. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains[J]. Journal of contaminant hydrology, 2009,110(1):34-44.
    [36]Teutsch G, Sauter M. Groundwater modeling in karst terranes:Scale effects, data acquisition and field validation[C]//Proc. Third Conf. Hydrogeology, Ecology, Monitoring, and Management of Ground Water in Karst Terranes, Nashville, TN.1991:17-35.
    [37]Kumar C P. Groundwaterflow models:an overview. In:Ghosh NC, Sharma KD (eds) Groundwater modelling and management. Capital, New Delhi,153-178.
    [38]Lapcevic PA, Novakowski KS, Sudicky EA (1999) Groundwater flow and solute transport in fractured media. In:Delleur JW (ed)The handbook of groundwater engineering. CRC, New York
    [39]Barrett M E, Charbeneau R J. A parsimonious model for simulation of flow and transport in a karst aquifer[D]. University of Texas at Austin,1996.
    [40]Ryder P D. Hydrology of the Floridan aquifer system in west-central Florida[J]. Geological Survey professional paper (USA),1985.
    [41]Greene E A. Hydraulic properties of the Madison aquifer system in the western Rapid City area, South Dakota[M]. US Department of the Interior, US Geological Survey,1993.
    [42]Kuniansky E L. Multilayer finite-element model of the Edwards and Trinity aquifers, Central Texas[J]. Toxic substances and the hydrologic sciences:American Institute of Hydrology,1993:234-249.
    [43]Teutsch G. An extended double-porosity concept as a practical modelling approach for a karstified ter-rain[J]. IAHS PUBLICATION,1990:281-281.
    [44]Angelini P, Dragoni W. The problem of modeling limestone springs:the case of Bagnara (North Apen-nines, Italy)[J]. Groundwater,1997,35(4):612-618.
    [45]Keeler R R. Modeling groundwater flow in a fractured-karst aquifer in the Big Springs Basin, Iowa[D]. University of Iowa,1997.
    [46]Larocque M, Banton O, Ackerer P, et al. Determining karst transmissivities with inverse modeling and an equivalent porous media[J]. Groundwater,1999,37(6):897-903.
    [47]Pankow J F, Johnson R L, Hewetson J P, et al. An evaluation of contaminant migration patterns at two waste disposal sites on fractured porous media in terms of the equivalent porous medium (EPM) model[J]. Journal of Contaminant Hydrology,1986,1(1):65-76.
    [48]Neuman S P. Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts[M]//Groundwater Flow and Quality Modelling. Springer Nether-lands,1988:331-362.
    [49]Scanlon B R, Mace R E, Barrett M E, et al. Can we simulate regional groundwater flow in a karst sys-tem using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA[J]. Journal of Hydrology,2003,276(1):137-158.
    [50]Singhal B B S, Gupta R P. Applied hydrogeology of fractured rocks[M]. Dordrecht:Kluwer Academic Publishers,1999.
    [51]Huntoon P W. Is it appropriate to apply porous media groundwater circulation models to karstic aqui-fers[J]. Groundwater models for resources analysis and management, Ed. A. I. El-Kadi, Lewis Publishers, Boca Raton,1995:339-358.
    [52]Thrailkill J. Chemical and hydrologic factors in the excavation of limestone caves[J]. Geological Soci-ety of America Bulletin,1968,79(1):19-46.
    [53]Kuniansky E L, Holligan K Q. Simulations of flow in the Edwards-Trinity aquifer system and con-tiguous hydraulically connected units, west-central Texas[R]. United States Geological Survey,1994.
    [54]Teutsch G, Sauter M. Distributed parameter modeling approaches in karst-hydrological investiga-tions[J]. Bull. Hydrogeol,1998,16:99-109.
    [55]Kuniansky E L, Fahlquist L, Ardis A F. Travel times along selected flow paths of the Edwards Aquifer, Central Texas[J]. Proceedings, US Geological Survey Karst Interest Group, USGS Water-Resources Inves-tigations Report,2001:01-4011.
    [56]Sauter M. Double porosity models in karstified limestone aquifers:field validation and data provi-sion[J]. IAHS PUBLICATION,1990:261-261.
    [57]Berkowitz B. Characterizing flow and transport in fractured geological media:A review[J]. Advances in water resources,2002,25(8):861-884.
    [58]Cacas M C, Ledoux E, Marsily G, et al. Modeling fracture flow with a stochastic discrete fracture network:Calibration and validation:1. The flow model[J]. Water Resources Research,1990,26(3): 479-489.
