滑模变结构的智能控制理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对交流传动等快速变化的非线性复杂系统,人们已提出了各种控制方案,这些方案解决了一些问题,但还存在一些不足之处。因此对快速变化的复杂工业系统,研究一种工程实用的有效控制方法是有待解决的问题。
     滑模变结构响应快,对系统参数和外部干扰呈不变性,可保证系统是渐近稳定的。尤其可贵的是其算法简单,易于工程实现。其缺点是存在抖动和需知不确定参数上下界等问题。模糊控制无需建立数学模型,控制的机理符合人们对过程控制作用的直观描述和逻辑思维。其缺点是设计缺乏系统性,控制规则的选择多采用试凑法。神经网络具有较强的自学习能力,可以充分逼近任意复杂的非线性。其缺点是学习速度较慢,难以控制较复杂的对象。
     由此可见,变结构控制、模糊控制和神经网络控制相互之间具有很强的互补性。而研究这种互补性,实现滑模变结构的智能控制就是本文研究的目的。
     本论文的研究内容包括以下方面:
     1、研究了模糊系统、神经网络的特点,对滑模变结构的发展现状进行了较为详细的评述,分析了交流传动的控制策略。
     2、对电流源逆变器(CSIM)构成的交流变频调速系统,首先分析了CSIM在低速存在的问题,利用滑模变结构对参数变化的不灵敏性,推导出CSIM的简化数学模型,并以常规滑模变结构理论为指导,设计了CSIM控制器。最后利用微型计算机实现了该控制系统,并给出了实验和仿真结果。
     3、提出了一种基于模糊神经网络的滑模变结构控制。首先通过模糊神经网络在线调控符号函数项的幅值,利用Lyapunov稳定性定理推出保证控制系统稳定的模糊神经网络学习率取值范围;对于大范围参数摄动,研究了一种全参数调节的模糊神经网络滑模控制;提出了一种神经网络滑模鲁棒控制器设计方法,以使系统在任意初始条件下都处于滑动状态,实现运动过程中的全程滑模控制。
     4、针对神经网络学习速度收敛较慢的问题,重点研究了提高神经网络收敛速度的方法。首先采用一种快速的变尺度优化学习算法,对不确定系统进行逼近,提出了一种基于系统辨识的滑模变结构控制方法;结合单层Adaline
    
     划曰大学烬士学馒诀文
    网络,研究了一种具有滑模变结构的权值训练法,提出了一种神经网络自适应
    滑模变结构控制,对它的稳定性和收敛性进行了深人探讨;研究了一种基于神
    经网络的自学习滑模变结构设计方法,对三层自适应神经网络结构、算法进行
    了分析,最后给出了仿真实验结果。
     5、主要研究基于观测器的滑模变结构鲁棒智能控制。针对离散多变量系
    统,对系统确定性部分设计了一个Luenberger观测器,然后用一个神经网络
    来动态补偿系统的不确定性。为了进一步提高观测器的观测全局性,设计了一
    个在线神经网络滑模参数调节器:针对一类仿射非线性系统,本文还提出了一
    种智能滑模变结构状态观测器的设计方法,并对系统的鲁棒特性进行了研究。
Many control programs have been proposed for the fast-changing nonlinear complex
     systems like the AC drives which have solved some problems of these systems, but there are
     still some shortcomings in those programs. Therefore, It is necessary to develop a practical and
     efficient controller for the fast-changing complicated industrial systems.
    
     The sliding mode variable structure is able to response quickly, invariant to systemic
     parameters and external disturbance, and able to keep the system asymptotic a stable state.
     What is more precious is that its algorithm is simple and it is easy to be realized engineering.
     But it has such shortcomings as chattering arid the requirement of the knowledge of the upper
     and lower bounds of uncertain parameters. The fuzzy control requires no mathematical model
     arid its mechanics are agreeable to people's logical thinking and people's direct description of
     the process control, but, it is not systematic in design, its control rule selection is conducted
     with the trial approximation method. The neural network is powerful in its self-learning
     abilities. It is able to approximate fully any complicated nonlinear state, but it is difficult to be
     applied to the control of comparatively complicated objects because of its slow learning speed.
    
     It can be concluded that the variable structure control, fuzzy control, and neural network
     control are greatly complementary. The aim of this research is to go into the complementarities
     of the three and realize the intelligent control of sliding mode variable structures.
    
     The content of this research falls into the following five parts:
    
     1. The characteristics of the fuzzy systems and the neural network are studied. It gives a
     detailed comment on the present development of the sliding mode variable structure and
     analyzes the controlling strategies in AC drive.
    
