氨基硅油微乳废水电化学预处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基硅油广泛应用于纺织印染行业,其微乳废水具有高浓度、难降解等特性,是一类难处理的工业废水。电化学技术由于设备简单、管理方便、成本较低和处理效果高等优点日益受到人们的重视,常用于高浓度难降解工业废水的预处理。
     本论文以氨基硅油微乳液模拟废水为研究对象,首次选用Fe/C微电解和铝、铁脉冲电絮凝两种电化学方法,详细探讨了各种因素对模拟废水处理效果的影响;同时,还深入研究了Fe/C微电解反应过程中氧化作用的贡献率;研究还对铝、铁极板脉冲电絮凝处理的物耗、能耗以及絮凝产物进行了综合对比分析。研究结果如下:
     1.Fe/C微电解实验结果表明,微电解的填料可通过吸附作用去除一部分氨基硅油,新鲜活性炭和铁屑对废水的COD去除率分别为72%和14%;当pH值为3,Fe/C为1:2、1:1和2:1时,氧化作用对微乳液废水COD去除率的贡献分别大于8%、28%和22%;铁屑和活性炭表面被氨基硅油微乳液包裹,阻碍了微电解的各种作用,微电解效果逐渐减弱。
     2.脉冲电凝聚实验结果表明,在处理原模拟废水时铝和铁脉冲电絮凝具有共同的最佳电化学参数为电流0.9A(电流密度11.25mA·cm2-),占空比0.5,脉冲频率0.5KHz,最佳处理时间分别为30min和60min,最大COD去除率分别达17.1%和55%。与直流电絮凝相比,铝电极和铁电极脉冲电絮凝在单位COD电能耗上分别下降了75.5%和76.0%。
     总之,铁电极脉冲电絮凝方法处理氨基硅油微乳液废水的效果显著优于Fe/C微电解和铝电极脉冲电絮凝方法。
Aminosilicone polymer is widely applied in textile and dyeing industry and its microemulsion wastewater, characterized with high Chemical oxygen demand(COD) concentration and refractory property, is difficult to treat. Electro-chemical technology is paid attention and extensively applied into the pre-treatment of industry wastewater due to its simple equipment, convenient management, low cost and high efficiency.
     This paper focused on the pre-treatment of aminosilicone microemulsion by Fe/C micro-electrolysis(ME), Al-Pulse electrocoagulation(Al-PEC) and Fe-Pulse electrocoagulation (Fe-PEC) for the first time. Some main influenced factors on removal efficiency were studied. Meanwhile, it explored the oxidation reaction of Fe/C micro-electrolysis and deeply compared and analysed the material and energy consumptions and flocculation products of Al-PEC and Fe-PEC. The main results are as follows:
     1. The results of Fe/C ME were:72% and 14% COD removal efficiency with new active carbon and iron chip were achieved through adsorption. Oxidation also contribute to the removal of aminosilicone microemulsion with more than 8%,28% and 22% COD removal efficiency, under the conditions of fixed pH 3.0 and Fe/C of 1:2,1:1 and 2:1 respectively. The coverage of aminosilicone microemulsion on materials prevented the reaction and lessened the removal efficiency.
     2. The results of PEC were that for the treatment of primary simulated wastewater, the same optimal electrochemical parameters of Al-PEC and Fe-PEC were current of 0.9A, dutyfactor of 0.5 and pulse frequency of 0.5KHz, and COD removal efficiencies of 17.1% and 55% were achieved under the optimal treatment time of 30min and 60min,respectively. Comparison with direct EC, energy consumption per COD of the A1-PEC and Fe-PEC decreased by 75.5% and 76% respectively.
     All in all, Fe-PEC was superior to Fe/C micro-electrolysis and Al-PEC on the removal of aminosilicone polymer microemulsion
引文
[1]冯圣玉,张洁,李美江.有机硅高分子及其应用.化学工业出版社,北京,2004.
    [2]卜新平.有机硅国际市场现状与发展趋势.化学工业,28(2010).
    [3]谢娟,胡筱敏,章一丹.铁屑流化床预处理-催化氧化-混凝沉淀组合工艺处理有机硅废水.化工环保,26(2006)41-44.
    [4]徐斌,温峻,刘子强.新老技术结合处理有机硅含油废水.第十五届全国有机硅学术交流会论文集,2010.
    [5]顾晓扬,汪晓军,陈思莉,麦均生.Fenton试剂处理含有机硅废水的研究.印染助剂,24(2007)29-30.
    [6]李娟,安鹏,王云波,谭万春.Fenton氧化处理高浓度有机硅废水影响因素研究.水科学与工程技术,(2009)21-23.