    [60]Sudicky E A, McLaren R G. The Laplace Transform Galerkin Technique for large-scale simulation of mass transport in discretely fractured porous formations[J]. Water Resources Research,1992,28(2): 499-514.
    [61]Therrien R, Sudicky E A. Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media[J]. Journal of Contaminant Hydrology,1996,23(1):1-44.
    [62]Graf T, Therrien R. A method to discretize non-planar fractures for 3D subsurface flow and transport simulations[J]. International journal for numerical methods in fluids,2008,56(11):2069-2090.
    [63]Graf T, Therrien R. Variable-density groundwater flow and solute transport in irregular 2D fracture networks[J]. Advances in water resources,2007,30(3):455-468.
    [64]Weatherill D, Graf T, Simmons C T, et al. Discretizing the Fracture-Matrix Interface to Simulate Sol-ute Transport[J]. Ground water,2008,46(4):606-615.
    [65]Sauter M, Geyer D G T, Kovacs A, et al. Modellierung der hydraulik von karstgrundwasserleitern-eine ubersicht[J]. Grundwasser,2006,11(3):143-156.
    [66]Long J, Gilmour P, Witherspoon P A. A Model for Steady Fluid Flow in Random Three-Dimensional Networks of Disc-Shaped Fractures[J]. Water Resources Research,1985,21(8):1105-1115.
    [67]Andersson J, Dverstorp B. Conditional simulations of fluid flow in three-dimensional networks of discrete fractures[J]. Water Resources Research,1987,23(10):1876-1886.
    [68]Dverstorp B, Andersson J, Nordqvist W. Discrete fracture network interpretation of field tracer migra-tion in sparsely fractured rock[J]. Water Resources Research,1992,28(9):2327-2343.
    [69]Jeannin P Y. Modeling flow in phreatic and epiphreatic karst conduits in the Holloch Cave (Muotatal, Switzerland)[J]. Water Resources Research,2001,37(2):191-200.
    [70]Kiraly L, Morel G. Remarques sur l'hydrogramme des sources karstiques simule par modeles mathe-matiques[J]. Bulletin du Centre d'Hydrogeologie,1976,1:37-60.
    [71]Kiraly L, Kiraly L. FEM 301:A three dimensional model for groundwater flow simulation[M]. Nagra, 1985.
    [72]Large-scale 3D groundwaterflow modeling in highly heterogeneous geologic medium. In Custodio (ed) Groundwaterflow and quality modeling, Riedel, Dordrecht,The Netherlands, pp 761-776
    [73]Kiraly L, PerrOchet P. Effect of the epikarst on the hydrograph of the karst springs[J]. Bulletin d'hydrogeologie,1995,14:199-220.
    [74]Annable W K, Sudicky E A. Simulation of karst genesis:hydrodynamic and geochemical rock-water interactions in partially-filled conduits[J]. Bull. Hydrogeol,1998,16:211-222.
    [75]Kaufmann G, Braun J. Karst aquifer evolution in fractured, porous rocks[J]. Water Resources Research, 2000,36(6):1381-1391.
    [76]Bauer S, Liedl R, Sauter M (2000) Modeling of karst development considering conduit-matrix ex-change flow, calibration and reliability in groundwater modeling:coping with uncertainty.IAHS Publ.265, IAHS, Wallingford, UK, pp 10-15.
    [77]Bauer S, Liedl R, Sauter M. Modeling of karst aquifer genesis:Influence of exchange flow[J]. Water Resources Research,2003,39(10).
    [78]Birk S, Liedl R, Sauter M, et al. Hydraulic boundary conditions as a controlling factor in karst genesis: A numerical modeling study on artesian conduit development in gypsum[J]. Water Resources Research, 2003,39(1):SBH 2-1-SBH 2-14.
    [79]Barenblatt G I, Zheltov I P, Kochina I N. Basic concepts in the theory of seepage of homogeneous liq-uids in fissured rocks [strata][J]. Journal of Applied Mathematics and Mechanics,1960,24(5):1286-1303.
    [80]Cao Y, Wang H, Xie X (1988) Dual-mediaflow models of karst areas and their application in north China. In:Zhang H (ed) Karst Hydrogeology and Karst Environment Protection,21st Congress of the In- ternational Association of Hydrogeologists,Guilin, China. IAHS publication,704, IAHS, Wallingford, UK
    [81]Hu B X. Examining a coupled continuum pipe-flow model for groundwater flow and solute transport in a karst aquifer[J]. Acta carsologica,2010,39(2):347-359.
