铁碳微电解絮凝—耦合法处理铅锌冶炼废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为有色金属行业中的高污染行业,铅锌冶炼排放的含重金属废水对生态环境已构成严重威胁。铅锌冶炼废水主要特征是pH值低,含有浓度较高的硫酸盐以及铜、锌、铅、砷、氟等杂质。目前,铅锌冶炼废水的主要处理方式有中和沉淀法、硫化物沉淀法和铁氧体法等,但是这些方法会产生大量沉渣,其中有用的资源难以回收利用,易造成二次污染,且处理成本高,操作困难。鉴于铅锌冶炼业对环境的不利影响以及目前铅锌冶炼业废水处理中存在的问题,研究开发新型的治理技术迫在眉睫。
     实验采用单一铁屑法与铁碳微电解对废水的处理效果进行了比较,后续加之絮凝-耦合,为考查对单一Pb2+、Zn2+的处理效果与影响因素,实验除对云南蒙自矿业有限公司的实际废水进行实验外,还配制了含单一离子的模拟废水。实验结果表明,铁碳微电解要比单一铁屑的处理效果要明显,用单一铁屑法处理模拟废水时,Pb2+、Zn2+的最佳去除率分别为77.81%、21.33%,实际废水中Pb2+、Zn2+的去除率分别为78.67%、20.41%;用铁碳微电解法处理模拟废水时,Pb2+、Zn2+的去除率分别为98.25%、56%,对实际废水Pb2+、Zn2+的去除率分别为97.88%、47.29%;对铁碳微电解法出水经过絮凝-耦合处理后,Pb2+、Zn2+模拟废水的去除率分别达到99.82%、99.81%,对Pb2+、Zn2+实际废水去除率分别达到99.90%、99.84%。实验确定铁碳微电解絮凝-耦合法处理云南蒙自矿业有限公司实际废水的最佳工艺为:进水pH值为3,铁碳粒径为40目,铁碳比为2:1,水力停留时间为40min;后续絮凝pH值为9、搅拌时间为10min、静置60min、絮凝过程曝气90min,此时铅锌去除率分别为99.90%、99.84%,出水浓度分别为0.088mg/L,0.25 mg/L,达到排放标准,同时,在此条件下,实际废水中超标的项目Cu2+、Cd2+、砷、F-等,经铁碳微电解絮凝-耦合法处理后,亦能达到排放标准。
     论文对处理前后铁碳以及絮凝后絮体进行了电镜扫描(SEM)、能谱分析(EDS)和X射线衍射分析(XRD),试图通过对比分析发现其中反应机理、各金属析出的先后顺序及存在形态;论文通过单一铁屑和铁碳微电解的对比,对微电解机理进行了分析;根据实际废水和模拟废水的差异,考察了实际废水中的杂质离子对铁碳微电解的影响。通过上述分析,均取得了相应的的结论。
     论文还根据实验条件,设计出微电解反应器的结构,并初步设计一套铅锌冶炼废水的处理工艺,并对该工艺处理5%酸度的冶炼废水运行成本进行了估算,结果为处理成本仅为53元/方,于目前其它的方法相比,该法处理成本较低,操作简单等,说明该工艺实际应用具有确实可行性。
     论文用铁碳微电解絮凝-耦合法处理铅锌冶炼废水,取得了较为理想的效果,为确实解决我国处理铅锌冶炼废水中存在的诸多难题,带来了一种新方法、新手段和新思想。
As a highly polluting industry in non-ferrous metals industry, the wastewater of Lead and zinc smelting containing heavy metal pollutants pose a serious threat to the ecological environment. The wastewater of Lead and zinc smelting mainly characterize in having low pH and high concentrate Cu, Zn, Pb, As, F oins. The main treatment methods for the lead and zinc smelting wastewater contain precipitation, sulfide precipitation and ferrite, however, it is difficult to produce the sediment and reuse the useful resources. In other hand, these methods could lead secondary pollution that hard to deal with and need high cost. In view of the adverse effects of lead and zinc smelting wastewater on the environment, it is called out for a tremendous amount of research to be conducted to identify robust new methods of purifying water.