    [7]潘碌亭,吴锦峰,王键,吴蕾.铁炭微电解-水解酸化-接触氧化法处理有机硅废水的研究.环境工程学报,4(2010)595-598.
    [8]李芳军.有机硅废水综合处理的试验研究.清洗世界,26(2010)23-27.
    [9]王云波,谭万春,郑思鑫,稂友明,李娟.二级Fenton氧化高浓度有机硅废水研究.环境工程学报,4(2010)776-780.
    [10]袁劲松,张在利,吴海峰.高浓度有机硅废水生物处理技术研究.污染防治技术,22(1999)7-9.
    [11]石秀旺,周元祥,吴淼.有机硅生产废水厌氧处理研究.广西轻工业,(2009)89-90.
    [12]A.C.S.C. Teixeira, R. Guardani, A.M. Braun, E. Oliveros, C.A.O. Nascimento.Degradation of an aminosilicone polymer in a water emulsion by the Fenton and the photochemically enhanced Fenton reactions. Chemical Engineering and Process,44 (2005) 923-931.
    [13]A.C.S.C. Teixeira, R. Guardani, C.A.O. Nascimento. Solar photochemical degradation of aminosilicones contained in liquid effluents. Process studies and neural network modeling. Industrial Engineering and Chemical Research,42 (2003) 5751-5761.
    [14]A.C.S.C. Teixeira, R. Guardani, C.A.O. Nascimento. Photo-Fenton Remediation of Wastewaters Containing Silicones:Experimental Study and Neural Network Modeling. Chemical engineering & technology,27 (2004) 800-810.
    [15]Y. Yang, X. Xu, H. Chen. Treatment of chitin-producing wastewater by micro-electrolysis-contact oxidization. Journal of Zhejiang University-Science A,5 (2004) 436-440.
    [16]汤贵兰,蓝伟光,张烨,严滨,何旭敏,陈小强.焦炭和废铁屑微电解预处理垃圾渗滤液的研究.环境污染治理技术与设备,11(2006)121-123
    [17]王敏欣,李发生.铁碳微电解法用于模拟染色废水脱色的研究.黑龙江科技学院学报,11(2001)6-10.
    [18]韩洪军.铁屑—碳粒法处理工业废水.环境保护,(1991)17-18.
    [19]全燮,杨凤林.铁屑(粉)在处理工业废水中的应用.工业水处理,9(1989)7-10.
    [20]H. Liu, G. Li, J. Qu.Degradation of azo dye Acid Orange 7 in water by FeO/granular activated carbon system in the presence of ultrasound.Journal of hazardous materials,144 (2007) 180-186.
    [21]何焕杰,王永红,詹适新,马雅雅,牛全印.铁屑微电解法深度处理油田钻井污水.化工环保,23(2004)344-348.
    [22]X. Yang. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.Journal of hazardous materials,169 (2009) 480-485.
    [23]W.J. Epolito, H. Yang, L.A. Bottomley, S.G. Pavlostathis. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4. Journal of hazardous materials,160 (2008) 594-600.
    [24]任拥政,章北平,张晓昱,申骞.铁碳微电解对造纸黑液的脱色处理.水处理技术,32(2006)68-70.
    [25]李峥,吴效东,程鸣,何文英.微电解法处理电镀废水.安全与环境工程,10(2003)35-37.
    [26]洪飞宇,李德生,韩丹,王晓伟.曝气/铁炭微电解预处理制膜废水试验研究.工业水处理,29(2009)42-45.
    [27]严滨,傅海燕,柴天,金磊,石谦.微电解在处理印染废水中的应用研究.厦门理工学院学报,16(2008)18-22.
    [28]叶国祥,周烁灵,唐佳玙,郑豪,杨岳平,徐新华.Fe-C微电解法预处理高浓度印染废水的研究.高校化学工程学报,25(2011)489-494.
    [29]徐丽娜,赵华章,叶正芳,倪晋仁.生物-微电解组合工艺处理染料废水研究.环境工程学报,1(2007)10-14.
    [30]X. Yang, Y. Xue, W. Wang. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis. Bioresource technology,100 (2009) 649-653.
    [31]罗发生,徐晓军,李新征,邱珉,王盼,陈宁.微电解法处理铜冶炼废水中重金属离子研究.水处理技术,37(2011)100-104.
    [32]黄树杰.微电解-中和沉淀法处理含Cr6+与Cu2-电镀废水的试验研究.广东化工,38(2011)135-136.