     2. Directed to the alternating speed regulation controller composed of the current source
     inverter motor(CSIM), this paper first analyzes the problems of CSIM at a low speed, infers the
     simplified mathematical model of CSIM on the basis of the insensitivity of the sliding mode
     variable structure to parameter variations, and then designs a CSIM controller in light of the
     routine sliding mode variable structure theory. Finally, it realizes the control of the system on
     the microcomputer and shows the experimental and simulation results.
    
     3. A sliding mode variable structure control is introduced on the basis of the fuzzy
     neural network. The essay first adjusts on-line the value of the symbolic function terms with
     the fuzzy neural network, then infers the learning rate range of the fuzzy neural network in
     which the stability of the controller is warranted by using the Lyapunov stability theorem, and
     then develops a fuzzy neural network sliding mode controller capable of all-parameter
     adjustment for the great parameter change, and introduces a design method for a neural
     network sliding mode robust controller which keeps the system in a sliding state in any initial
     conditions and realizes the omnidistance sliding mode control over the movement of the
     system.
    
    
    
     4. In view of the slow convergence of learning speed of the neural network, this
     research lays its emphasis on the development of a method to raise the converging speed of
     the neural network. It first uses a fast scale-change optimal learning algorithm to approximate
     the uncertain system and propose a new sliding mode variable structure control method based
     on systemic identification. Then, in combination with
引文
[1] Zaden L A. Fuzzy sets. Information and Control, 1965, 8:338~353
    [2] King P J, Mamdani E H. Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEE, 1974, 122:1585~1588
    [3] Ham c, Qu z, Johnson. Robust fuzzy control for robot manipulators IEE proc. Control Theory Appl., 2000, 147(2), 212~216
    [4] Tan S H, Yu Y. Adaptive fuzzy modeling of nonlinear dynamical systems. Automatica, 1996 32(4):637~643
    [5] 王耀南.智能控制系统—模糊逻辑·专家系统·神经网络控制.长沙:湖南大学出版社,1996
    [6] Gao S G, Rees N W, Feng G. Stability analysis of fuzzy control systems. IEEE Trans. on SMC—Part B, 1996, 26(1): 201~204
    [7] 孙增祈,张再兴,邓志东.智能控制理论与技术.北京:清华大学出版社和广西科学技术出版社,1997
    [8] Kumpati S N. Neural network for control: theory and practice. Proc. of the IEEE, 1996, 84(10): 1385~1406
    [9] 王永骥,涂健.神经元网络控制.北京:机械工业出版社,1998
    [10] Ahmed M S, Riyaz M S. Design of dynamic neural observers, IEE pro. Control Theory Appl., 2000, 147(3), 257~266
    [11] Emelyanov S V. Variable structure automatic control systems. Moscow, 1967
    [12] Utkin V I. Sliding mode and their application in VSSs. Moscow, 1978
    [13] Itkin U. Control systems of variable structure. John Wiley & Sons, 1976
    [14] Sivaramakrishnan A Y, et al. Design of variable-structure load frequency controller using pole assignment technique. Int. J. Contr., 1984, 40(3): 487~498
    [15] Murty A S R, Parameswaran S, Ramar K. Design of variable structure stabilizer using pole assignment technique. Electric Machines and Power systems, 1998, 26:185~206
    [16] Hsu Y Y, Chan W C. Optimal variable-structure controller for DC motor speed control. IEE Proc. pt. D., 1984, 131(6): 233~237
    [17] Urkin V I. Variable structure systems with sliding modes. IEEE Trans. Automat. Contr., 1977, AC(22)
    [18] El-Ghezawi O M E, Zinober A S I, Billings S A. Analysis and design of variable structure systems using a geometric approach. Int. J. Contr., 1983, 38(3): 657~671
    [19] Young K K D. Design of variable structure model-following control systems. IEEE Trans. Automat. Contr., 1978, AC(23)
    [20] Dorling C M. Two approaches to hyper-plane design inmultivariable structure control systems. Int. J. Contr., 1986, 44(1): 65~82
    