     The comparison study about the effects of single iron and micro-electrolysis combined with flocculation on wastewater treatment were researched by experiments. To evaluate the effect and influence factors on Pb2+, Zn2+ oins separately, the artifical wastewater was used after using the Mengzi Mining Limited wastewater. The results showed that Fe-C micro-electrolysis is more effective than a single iron. While the Pb2+ and Zn2+ removal efficiencies of artifical wastewater were 77.81% and 21.33% respectely by iron and the date for actual wastewater were 78.67% and 20.41%, the efficiencies by Fe-C micro-electrolysis can reach to 98.25% and 56% for artifical wastewater,97.88% and 47.29% for actual wastewater. After the flocculation following the Fe-C micro-electrolysis treatment, the removal efficiencies of can reach to 99.82% and 99.81% for artifical wastewater respectively, and can reach to 99.90% and 99.84% for actual wastewater. The optimum conditions of the actual wastewater by the coupling micro-electrolysis flocculation treatment as follow:pH 3,40 mesh(Fe-C size), Fe-C ratio 2:1, retention time 40min, flocculation pH 9, stirring time 10min, stationary time 60min, aeration 90 min. The Pb2+ and Zn2+ removal rates were 99.90% and 99.84% at the optimum conditions as the effluent concentration was 0.088mg/L and 0.25 mg/L, which can match the national standards. The actual waste water also can match the national effluent standards after micro-electrolysis coupling flocculation treatment.
     The reaction mechanism and the metal deposition order for the Fe-C before and after treatment were analyzed by the SEM、EDS and XRD. The mechanism of micro-electrolysis was analyzed by the different between the single iron and Fe-C micro-electrolysis. The impact of impurity ions on the Fe-C micro-electrolysis was also analized by the difference between the artificial solution and actual wastewater. The experimental have a same result with the instrumental anlysis.
     The structure of micro-electrolysis reactor and the wastewater treatment process were design under the experimental conditions. The operating costs estimate result of 5% acid lead and zinc smelting wastewater showed that it needed 53 yuan for per cubic wastewater. Compared with other tratement methods, the Fe-C micro-electrolysis needs lower cost and easier process, which indicating that the it can be use as a viability application.
     The micro-electrolysis flocculation obtained ideal results in actual use of dealing with lead and zinc smelting wastewater. It also provided a new method and new technology for how to handle the hot potato of the smelting wastewater of lead and zinc in China.
引文
[1]张景来,王剑波,常冠钦,刘平.冶金工业废水处理技术及工程实例[M].北京:化学工业出版社,2003.
    [2]边立槐,翟茹岭.冶金废水悬浮物分析中需要注意的几个问题[J].天津冶金,2006,4:49.
    [3]钱小青,葛丽英,赵由才.冶金废水处理与利用[M].北京:冶金工业出版社,2008.
    [4]杨晓松,刘峰彪.高密度泥浆法处理铅锌冶炼综合废水[J].有色金属,2009,61:166-169.
    [5]明亮,张铭发.纳滤工艺对铅锌冶炼工业废水的回用处理[J].水处理技术,2010,36:110-113.
    [6]余勇.铅锌冶炼厂硫酸废水的处理工艺探讨[J].湖南有色金属,2001,17:39-40.
    [7]张铭发,明亮.铅锌冶炼废水深度处理实验研究[J].有色冶金设计与研究,2009,3:16-18.
    [8]张圣南.铅锌冶炼烟气制酸净化工艺的污酸处理[J].技术与装备,2010,4:44-45
    [9]王新文.西北铅锌冶炼厂酸性废水处理研究[J].有色金属,1998,50:126-130.
    [10]张金成.西北铅锌冶炼厂锌浸生艺的研究[J].甘肃有色金属,1998,3:2-8.
    [11]马进.西北铅锌冶炼厂锌系统投产10周年回顾与展望[J].有色冶炼,2002,1:1-4.
    [12]邵霞,雷兆敏.真空掏槽在西北铅锌冶炼厂锌电解的应用与实践[J].甘肃冶金,30:87-89.
    [13]陈津,王克勤.冶金环境工程[M].长沙:中南大学出版社,2009.
    [14]廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989.
    [15]科学出版社编写组.环境中重金属研究文集[M],北京:科学出版社,1988:76-79.
    [16]邱珉.铁碳微电解催化还原法处理铜冶炼废水中重金属离子的研究[D].云南:昆明理工大学硕士学位论文,2009.
    [17]张瑾.铁碳微电解法处理铜冶炼废水中砷的研究[D].云南:昆明理工大学硕士学位论文,2009.