    [33]张跃军,贾进洲.线切割乳化液废水及含油废水处理方法的研究.中国化工学会精细化工专业委员会第89次学术会议2006年全国水处理、节水节能及环保精细化学品学术交流会论文集,2006.
    [34]李智,陈风雷.钻井污水处理的实验研究.广东微量元素科学,13(2007)61-63.
    [35]史敬伟,杨晓东.铁炭微电解法预处理制药废水的研究.辽宁化工,35(2006)211-213.
    [36]陈春兵,高建民,冯晓西,毛伟.灭多威农药废水处理技术.化工环保,28(2009)431-433.
    [37]P.N. Johnson, A. Amirtharajah. Ferric-Chloride and Alum as Single and Dual Coagulants. Journal Americal Water Works Association,75 (1983) 232-239.
    [38]D.S. Wang, H.X. Tang, J. Gregory. Relative importance of charge neutralization and precipitation on coagulation of kaolin with PACI:Effect of sulfate ion. Environment Science and Technology,36 (2002)1815-1820.
    [39]Y. Matsui, A. Yuasa, Y. Furuya, T. Kamei. Dynamic analysis of coagulation with alum and PACI. Journal Americal Water Works Association,90 (1998) 96-106.
    [40]C.Z. Hu, H.J. Liu, J.H. Qu, D.S. Wang, J. Ru. Coagulation behavior of aluminum salts in eutrophic water:Significance of Al-13 species and pH contro. Environment Science and Technology,40 (2006) 325-331.
    [41]R. Stol, A. Van Helden, P. De Bruyn. Hydrolysis-precipitation studies of aluminum (Ⅲ) solutions. 2. A kinetic study and mode. Journal of Colloid and Interface Science,57(1976) 115-131.
    [42]R. Letterman, S. Asolekar. Surface ionization of polynuclear species in A1 (Ⅲ) hydrolysis-I. Titration results. Water Research,24 (1990) 931-939.
    [43]G. Chen. Electrochemical technologies in wastewater treatment. Separation and Purification Technology,38 (2004) 11-41.
    [44]H. Wong, C. Shang, Y. Cheung, G. Chen. Chloride assisted electrochemical disinfection. Taiwan: Tsin Chu,2002.
    [45]A.G. Vlyssides, C.J. Israilides. Detoxification of tannery waste liquors with an electrolysis system. Environmental pollution,97 (1997) 147-152.
    [46]M. Kobya, O.T. Can, M. Bayramoglu. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. Journal of hazardous materials,100 (2003) 163-178.
    [47]王车礼,任连锁.电絮凝处理油田废水初步研究.油气田环境保护,12(2002)19-21.
    [48]E. Kaliniichuk,I. Vasilenko, V.Y. Shchepanyuk, N. Sukhoverkhova, I. Makarov. Treating refinery wastewaters to remove emulsified oils by electrocoagulation and electroflotation. International Chemical. Engineering.;(United States),16 (1976).
    [49]M. Weintraub, R. Gealer, A. Golovoy, M. Dzieciuch, H. Durham. Development of electrolytic treatment of oily wastewater. Environmental Progress,2 (1983) 32-37.
    [50]X. Chen, G. Chen, P.L. Yue. Separation of pollutants from restaurant wastewater by electrocoagulation. Separation and Purification Technology,19 (2000) 65-76.
    [51]M. Singh, Z. Szafran, J.G. Ibanez. Laboratory experiments on the electrochemical remediation of environment. part 4:Color removal of simulated wastewater by electrocoagulation-electroflotation. Journal of chemical education,75 (1998) 1040.
    [52]U.B. Ogutveren, S. Kopara. Electrocoagulation for oil-water emulsion treatment. Journal of Environmental Science & Health Part A,32 (1997) 2507-2520.
    [53]A. Gurses, M. Yalcin, C. Dogar. Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables. Waste Management,22 (2002) 491-499.
    [54]U.B. Ogutveren, N. Gonen, S. Koparal. Removal of dye stuffs from waste water: Electrocoagulation of Acilan Blau using soluble anode. Journal of Environmental Science & Health Part A,27(1992)1237-1247.
    [55]M.Y.A. Mollah, S.R. Pathak, P.K. Patil, M. Vayuvegula, T.S. Agrawal, J.A.G. Gomes, M. Kesmez, D.L. Cocke. Treatment of orange Ⅱ azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes. Journal of hazardous materials,109 (2004) 165-171.
    [56]莫德清.电絮凝法处理模拟罗丹明B废水的研究.化工技术与开发,35(2006)40-43.
    [57]J.S. Do, M.L. Chen. Decolourization of dye-containing solutions by electrocoagulation. Journal of applied electrochemistry,24 (1994) 785-790.