    [82]吴吉春,张政治.山西柳林泉裂隙发育区溶质运移三维数值模拟[J].南京大学学报:自然科学版,2000,36(6):728-734.
    [83]李海明,苑连菊.太原东山岩溶水系统的数学仿真[J].新疆工学院学报,2000,21(3):178-182.
    [84]郝永红,王学萌.娘子关泉灰色系统模型研究①[J].系统工程学报,2001,16(1).
    [85]朱学愚,刘建立.山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究[J].地学前缘,2001,8(1).
    [86]陈喜,刘传杰,胡忠明,等.泉域地下水数值模拟及泉流量动态变化预测[J].水文地质工程地质,2006,33(2):36-40.
    [87]曹丁涛.邹城市唐村-西龙河水源地岩溶水资源数值模拟[J].地质论评,2008,54(2):278-288.
    [88]翟立娟.岩溶水饮用水水源保护区划分技术方法[J].中国岩溶,2011,30(1).
    [89]刘立才,陈鸿汉,马振民,等.泰安市岩溶水环境系统模拟分析[J].水利学报,2003,2:107-1.
    [90]Torres-Gonzalez A. Simulation of ground-water flow in the water-table aquifer near Barceloneta, Puerto Rico[M]. Department of Interior, US Geological Survey, Water Resources Division,1985.
    [91]Cherry G S. Simulation of flow in the upper North Coast limestone aquifer, Manati-Vega Baja area, Puerto Rico[M]. US Department of the Interior, US Geological Survey,2001.
    [91]迈德顺,王学忠.京密引水渠工程运行的问题与对策[J].北京水务,2012(2):57-59.
    [92]北京西山地质志[M].农商部地质调查所,1920.
    [93]侯宗仁,张慧兰,叶成之.北京地区构造体系现今活动粗探[J].中国地质科学院562综合大队文集(5),1986.
    [94]王晓红,刘文臣.北京市大兴区地下水资源开采潜力分析[J].城市地质,2011(1).
    [95]张之一.北京西山燕山运动的发展过程[J].石家庄经济学院学报,1981,3:5-92.
    [96]梅冥相,郭荣涛,胡媛.北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J].岩石学报,2011,27(8):2473-2486.
    [97]宋鸿林.北京西山谷积山箱形背斜倾伏端构造研究[J].地质学报,1966,1:002.
    [98]徐杰,汪良谋,方仲景,等.北京八宝山断裂和黄庄—高丽营断裂构造活动性的初步分析[J].华北地震科学,1992,10(3):1-10.
    [99]薄万举,谢觉民.八宝山断裂带形变分析与探讨[J].地震,1998,18(1):63-68.
    [100]杨景春,林伟凡,蒋铭,等.北京八宝山断裂带近期构造活动及其和地震的关系[J].地震学报,1981,3(4):390-398.
    [101]王士德,张之一,吴新国.北京西山“八宝山断裂带”特征及其形成机理探讨[J].河北地质学院学报,1982,5(1):111-116.
    [102]万天丰.北京西山南大寨-八宝山断裂带的构造特征及形成机理的探讨[J].地质构造论丛(一),1981:152-164.
    [103]陈华元.北京八宝山断裂与黄庄一高丽营断裂初步研究[C北京市地质会战研究成果汇编[J].北京:北京市地质局水文地质工程地质队,1979.
    [104]焦青,邱泽华,范国胜.北京地区八宝山-黄庄-高丽营断裂的活动与地震[J].大地测量与地球动力学,2006,25(4):50-54.
    [105]金风英.北京八宝山断裂和黄庄-高丽营断裂(大灰厂段)活动性初析[D].,1983.
    [106]焦青,邱泽华.北京平原地区主要活动断裂带研究进展[J].地壳构造与地壳应力文集,2006:009.
    [107]杨平,侯井岩,高润华.论北京玉泉山泉补给源——北京西山山前奥陶系岩溶水径流特征[J].水文地质工程地质,1984,2:005.
    [108]柯柏林.北京市平原区北部孙河断裂的地热地质特征[J].现#代#地#质,2009,1:1.