    [18]张宏伟,贾小慧.石灰法处理铅锌冶炼废水的工艺参数研究[J].有色冶金设计与研究,2008,29:30-32.
    [19]李迪汉.铅锌冶炼烟气制酸废水处理工艺研究[J].湖南有色金属,2005,21:30-32.
    [20]黄婧,刘现荣.铁氧体法在废水处理中的应用.西南给排水[J],2004,26:20-21.
    [21]鲁栋梁,夏璐,温堡林.铁氧体法处理含铜、锌、镉重金属废水的实验研究[J].金属矿山,2009,392:153-156.
    [20]孟详和.重金属废水处理[M].北京:化学工业出版社,2000.
    [21]张永锋,许振良.重金属废水处理最新进展[J].工业水处理,2003,23:1-4.
    [23]张建梅.重金属废水处理技术研究进展(综述)[J].西安联合大学学报,2003,2:55-59.
    [24]梁耀开,王汉道,秦文淑.铁碳微电解法处理印染废水的实验研究[J].广东轻工职业技术学院学报,2003,2:19-21。
    [25]陈凌.铁碳微电解法处理镀锌废水[J].当代化工,2008,5:37.
    [26]陈欣义,石键韵等.铁碳微电解处理电镀前处理废水的实验研究[J].广东化工,2008,35:74-77.
    [27]张子间,刘玉荣,刘家弟.铁碳微电解-生化法处理电镀废水[J].化工环保,2007,27:338-341.
    [28]郭鹏,黄理辉.铁碳微电解-H202法预处理晚期垃圾渗滤液[J].水处理技术,2008,34:57-61.
    [29]赖鹏,赵华章.铁碳微电解深度处理焦化废水的研究[J].环境工程学报,2007,1:15-20.
    [30]张文艺,王健.微电解法预处理焦化废水实验[J].煤炭科学技术,2003,31:11-14.
    [31]z.SADOWSKI. Effect of biosorption of Pb(Ⅱ),Cu(Ⅱ) and Cd(Ⅱ) on the zetapotential and flocculation of nodardiase [J], Minerals Engineering,2001,14:547-550.
    [32]H.wang, Shy-Jye, Lu Wen-Jiang. Ion exchange in serrifluidized bed[J]. Industrial Engineering Chemistry Research,1995,34:1434-1437.
    [33]Dabrowski A, Hubicki Z, Podkoseielny P. Selective removal of the heavy metal ions from waters and industrial wastewaters by ions exchange method[J]. Chmisphere,2004,56: 91-106.
    [34]蒙自矿冶有限责任公司编制.蒙自矿冶有限责任公司废水处理与利用技术改造项目可行性研究报告.云南昆明,2009.
    [35]洪飞宇,李德生.曝气/铁碳微电解预处理制膜废水实验研究[J].工业水处理,2009,29:42-45.
    [36]赵县防.铁碳微电解法在单晶硅生产废水处理中的应用[J].洛阳工业高等专科学校学报,2005,15:19-20.
    [37]齐瑞平,孙承林.铁碳微电解法深度处理制浆造纸废水的研究[J].安全与环境学报,2007,7:57-59.
    [38]Cordon Mc Kay, John F Porter. Equilibrium Parameters for the sorption of copper. Cadmium and zinc ions onto Peat Chem[J]. Tech.Biotechnol,1997,69:309-320.
    [39]Shukla S R, Jawed M. Column studies on metal ion removal by dyedcelluloic materials[J]. J. Appl. Polymer Sci.,1992,44:903-910.
    [40]Giller KE, Witer E, McGrath S P. Toxicity of heavymetals to macroorganisms and microbial processes in agricultural soils:a review[J]. Soil Biology and Biochemistry,1998, 30:1389-1414.
    [41]国家环境保护部编.铅锌冶炼业污染防治技术政策(征求意见稿),2010.
    [42]赵由才,牛冬杰.湿法冶金污染控制技术[M].北京:冶金工业出版社,2003.
    [43]杨国营.铅的环境生物化学[J],河北工业科技,2002,19:31-33.
    [44]任洪强,陈坚,伦世仪.重金属生物吸附剂的应用研究现状[J],生物技术,2000,10:33-35.
    [45]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [46]Perales-Perez, Oscar Tohji, Kazuyuki Umetsu,et al. Theory and practice of the removal of heavy-metal ions by their precipitation as ferrite-type compounds from aqueous solution at ambient temperature[J]. Metallurgical Review of MMIJ,2001,17:137-179.
