慢性乙型肝炎患者PD-1启动子区域甲基化状态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分慢性乙型肝炎患者外周血淋巴细胞表面的PD-1表达及其影响因素的研究
     目的研究慢性乙型肝炎患者外周血外周血单个核细胞、CD4+T、CD8+T淋巴细胞表达PD-1的情况以及影响PD-1表达的可能的因素。
     方法密度梯度离心法分离63例慢性乙型肝炎患者(其中包括HBeAg(+)患者32例,HBeAg(一)患者31例)、35例乙肝病毒健康携带者、18例健康人外周血单个核细胞、CD4+T、CD8+T淋巴细胞中表达PD-1的百分比,分析慢性乙型肝炎患者、乙肝病毒健康携带者及健康人PD-1表达的差异;观察PD-1表达与HBV感染者ALT水平、乙肝e抗原、病毒复制指标HBV-DNA水平之间的关系。
     结果HBV健康携带组外周血单个核细胞、CD4+T淋巴细胞、CD8+T淋巴细胞表面PD-1表达率最高;CHB组次之;健康对照组最低。HBV健康携带组外周血单个核细胞、CD4+T淋巴细胞上PD-1表达显著高于健康对照组及CHB组,CHB组显著高于健康对照组(P<0.05)。而CD8+T淋巴细胞上PD-1表达只在健康对照组和HBV健康携带组之间比较差异显著(P<0.05),其他组间比较均无统计学差异。CHB患者外周血单个核细胞、CD4+T、CD8+T淋巴细胞上表达PD-1百分比与血清ALT及HBV-DNA水平无相关性。CHB患者eAg是否阳性对PD-1在外周血单个核细胞、CD4+T细胞、CD8+T细胞表面表达率有一定影响:HBeAg(+)组和HBeAg(-)组外周血单个核细胞表面表达PD-1比率分别为:25.88±20.09%和15.39±10.64%,较健康对照组(10.85±4.45%)明显升高,HBeAg(+)组和健康对照组比较,差异有统计学意义(P<0.05);HBeAg(+)组PD-1表达比率显著高于HBeAg(-)组,P<0.01。HBeAg (+)组、HBeAg(-)组、健康对照组CD4+T淋巴细胞表面表达PD-1表达率分别为:9.15±6.46%、8.65±6.84%、2.37±1.16%,HBeAg(+)组及HBeAg(-)组健与康对照组CD4+T淋巴细胞表面PD-1表达率比较,差异均有统计学意义,P<0.01。HBeAg(+)组、HBeAg(-)组、健康对照组CD8+T淋巴细胞表面PD-1表达率分别为:3.71±2.79%、3.23±2.39%、1.40±0.31%,HBeAg(+)组及HBeAg(-)组健与康对照组CD8+T淋巴细胞表面PD-1表达率比较,差异有统计学意义,P<0.05。
     结论CHB患者外周血单个核细胞、CD4+T淋巴细胞上PD-1表达显著高于健康人,又明显低于HBV健康携带者。PD-1表达可能与HBV感染者的免疫状态相关。血清HBeAg可以明显影响CHB患者外周血T单个核细胞表面PD-1的表达,是影响其PD-1表达的重要因素。
     第二部分淋巴细胞系Molt-4细胞PD-1启动子区域甲基化水平和PD-1表达的关系的研究
     目的以T淋巴细胞株Mo1t-4细胞为模型,探讨甲基化抑制剂5-杂氮胞苷(5-Zac)对淋巴细胞表面程序性死亡受体-1(PD-1)基因启动子的去甲基化作用及其诱导的PD-1基因表达的改变,并进一步研究去甲基化作用与PD-1基因表达之间关系。方法以不同浓度的5-Zac(0μmol·L-1、5μmol·L-1、10μmo1·L-1)作用于体外培养的molt-4细胞72h,流式细胞术(FCM)检测细胞表面表达PD-1的Molt-4细胞比例和细胞凋亡率;反转录-聚合酶链反应(RT-PCR)检测5-Zac作用后PD-1基因mRNA的转录水平;亚硫酸氢钠处理各组Molt-4细胞DNA, PCR扩增PD-1启动子基因片段,转化感受态大肠杆菌,挑克隆测序,检测扩增的PD-1启动子片段甲基化状态。
     结果0μmol·L-I、5μmol·L-1、10μmol·L-1的5-氮杂胞苷作用于molt-4细胞72h后,PD-1在细胞表面的表达率分别为:1.13±0.01%;18.96±1.87%;63.09±6.25%,并呈现浓度依赖性;PD-1基因mRNA表达量显著增加;细胞凋亡检测结果显示与未处理组相比,加5μmol·L-1、10μmo1·L-1的5-氮杂胞苷处理72h后molt-4细胞的凋亡率显著增加,三组凋亡率分别为:1.9%+0.06%;8.98%+1.36%;24.5%+3.68%,有显著性差异(P<0.01);三组DNA亚硫酸氢钠测序结果表明,加入甲基化抑制剂5-Zac处理后,PD-1启动子上-601bp和d-553bp CG点去甲基化程度明显增高。
     结论甲基化抑制剂5-Zac可导致体外培养的T淋巴细胞系Molt-4细胞表面程序性死亡受体-1(PD-1)表达显著增加,PD-1基因mRNA表达增加,细胞凋亡率增高,这种增高可能与PD-1基因启动子区域出现的低甲基化有关。
     第三部分慢性乙型肝炎患者外周血单个核细胞PD-1基因启动子区域甲基化状态及影响因素
     目的探讨慢性乙型肝炎患者外周血单个核细胞上程序性死亡受体-1表达和PD-1启动子区域甲基化水平的关系,以及HBeAg对慢性乙型肝炎患者外周血单个核细胞表面PD-1基因启动子区域甲基化状态的影响
     方法筛选健康对照组10例、慢性乙型肝炎患者HBeAg阳性者10例、慢性乙型肝炎患者HBeAg阴性者10例,实时定量聚合酶链反应(real-time RT-PCR)检测外周血单个核细胞中PD-1基因的mRNA表达水平;亚硫酸氢钠处理PBMCs细胞DNA, PCR扩增PD-1启动子基因片段,转化感受态大肠杆菌,挑克隆测序,检测扩增的PD-1启动子片段甲基化状态。