    
    [21] Young K D, Ozuguner U. Frequency shaping compensator for sliding mode. Int. J. Contr., 1993, 57(5): 1005~1019
    [22] Koshkouei A J. Zinober A S I. Robust frequency shaping sliding mode control. IEE Proc. Control Theory Appl., 2000, 147(3), 312~320
    [23] 贾志勇,林延圻,朝嵩伟.一种基于频率整形的滑模变结构控制器设计.工业仪表与自动化装置,1999,145(1):3~5
    [24] 冯勇,安澄全,李涛.采用双滑模面减少一类非线性系统的稳态误差.控制与决策,2000,(3):361~364
    [25] Shyu K K, et al. A modified variable structure controller. Automatica, 1992, 28(6): 1209~1213
    [26] Shyu K K, Shieh H J. A new switching surface sliding mode speed control for induction motor drive system. IEEE Trans. Power Electron, 1996, 11:660~667
    [27] Lee J J, Xu Y S. A new method of switching surface design for multivariable variable structure systems. IEEE Trans. on Automatic Control, February, 1994, 39(2):
    [28] 夏常弟,李治.具有随机量测噪声的变结构控制.控制与决策,1994,9(3):226~229
    [29] Wang W J, Lin H R. Fuzzy control design for the trajectory trucking on uncertain nonlinear systems. IEEE Trans. on Fuzzy Systems, 1999, 7(1): 53~62
    [30] Guldner J, Utkin V I. Tracking the gradient of artificial field sliding mode control for mobile robots. Int. J. Contr., 1996, 64:417~432
    [31] Ackermann J, Utkin V I. Sliding mode control based on Ackermann' s formula. Proc. 33rd IEEE Conference on Decision and Control, 1994, 4:3622~43627
    [32] Park K B. Lee J J. Variable structure controller for robotic manipulators using time-varying sliding surface. Proc. of 1993 IEEE Conference on Robotics and Automation, 1993, 1:89~93
    [33] Choi S B, Park D W. Moving sliding surfaces for fast tracking control of second order dynamical systems. ASME Journal of Dynamic Systems, Measurement and Control, 1994, 116:154~158
    [34] Ha QP, Rye DC, Durrant-Whyte H F. Fuzzy moving sliding mode control wit application to robotic manipulators. Automatica, 1999, 35:607~616
    [35] Bartoszewicz A. Time-varying sliding modes for second-order system. IEEE Proc. Control Theory Appl., 1996, 143(5): 455~462
    [36] Choi S B, Cheong C C, Park D W. Moving switching surface for robust control of second-order variable structure systems. Int. J. Contr., 1993, 58:229~247
    [37] Dong W P, Seung B C. Moving sliding surface for high-order variable structure systems. Int. J. Contr.,1999, 72(11): 960~970
    
    
    [38] Utkin V I. Sliding modes and their application in discontinuous systems. Automat. Remote Contr., 1974, 21:1898~1907
    [39] Balasubramanyam P V, Murthy A S R, et al. Design of variable structure controller for static compensator. Electric Machines and power systems, 1998, 26:431~450
    [40] Slotine J J, Sastry S S. Tracking control of non-linear systems using sliding surfaces with application to robot manipulations. Int. J. Contr., 1982, 36(5): 833~843
    [41] 高为炳.变结构控制理论基础.北京:科学出版社,1990
    [42] Yung J Y, Gao W, Hung J C. Variable structure control: A survey. IEEE Trans. on Ind. Electron.,1993, 40(1): 2~22
    [43] 高为炳.变结构控制的理论及设计方法.北京:科学出版社,1998
    [44] Slotine T T E, Hedrick J K, Misawa E A. Nonlinear state estimation using sliding observers. Proc. 25th Conf. Dec., Cont., Althens, Greece, Dec., 1986, 332~339
    [45] Slitine T T E. Sliding controller design for nonlinear systems. Int. J. Control, 1984, 40(2): 421~434
    [46] 高为炳.变结构研究的发展与现状.控制与决策,1993,8(4):24~248
    [47] Burton J A, Zinober S I. Continuous approximations of variable structure control. Int. J. SYS. SCI.,1986, 17(6):
    [48] 王丰尧.滑模变结构控制.北京:机械工业出版,1995
    [49] 邱焕耀,毛宗源.采用模糊控制的感应电动机解耦变结构系统的研究.自动化学报,1998, 24(3):391~398
    [50] Zhang Y. Liu Z R. Fuzzy-variable structure-robust model reference adaptive combined control. Proc. of the 3rd IEEE Conf. on Fuzzy System, 1994, 3:1490~1495
    [51] Hwang G C, Chang S. A stabilityapproach to fuzzy control design for nonlinear system. Fuzzy Sets and Systems, 1992, 48:279~287
    [52] Sinn C L, Yung Y C. Design of self-learning fuzzy sliding mode controllers based on genetic algorithms. Fuzzy Sets and Systems, 1997, 86:139~153
    [53] Bartoszewicz A. Discrete-time quasi-sliding mode control strategies. IEEE Trans. on Ind. Electron., 1998, 45(4): 633~637
    [54] Chan C Y. Discrete adaptive quasi-sliding mode control. Int. J. Control, 1999, 72(4): 365~373
    [55] Chen X, Fukuda T. Adaptive quasi-sliding mode control for discrete time multivariable systems. Int. J. Control, 1999, 72(2):133~140
    [56] Drakunov S V, Su W C, Ozguner U. Discrete time sliding mode in stochastic systems. Proc. ACC, 1993, 966~970
    