    [47]Lou Jie-Chung, Chang Chien—Kuei. Completely treating heavy metal laboratory waste liquid by an improved ferrite process[J]. Separation and Purification Technology, 2007,57:513-518.
    [48]Smith B F, Robison T W. Water-soluble polymers for recovery of metal ions from aqueous streams[J]. US 5766478,1998.
    [49]刘月梅,王云娇.日本IR-124树脂去除纺丝去酸废水中锌离子的实验研究[J].人造纤维,2005,35:30-31
    [50]陈文森,陈炳稔.两性离子交换树脂对含锌废水的处理[J].化工时刊,2004,18:47-48.
    [51]沈岩柏,朱一民,魏德洲.硅藻土对锌离子的吸附特性[J].东北大学学报(自然科学版),2003,24:907-910.
    [52]王士龙,张虹,柯亚萍,郑礼胜.用陶粒处理含锌废水[J].污染防治技术,2002,15:23-24.
    [53]叶锦韶,尹华,彭辉.微生物抗重金属毒性研究进展[J],环境污染治理技术与设备,2002,3:1.
    [54]包红旭.微生物吸附工业废水中重金属离子的研究[D].吉林:东北大学硕士学位论文,2002.
    [55]张宝宏,丛文博,杨萍.金属电化学腐蚀与防护化学[M].北京:化学工业出版社,2005.
    [56]曹楚南.腐蚀电化学原理(第二版)[M].北京:化学工业出版社,2003.
    [57]王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社,2007.
    [58]闫金霞,刘玉忠,马海刚,卜永强.动态铁屑粉煤灰内电解法处理染料废水的研究[J1.工业安全与环保,2007,8:6-8.
    [59]张子间.微电解法在废水处理中的研究及应用[J].工业安全与环保,2004,30:8-10.
    [60]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设环境污染治理技术与设备,2001,2:18-24.
    [61]周荣丰,刘剑平,高廷耀.酸性大红的Fe-Cu内电解法还原脱色及其机理[J].同济大学学报(自然科学版),2005,33:1069-1073.
    [62]邹莲花.浮选法处理含重金属离子废水评述[J].有色冶金设计与研究,1991,12:222-226.
    [63]汤贵兰,蓝伟光,张烨等.焦炭和废铁屑微电解预处理垃圾渗滤液的研究[J].环境污染治理技术与设备,2006,7:121-123.
    [64]罗旌生,曾抗美,左晶莹等.铁碳微电解法处理染料生产废水[J].水处理术,2005,31:67-70.
    [65]李川,夏洁,王玉峥.微电解处理对染料废水脱色的影响[J].南京林业大学学报(自然科学版),2004,28:87-88.
    [66]任拥政,章北平,张晓昱等.铁碳微电解对造纸黑液的脱色处理[J].水处技术,2006,32:68-70.
    [67]李欣,祁佩时.铁炭Fenton/SBR法处理硝基苯制药废水[J].中国给水排水,2006,22:12-15.
    [68]石建军,李治国,严家平.强化微电解法预处理氯硝柳胺生产废水的研究[J].安徽建筑工业学院学报(自然科学版),2006,14:78-80.
    [69]夏静芬,程灵勤.铁炭微电解法处理草甘磷农药废水的研究[J].浙江万里学院学报,2007,20:18-21.
    [70]史敬伟,杨晓东.铁炭微电解法预处理制药废水的研究[J].辽宁化工,2006,35:211-213.
    [71]Liu Ping. Treatment of colophony and camphor wastewater by inner electrolysls-blological contact oxidation[J]. Industrial Water Treatment,2002,23:25-27.
    [72]Bin,A., K. Machniewski, P. Sakowicz,et al. Degradation of ni-troaromatics (MNT,DNT and TNT) by AOPs,Ozone [J]. Science and Engineering,2001,23: 343-349。
    [73]Fengjun-li. Treatmet of Wastewater Containing Hexavalent Chromium by Catalytic Iron Inner Electrolysis[J]. Tcchnology of water Treatmcnt,2005,3:42-45.
    [74]ShermanM, JohnG, ThomasE.Remediation of Cr(Ⅵ) and Pb(Ⅱ)aqucous solutions using supported,nanoscale zero-value lron[J]. Environment science & Technology,2000, 34:2564-2569.