     结果与正常对照组(0.10±0.023)比较,慢性乙型肝炎患者外周血单个核细胞中PD-1mRNA表达水平明显升高。在慢性肝炎患者中,外周血单个核细胞上PD-1表达在HBeAg阳性患者(0.44±0.046)中显著高于HBeAg阴性患者(0.18±0.014)。PD-1启动子上多个CpG点(-601、-553、-538、-483、-463、-317)甲基化程度与PD-1在单个核细胞上的表达呈负相关;PD-1启动子上-553bp、-538、-483CpG位点甲基化程度与血清中e抗原可能存在相关性。
     结论PD-1基因启动子区域甲基化水平可能影响慢性乙肝患者外周血单个核细胞上PD-1表达;其基因启动子甲基化状态可能受到乙肝病毒e抗原影响。
Part one:The expression and influence factors of programmed death receptor1on peripheral blood mononuclear cells of chronic hepatitis B virus-infected patients
     Objective To observe the expression variance of Programmed death one (PD-1) on PBMCs and CD4+T/CD8+T lymphocytes in Chronic Hepatitis B patients and further investigate The relationship between the probable influence factors and the PD-1expression on peripheral blood mononuclear cells (PBMC) in CHB Patients.
     Methods A total of116subjects, including63patients with chronic hepatitis B(CHB),35healthy hepatitis b virus carriers,18healthy blood donators were enrolled. The expression of PD-1, CD4and CD8on the peripheral blood mono-nuclear cells (PBMCs) were detected by FCM; The serum HBV markers, HBV DNA load and liver function were also measured. The difference of PD-1expression on PBMCs, CD4+Tand CD8+T lymphocytes were analyzed in chronic hepatitis B and hepatitis B virus healthy carriers and healthy people enrolled in this study. The relationship between the HBV-DNA, ALT level and hepatitis B e antigen were further observed in CHB patients.
     Results Taken the PD-1expression in normal controls as a baseline level, the expression of PD-1on PBMCs and CD4+TT lymphocytes in CHB patients and hepatitis B virus healthy carriers was significantly increased; hepatitis B virus healthy carriers was much higher than CHB patients. PD-1expression on CD8+T lymphocytes had significantly difference only between hepatitis B virus healthy carriers and normal controls, but no significant difference between other groups. In CHB patients, the PD-1expression in PBMCs from patients with HBeAg positive in serum was much higher than that from those with HBeAg negative in serum, And the PD-1expression level not correlated with serum HBV DNA load and serum ALT level.
     Conclusion The PD-1expression level on CHB patients is much higher than normal controls but significantly lower than hepatitis B virus healthy carriers. PD-1expression on peripheral blood mononuclear cells (PBMC) may Associated with the immune state in chronic HBV infectors. Long-term exposure to HBV e antigens in CHB patients may impact the PD-1expression level on PBMCs.