    [58]T.H. Kim, C. Park, E.B. Shin, S. Kim. Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalination,150 (2002) 165-175.
    [59]M. Bayramoglu, M. Kobya, O.T. Can, M. Sozbir. Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology,37 (2004) 117-125.
    [60]Y.S. Jung, M. Pyo. Removal of heavy metal ions by electrocoagulation for continuous use of Fe2+/Fe3+-mediated electrochemical oxidation solutions. Bulletio of Korean Chemical Society,29 (2008) 974-978.
    [61]I.I. KabdaslI, I. Arslan-Alaton. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. Journal of hazardous materials,165 (2009) 838-845.
    [62]詹伯君.植绒印花废水脉冲电解处理.污染防治技术,10(1997)169-172.
    [63]罗亚田,曾勇辉,张列宇,熊瑛.电凝聚过程中消除电极钝化方法的研究进展.能源环境保护,20(2006)4-6.
    [64]张立.脉冲镀和脉冲焊电源.机械工业出版社,北京,1988.
    [65]谢光炎,梁开文.废水净化的电化学方法进展.给水排水,24(1998)64-68.
    [66]林辉,甘复兴,田芳.脉冲电絮凝法处理餐饮废水的研究.武汉大学学报:理学版,49(2003)720-724.
    [67]陈意民,李金花,李龙海,周保学,蔡伟民,宋永会.脉冲电絮凝处理难降解印染废水的研究.环境科学与技术,32(2009)144-147.
    [68]E. Svetashova, I. Dobrevskij, E. Sabeva. Effect of electric current pulse shape on efficiency of electrochemical treatment of waters containing petroleum products. Khimiya i tekhnologiya vody. Kiev, 14(1992)856-859.
    [69]O. Labyak, N. Kostin. Extraction of nickel from rinsing water from galvanic plants using pulse electrolysis.Khimiya I Technologiya Vody,392 (1996).
    [70]W.J. Bian, X.Y. Shen, L.C. Lei. Degradation of 4-CP in an internal electrolysis system. Journal Environment Science-China,16 (2004) 234-237.
    [71]陈灿,施汉昌.铁屑法处理含染料废水中铁屑表面化学研究.环境化学,23(2004)90-95.
    [72]A. Golder, N. Hridaya, A. Samanta, S. Ray. Electrocoagulation of methylene blue and eosin yellowish using mild steel electrodes. Journal of hazardous materials,127 (2005) 134-140.
    [73]C.Y. Hu, S.L. Lo, W.H. Kuan. Simulation the kinetics of fluoride removal by electrocoagulation (EC) process using aluminum electrodes. Journal of hazardous materials,145 (2007) 180-185.
    [74]I. Arslan-Alaton, I.I. KabdaslI, D. Hanbaba, E. Kuybu. Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes. Journal of hazardous materials,150 (2008) 166-173.
    [75]I. Kabdasli, B. Vardar, I. Arslan-Alaton, O. Tunay. Effect of dye auxiliaries on color and COD removal from simulated reactive dyebath effluent by electrocoagulation. Chemical Engineering Journal, 148(2009)89-96.
    [76]M. Kobya, H. Hiz, E. Senturk, C. Aydiner, E. Demirbas. Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination,190 (2006) 201-211.
    [77]S. Vasudevan, J. Lakshmi, G. Sozhan. Studies on the removal of iron from drinking water by electrocoagulation-A clean process. CLEAN-Soil, Air, Water,37 (2009) 45-51.
    [78]K. Chithra, N. Balasubramanian. Modeling Electrocoagulation Through Adsorption Kinetics. Journal of Modelling and Simulation of Systems,1 (2010) 124-130.
    [79]贺鸣雷,张新胜,陈银生.脉冲电解处理废水的研究进展.河南化工,(2003)4-6.
    [80]王孝武,朱又春,宋卫锋,林美强,陈彬.脉冲电源电凝聚处理废水的研究.环境工程学报,3(2009)1835-1838.
    [81]苏远波,李清彪,王远鹏,王海涛,洪金庆.脉冲电源电解处理含氰含银电镀废水.化工学报,(2009)2308-2313.
    [82]何建波,鲁道荣,李学良,何百林.达克罗涂层的腐蚀动力学行为研究.化学研究与应用,14(2002)81-83.
    [83]M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke. Electrocoagulation (EC)-science and applications. Journal of hazardous materials,84 (2001) 29-41.
    [84]M. Chafi, B. Gourich, A.H. Essadki, C. Vial, A. Fabregat. Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination,281 (2011) 285-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700