    [75]DavidW.B., et al. In situ remediation of Cr (Ⅵ) contami-nated ground water using permeable reactive walls:Labora-tory studies[J]. Environ. Sci. & Technol.,1997,31: 3348-3357.
    [76]王书文,代秀兰.微电解处理含铬、镍重金属废水研究[J].沈阳大学学报,2005,17:40-43.
    [77]王九思,陈学民,肖举强,伏小勇.水处理化学[M].北京:化学工业出版社,2002.
    [78]工业用水(日),1978,No.1:53-61.
    [79]徐晓军等.化学絮凝剂作用原理[M].北京:科学出版社,2005.
    [80]许国想,阮复昌.铁系和铝系无机絮凝剂的性能分析[J].重庆环境科学,2001,23:52-55.
    [81]汤鸿霄.无机高分子絮凝剂的科学与技术进展[J].水处理信息报道,1997,4:36-43.
    [82]刘勇跃,贾翠英.氢氧化铁溶胶电泳实验的改进研究[J].实验室科学,2008,5:85-86.
    [83]Grossl P, Eick MJ, Sparks D, Goldberg S, Ainsworth CC. Arsenate and chromate retention mechanisms on goethite:Kinetic evaluation using a pressure-jump relaxation technique[J]. Environ Sci Technol,1997,31:321-326.
    [84]Grossl P, Eick MJ, Sparks D, Goldberg S, Ainsworth CC. Arsenate and chromate retention mechanisms on goethite:Kinetic evaluation using a pressure-jump relaxation technique[J]. Environ Sci Technol,1997,31:321-326.
    [85]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南大学出版社,1986.
    [86]彭根槐,吴上达.电石渣-铁屑法去除硫酸废水中的氟和砷[J].化工环保,1995,15:281.
    [87]刘桂秋,张鹤飞,赵振华.采用石灰-铁盐混凝沉淀法去除废水中的AS(Ⅲ)[J].化工环保,2008,28:226-229.
    [88]邱立萍,莫晓丹.砷污染处理的工业应用研究[J].工业水处理,2002,22:29-31.
    [89]Georges, Audi. The NUBASE Evaluation of Nuclear and Decay Properties[J]. Nuclear Physics A,729:123-128.
    [90]Bentley Ronald, Chasteen Thomas G. Arsenic Curiosa and Humanity [J]. The Chemical Educator,2002,7:51.
    [91]Matschullat, Jorg. Arsenic in the geosphere-a review[J]. The Science of the Total Environment,2000,249:297-312.
    [92]Klaassen Curtis, Watkins John. Casarett and Doull's Essentials of Toxicology [J]. McGraw-Hill,2003,12:512.
    [93]Ahmet Sar, Mustaffa Tuzen. Biosorption of As(Ⅲ) and As(Ⅴ) from aqueous solution by macrofungus (Inonotus hispidus) biomass:Equilibrirm and kinetic studies[J]. Journal of Hazardous Materials,2009,164:1372-1378.
    [94]陈少华,鲁道荣.As3+浓度对阴极铜稳态极化曲线平衡电位的影响[J].安徽化工,2005,6:39-40.
    [95]卢亮.催化铁内电解法处理染料废水的研究[D].上海:同济大学工学硕士学位论文,2004.
    [96]樊金红,徐文英,高廷耀.催化铁内电解法处理硝基苯废水的机理与动力学研究[J].环境污染治理技术与设备,2005,6:5-9.
    [97]马鲁铭.废水的催化还原处理技术-原理及应用[M].北京:科学出版社,2008.
    [98]Darsa P S, Cindy G S, Chou C S et al. Treatment of 1,2-dibromo-3-chloropropane and Niprate-containated Water with Zero-valernt Iron or Hydrogen/Palladium Catalysts [J]. Wat. Res.,1996,30:2315-2322.
    [99]Chin Pao-huang,Huang Wen-wang,Chiu Pei-chun.Nitrate Reduction by Metallic Rron[J]. Wat. Res.,1998,32:2257-2264.
    [100]郭杰,曾光明,张盼月等.微电解法对高浓度染料废水的脱色作用研究[J].安全与环境学报,2005,5:102-105.
    [101]李鸿江,刘青,赵由才.冶金过程固体废物处理与资源化[M].北京:冶金工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700