     Part two:Effects of5-Zac on demethylation pattern of the PD-1gene in promoter region and PD-1expression in a human T lymphocyte cell line
     Objective To observe the DNA demethylation of the PD-1promoter caused by5-azacytidine (5-azac) in Molt-4cells (T lymphocyte cell line) and further investigate the relationship between the expression of PD-1and DNA demethylation.
     Methods The Molt-4cells were cultured in medium containing different concentrations of5-azac(0,5,10Umol/L)for72h;The expression of PD-1in Molt-4cells and the apoptosis were detected by FCM; the mRNA transcription level of PD-1was detected by RT-PCR;Molt-4cell DNA in all groups were treated by sodium bisulfite; The PD-1promoter fragment was amplified by PCR,these amplification fragments were transformed into E. coli. Positive clones were selected for equencing, methylation status of the fragments of PD-1promoter was examined.
     Results5-azac(1.13%±0.01%) treated cells was found more lower than that in both5μmol/L and10μmol/L5-azac treated cells (18.96%±1.87%,63.09%±6.25%,P<0.05), and they showed concentration-dependent (P<0.01). Cells apoptosis rate and PD-1mRNA expression were also observed increased significantly with5-azac treating. The results of bisulfite genomic sequencing showed that Demethylation probability of CG points on-601bp and-553bp were significantly increased in the5-Zac treated cells compared with the untreated cells.
     Conclusion5-azac inhibits cell grouth in human lymphoid cell series Molt-4by inducing PD-1gene expression and promoter demethylation. PD-1gene promoter demethylation may be one of the important mechanisms for PD-1increased expression in5-azac treated Molt-4cells.
     Part three:The methylation pattern of PD-1promoter region and its influence factors in peripheral blood mononuclear cells of chronic hepatitis B virus-infected patients
     Objective To observe the relationship between the expression of the Programmed death one (PD-1) and DNA demethylation pattern of the PD-1promoter on PBMCs in Chronic Hepatitis B patients and further investigate the effect of hepatitis B virus e antigen on methylation pattern of PD-1promoter region in peripheral blood mononuclear cells (PBMC) of CHB Patients.
     Methods20patients with chronic hepatitis B(CHB), including10HBeAg positive and10HBeAg negative,18healthy blood donators as control were enrolled. The present study detected the correlation between the PD-1mRNA level in the peripheral blood mononuclear cells of the chronic hepatitis B patients and serum HBeAg levels, then determined the methylation of the promoter region of the PD-1gene using sodium bisulfite sequencing, so as to investigate the effect of HBeAg on PD-1expression and methylation of promoter region in peripheral blood mononuclear cells of chronic hepatitis B patients, and the relationship between them.
     Results the PD-1mRNA level of the peripheral blood mononuclear cells in the normal control group was (0.10±0.023), which was significantly lower than those in the HBeAg (+) group (0.44±0.046)and the HBeAg (-) group (0.18±0.014)(P<0.05), and the expression rate was higher in the HBeAg (+) group than that in the HBeAg (-) group (P0.05). the correlation analyses between the PD-1expression and the probability of methylation in each locus showed that the probabilities of methylation at-601,-553,-538,-483,-463and-317were correlated with the PD-1expression (P<0.05), Further comparison of the difference of the methylation status of the methylated loci in the promoter of the PD-1gene in the normal control, HBeAg (-) and HBeAg (+) groups demonstrated that the methylation levels at the CpG loci of-553bp,-538and-483were gradually declined in the normal control, HBeAg (-) and HBeAg (+) groups, and significant difference was observed among groups (P<0.05).
     Conclusion the methylation state of some CpG loci in the promoter region of the PD-1gene is associated with the PD-1expression, and the effect of HBeAg on the PD-1expression in the peripheral blood mononuclear cells of chronic hepatitis B patients may be related to the impact on the demethylation of the CpG loci in some binding sites of the promoter and transcription factor of PD-1.
引文
1. World Health Organization. Hepatitis B. World Health Organization Fact Sheet 204 dex(Revised October 2000). WHO Web site http://www.who.int/mediacentre /factsheet/fs204 en/in html
    2. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis [J]. Annu Rev Immunol,1995, (13):29-60.
    3.LOK A S, MCMAHON B J. Chronic hepatitis B [J].Hepatology,2001, (34): 1255-1241.
    4.范振平,王福生,徐东平等,乙型肝炎患者HBcAg特异性细胞毒性T细胞的检测及其与临床疾病状态的关系[J]。中华医学杂志,2004,(84):2073-2076.
    5. Maini MK, Boni C, Ogg GS, et al. Direct ex vivo analysis of hepatitis B virus-specific CD8(+) T cells associated with the control of infection. Gastroen-terology[J],1999,117(6):1386-1396.