    [109]王丹丹,张世民,刘旭东,等.北京南口—孙河断裂北西段晚第四纪活动特征研究[J].地壳构造与地壳应力文集,2006,19(1):51-59.
    [110]彭一民,李鼎容,谢振钊,等.北京平原区同生断裂的某些特征及其研究意义[J].地震地质,1981,3(2):57-64.
    [111]张世民,王丹丹,刘旭东,等.北京南口-孙河断裂带北段晚第四纪活动的层序地层学研究[J].地震地质,2008,29(4):729-743.
    [112]夏训银,李毅,王身龙,等.CSAMT在城市隐伏断层探测中的应用[J].物探与化探,2013,37(4):687-691.
    [113]侯婕.北京西山岩溶水可开采资源量评价[D].首都师范大学,2013.
    [114]北京地下水[M].中国大地出版社,2008.
    [115]贺国平,周东,杨忠山,等.北京市平原区地下水资源开采现状及评价[J].水文地质工程地质,2005,32(2):45-48.
    [116]肖文进,路九如,刘清晓.北京“洼里砾岩”地质特征及形成环境探讨[J].矿产与地质,2008,22(2):97-100.
    [117]柯柏林.北京“洼里砾岩”地质特征及时代讨论[J].北京地质,2006,17(3):11-15.
    [118]陈雨孙,马英林.论永定河水通过西山对北京市地下水的补给[J].水利学报,1981,3:001.
    [119]邱树杭.试论永定河与北京市地下水的补给关系[J].水文地质工程地质,1957,2:002.
    [120]耿三方,徐月珍.何谓水文地质概念模型[J].水文地质工程地质,1985,4:34.
    [121]吕金波,等.京北地区热水水文地球化学特征与地热系统的成因模式[J].
    [122]江娃利,侯治华.北京平原南口—孙河断裂带昌平旧县探槽古地震事件研究[J].中国科学:D辑,2001,31(6):501-509.
    [123]侯治华,钟南才,郝彦军,等.应用高密度电法探测北京南口-孙河隐伏断裂[J].防灾科技学院学报,2011,13(1):1-6.
    [124]张建国.利用人工降雨模拟试验计算降雨入渗系数的原理与方法[J].吉林地质,1985,3:009.
    [125]梁永平,王维泰.中国北方岩溶水系统划分与系统特征[J].地球学报,2010,31(6):860-868.
    [126]易立新,徐鹤.地下水数值模拟:GMS应用基础与实例[M].化学工业出版社,2009.
    [127]李全友,任印国,程忠良.地下水数值模拟模型识别和验证方法与标准[J].南水北调与水利科技,2012,10(A02):30-31.
    [128]翟远征,王金生,苏小四,等.地下水数值模拟中的参数敏感性分析[J].人民黄河,2010,32(12):99-101.
    [129]束龙仓,王茂枚,刘瑞国,等.地下水数值模拟中的参数灵敏度分析[J].河海大学学报:自然科学版,2007,35(005):491-495.
    [130]北京市南水北调工程建设委员会办公室.北京市南水北调配套工程总体规划[M].中国水利水电出版社,2008.
    [131]北京市“十二五”水资源利用与保护[J].北京水务,2010(2):1-7.
    [132]杨艳,贾三满,王海刚.北京平原区地面沉降现状及发展趋势分析[J].上海地质,2011(4):23-28.
    [133]贾三满,王海刚,赵守生,等.北京地面沉降机理研究初探[J].城市地质,2007,2(1):20-26.
    [134]刘金韬,金晓媚.一个计算因开采承压含水层地下水产生地面沉降的数学模型[J].现代地质,1998,12(3):419-424.
    [135]贾三满,王海刚,罗勇,等.北京市地面沉降发展及对城市建设的影响[J].城市地质,2008,2(4):19-23.
    [136]左平怡.论岩溶地面塌陷的形成过程与机理[J].中国岩溶,1987,1:011.
    [137]李瑜,雷明堂,蒋小珍.广西黎塘岩溶塌陷监测[J].中国岩溶,2007,25(4):341-346.
    [138]杨立中,王建秀.国外岩溶塌陷研究的发展及我国的研究现状[J].中国地质灾害与防治学报,1997,8(1):6-10.
    [139]辛宝东.北京市奥林匹克公园岩溶塌陷危险性评价[D].吉林大学,2005.
    [140]郭萌,田芳,王荣,等.北京市地面沉降控沉目标分析[J].城市地质,2013,8(3):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700