    
    [57] Gao W B, Wang Y F, Homaifa A. Discrete-time variable structure control systems. IEEE Trans. on Ind Electr., 1995, 42(2): 117~122
    [58] 高为炳,程勉.变结构控制系统的品质控制.控制与决策,1989,4(4):1~6
    [59] Bartoszewicz A. Remarks on "Discrete-time variable structure control system". IEEE Trans. on Ind Electr., 1996, 43(1): 235~238
    [60] 姚琼荟,宋立忠,温洪.离散变结构控制系统的比例-等速-变速控制.控制与决策,2000,15(37):290~332
    [61] Katsuhisa Furuta, Party D. Variable structure control with sliding sector. Auto. atica, 2000, 36:211~228
    [62] Xu J, Lee T, Wang M. Design of variable structure controllers with continuous switching control. Int. J. Contr., 1996, 65(3): 409~431
    [63] Furuta K. Sliding mode control of variable structure control systems. System Control Lett. 1990, 14:145~152
    [64] Wang W J, Wu G H, Yang D C. Variable structure control design for uncertain discrete-time systems. IEEE Trans. 1994, AC-39(1): 99~102
    [65] 姚琼荟,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997
    [66] Morioka H, Wada K, Sabanovic A, et al. Neural network based chattering free sliding mode control. Proc. of the 34th SICE Annual Conference. Japan, 1995,1303~1308.
    [67] Fang Y, Chow T W S, Li X D. Use of a recurrent neural network in discrete sliding mode control. IEE Proc. Control Theory Appi., 1999, 146(1): 84~90
    [68] Young K K, Kwatny H G. Variable structure servomechanism design and its application to overspeed protection control. Automatica, 1982, 8(4): 385~400
    [69] 毕卫萍,李文林.利用输出信息的变结构控制设计方法.控制理论与应用,1997,14(2):206~209
    [70] Stanislaw H Z, Stefen H. On variable output feedback controllers for uncertain dynamic systems. IEEE Trans. Automatic Control, 1993,38(10): 1509~1512
    [71] Haskara I, Ozguner U, Otkin V. On sliding mode observers via equivalent control applouch. Int. J. Control, 1998, 71(6): 1051~1067
    [72] Zhan Y J, Chan C C, Chau K T. A novel sliding mode observer for indirect position sensing of switched reluctance motor drives. IEEE Trans. on Ind. Electr. 1999, 46(2): 390~397
    [73] Tarek AA, Francoise L L. Sliding observer-controller design for uncertain triangular nonlinear systems. IEEE Trans. on AC, 1999, 44(6): 1244~1249
    [74] Choi J H, Misawa E A. A study on sliding mode state estimation dynamic systems. Measurement and Control, 1999, 121:255~260
    