    6. Webster GJ, Reignat S, Maini MK, et al. Incubation phase of acute hepatitis Bin man: dynamic of cellular immune mechanisms [J]. Hepatology,2006,32(5):1117-1124.
    7. Webster GJ, Reignat S, Brown D, et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B:implications for immunotherapy [J]. J Virol,2004,78(11): 5707-5719.
    8. Boni C, Fisicaro P, Valdatta C, et al. Characterization of hepatitis B virus(HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol [J],2007,81(8): 4215-4225.
    9. Greenfield EA, Nguyen KA, Kuchroo VK. CD28/B7 costimulation:a review [J]. Crit Rev Immunol,1998,18(5):389-418.
    10. Wang S, Chen L. Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses [J]. Microbes Infect,2004,6(8): 759-766.
    11. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol [J],2008, (26):677-704.
    12. Okazaki T, Honjo T. PD-1 and PD-1 ligands:from discovery to clinical application [J]. Int Immunol,2007,19(7):813-824.
    13. Sharpe AH, Wherry EJ, Ahmed R, et al. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection [J]. Nat Immunol,2007, 8(3):239-245.
    14. Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC [J]. J Immunol,2002, (169):5538-5545.
    15. Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, costimulates T-cell proliferation and interleukin-10 secretion [J]. Nat. Med,1999, (5):1365-1369.
    16. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation [J]. J. Exp. Med,2000, (192):1027-1034.
    17. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation [J]. Nat. Immunol,2001,2(2):61-68.
    18. Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation [J]. J. Immunol,2004, (173):945-954.
    19. Petrovas C, Casazza JP, Brenchley JM, et al. PD-1 is a regulator of virus-specific CD8+T cell survival in HIV infection [J]. J. Exp. Med,2006, (203):2281-2292.
    20. Bennett F, Luxenberg D, Ling V, et al. Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokinedriven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses [J]. J. Immunol,2003, (170):711-718.
    21. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production [J].J. Immunol,2003, (170):1257-1266.
    22. Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression [J]. Nature,2006, (443):350-354.
    23. Rodig N, Ryan T, Allen JA, et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ Tcell activation and cytolysis [J].Eur J. Immunol,2003, (33): 3117-3126.
    24. Iwai Y, Okazaki T, Nishimura H, et al. Microanatomical localization of PD-1 in human tonsils. Immunol. Lett.83:215-20.Tsuda M, Matsumoto K, Inoue H, Matsumura M, Nakano T, et al.2005. Expression of B7-H1 and B7-DC on the airway epithelium is enhanced by double-stranded RNA [J]. Biochem. Biophys. Res. Commun,2002, (330):263-270.
    25. Mataki N, Kikuchi K, Kawai T, et al. Expression of PD-1, PD-L1, and PD-L2 in the liver in autoimmune liver diseases [J]. Am. J. Gastroenterol,2007, (102): 02-312.
    26. Mazanet MM, Hughes CC. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis [J]. J. Immunol,2002, (169):3581-3588.
    27. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Thl and Th2 cells [J]. Proc. Natl. Acad. Sci. USA,2003, (100):5336-5541.
    28. Sharpe AH, Freeman GJ. The B7-CD28 superfamily [J]. Nat Rev Immunol,2002, 2(2):116-126.
    29. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Thl and Th2 cells[J]. PNAS,2003, (100):5336-5341.
    30. Kelly-Ann S, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta [J].FEBS Lett,2004, (574):37-41.
    31. Loke P, Allison JP. Emerging mechanisms of immune regulation:the extended B7 family and regulatory T cells.[J].Arthritis Res Ther,2004,6:208-214.
    32. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection[J]. Nature,2006,439(7077):682-687.
    33. Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression [J].Nature,2006, 443(7109):350-354.
    34. Petrovas C, Casazzal JP, Brenchley JM, et al. PD-1 is a regulaeor of virus specific CD8+ T cell survival in HIV infection [J]. J Exp Med,2006,203(10):2281-2292.
    35. Urbani S, Amadei B, Tola D, et al. PD-1 expression in acute hepatitis C virus(HCV) infection is associated with HCV-specific CD8 exhaustion [J].J Virol,2006, 80(22):11398-11403.
    36. Sang-Jun Ha, Scott N. Mueller, E. John Wherry, Daniel L,et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection [J]. J Exp Med,2008,205(3):543-555.