    
    [75] Walcott B, Zak S H. Combined observer-controller synthesis for uncertain in dynamics systems with applications. IEEE Trans. on Systems, Man and Cyber.,1988, 18(1): 88~104
    [76] 王江,王先来,王海涛.非线性系统变结构观测器.控制理论与应用,1997,14(4):603~607
    [77] 刘粉林,陈兵等.一类非线性系统的变结构鲁棒观测器,控制理论与应用,2000,17(2):303~305
    [78] Cem U, Pushkin K. Sliding mode measurement feedback control for antilock braking systems. IEEE Trans. on Control Systems Technology, 1999, 7(2): 271~281
    [79] Yongsoon E, Dong I D C. Robustness of multivariable discrete time variable structure control. Int. J. Contr., 1999, 72(12): 1106~1115
    [80] Abdelkrim B, Ahmed R, Eric A. Sliding mode input output linearization and field orientation for real time control of induction mators. IEEE Trans. on Power Electronics, 1999, 14(1): 3~13
    [81] Drazenovic B. The invariance, conditions in variable structure systems. Automatica, 1969, 5:287~295
    [82] Spurgeon S K, Davies R. A nonlinear control strategy for robust sliding mode performance in the presence of unmatched uncertainty. Int. J. Contr., 1993, 57(5): 1107~1123
    [83] Hui S, Zak S H. Robust control synthesis for uncertain nonlinear dynamical systems. Automatica, 1992, 28(2): 289~298
    [84] Misawa E A. Discrete time sliding mode control for nonlinear systems with unmatched uncertainties and uncertain control vector. Dvnamic Systems, Measurement and Control, 1997, 119:503~511
    [85] Yu H, Lloyd S. Variable structure adaptive control of robot manipulators. IEE Proc. Control Theory Appl. 1997, 144:167~176
    [86] Kwan C M. Robust adaptive control of induction motors. Int. J. Contr., 1997, 67(4): 539~552
    [87] Lin F J, Shyu K K, Lin Y S. Variable structure adaptive control for PM synchronous servo motor drive. IEEE Proc-Electr. Power Appl., 1999, 146(2): 173~185
    [88] Ting C S, Li T H. Fuzzy sliding mode control of nonlinear system. Proc. of the 3rd IEEE Conf. on Fuzzy System, 1994, 3:1620~1625
    [89] Stacey B A, et al. A direct adaptive fuzzy SMC: A case study of ROV. Proc. of the 4th IEEE Conf. on Fuzzy System, 1995, 4:1979~1986
    [90] 胡之安,吴光彬,郭晓甲.一类非线性系统的多面滑模控制.控制与决策,2000,(4):497~500
    [91] Young K K. Controller design for manipulator using theory of variable structure systems. IEEE Trans. on Systems, Man and Cyber., 1978, SMC-8:101~109
    
    
    [92] Robert R Y Z, Andren A G. Variable structure hybird control of manipulators in unconstrained and constrained motion. Dynamic Systems, Measurement, and Control, 1996, 118: 327~332.
    [93] Doulgeri Z. Sliding regime of a nonlinear robust controller for robot manipulators. IEE proc. control Theory Appl., 1999, 146(6): 493~498
    [94] Yu W, Moreno M A, Li X, Observer-based neuron identifier. IEE Proc. Control Theory Appl., 2000, 147(2): 145~152
    [95] 韩云瑞.输电系统自动控制的变结构方法.控制理论与应用,1997,14(5):638~641
    [96] Young K D, Utkin I, et al. A control engineer's guide to sliding mode control. IEEE Trans. on Control Systems Technology, 1999, 7(3): 328~342
    [97] 盂祥萍,薛昌飞,张化光.多区域互联电力系统的 PI 滑模负荷频宰拧制.中国电机工程学报, 2001,21(3):6~11
    [98] 李夙.异步电动机直接转矩控制.北京:机械工业出版,1998
    [99] 夏超英.交直流传动系统的自适应控制.北京:机械工业出版社,1998
    [100] Marino R, Peresada S, Valii P. Adaptive input output linearizing control of induction motor. IEEE Trans. on AC., 1993, 38(2): 208~221
    [101] Krstic M, Kolotovic P V. Observer based schemes for adaptive nonlinear state feedback control. Int. J. Control, 1994, 59(6): 1373~1381
    [102] Mietek A B, Grzegoty J K. Dynamic neural controllers for induction motor. IEEE Trans. on Neural Networks, 1999, 10(2): 340~355、
    [103] Moon S I. Nonlinear neural-network modeling of an induction machine. IEEE Trans. on Control Systems Technology, 1999, 7(2): 203~211
    [104] Singh B N, Singh B, Singh B P. Fuzzy control of integrated current-controlled converter-inverter-fed cage induction motor drive. IEEE Trans. on Ind. Appl., 1999, 35(2): 405~412
    [105] Tzou Y Y, Lin S Y. Fuzzy-tuning current-vector control of a three-phase PWM inverter for high-performance AC drives. IEEE Trans. on IE,1998, 45(5): 782~791
    [106] Hsin J S, Kuo K S. Nonlinear sliding mode torque control with adaptive backstepping approach for induction motor drive. IEEE Trans. on IE, 1999, 46(2): 380~389
    [107] 吴捷,钱来,杨金明.感应电动机锁相及滑动模控制.控制理论与应用,2000,2:198~203
    [108] Wai R J, Lin F J. Fuzzy neural network sliding mode position controller for induction servo motor drive. IEE Proc. Electr. Power Appl., 1999, 146(3): 297~308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700