    37.金波,张纪元,张政等,PD-1表达对急性乙型肝炎患者HBV特异性CD8+T细胞功能的影响[J]。肝脏,2008,13(4):310-314。
    38.谢谆怡,陈永文,付晓岚等,慢性乙型肝炎患者HBV特异性细胞毒性T细胞PD-1的表达研究[J]。免疫学杂志,2007,23(6):602-605。
    39. Evans A, Riva A, Cooksley H, Phillips S,et al Programmed death 1 expression during antiviral treatment of chronic hepatitis B:Impact of hepatitis B e-antigen seroconversion[J]. Hepatology,2008,48(3):759-69.
    40.中华医学会肝病学分会、感染病学分会.慢性乙型肝炎防治指南.中华肝脏病杂志[J],2005,13(12):881-891.
    41. Liaw YF. Natural history of chronic hepatitis B virus infection and long-term outcome under treatment [J]. Liver Int,2009,29 (Suppl 1):100-107.
    42. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity [J]. Annu Rev Immunol,2008, (26):677-704.
    43. Chen L.Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity [J]. Nat Rev Immunol,2004,4 (5):336-347.
    44. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection [J]. Nature,2006, (439):682-687.
    45. Maier H, Isogawa M, Freeman GJ, et al. PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+T lymphocytes in the liver [J]. J Immunol,2007, (178):2714-2720.
    46. Urbani S, Amadei B, Tola D, et al. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion [J]. J Virol, 2006,(80):11398-11403.
    47. Boettler T, Panther E, Bengsch B, et al. Expression of the interleukin-7 receptor alpha chain (CD 127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection [J]. J Virol,2006, (80):3532-3540.
    48. Gu LL, Xu B, Zhang JY, et al. Dynamic expression of PD-1 in HBV-specific cytotoxic T lymphocytes correlates with memory T-cell development in acute hepatitis B patients [J]. Zhonghua Ganzangbing Zazhi,2008, (16):649-653.
    49. Zhang Z, Zhang JY, Wherry EJ, et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B [J]. Gastroenterology,2008, (134):1938-1949.
    50. Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver [J]. Immunity,2005, (23):53-63.
    51. Bertoletti A, Maini M, Williams R. Role of hepatitis B virus specific cytotoxic T cells in liver damage and viral control[J]. Antiviral Res,2003, (60):61-66.
    52. Boettler T, Panther E, Bengsch B, et al. Expression of the interleukin-7 receptor alpha chain (CD 127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection [J]. J Virol,2006, (80):3532-3540.
    53. Boni C, Fisicaro P, Valdatta C et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection [J]. J Virol,2007, (8): 4215-4225.
    54. Barber DL, Wherry EJ, Masopust D et al. Restoring function in exhausted CD8 T cells during chronic viral infection [J]. Nature,2006, (439):682-687.
    55.Petrovas C, Casazza JP, Brenchley JM et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection [J]. J Exp Med,2006, (203):2281-2292.
    56. Day CL, Kaufmann DE, Kiepiela P et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression [J]. Nature,2006, (443):350-354.
    57. Trautmann L, Janbazian L, Chomont N et al. Up-regulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction [J]. Nat Med, 2006, (12):1198-1202.
    58. Fisicaro P, Valdatta C, Massari M et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B [J]. Gastroenterology,2010, (138):682-693.
    59. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Thl and Th2 cells [J]. Proc Natl Acad Sci U S A,2003, (100):5336-5341.
    60. Sohn HS, Yao S, Chen L, et al. Blocking of monocyte-associated B7-H1 (CD274) enhances HCV-specific T cell immunity in chronic hepatitis C infection [J]. J Leukoc Biol,2008, (83):755-764.
    61. Wong M, La CA, Singh RP, Hahn BH. Blockade of programmed death-1 in young (New Zealand black x New Zeal and white) F1 mice promotes the activity of suppressive CD8+ T cells that protect from lupus-like disease [J]. J Immunol,2010, (185):6563-6571.
    62. Ye P, Weng ZH, Zhang SL, et al. Programmed death-1 expression is associated with the disease status in hepatitis B virus infection [J]. World J Gastroenterol: 2008(14)4551-4557.
    63. Zhang Z, Jin B, Zhang JY, et al. Dynamic decrease in PD-1 expression correlates with HBV-specific memory CD8 T-cell development in acute self-limited hepatitis B patients [J]. J Hepatol,2009, (50):1163-1173.
    64. Xu B, Zhang Z, Shi Y, et al. PD-1 up-regulation influenced apoptosis of HBV-specific CD8 T cells in patients with acute resolved hepatitis B [J]. Zhonghua Yixue Zazhi,2009, (89):1158-1161.
    65. Liang XS, Zhou Y, Li CZ, et al. Natural course of chronic hepatitis B is characterized by changing of programmed death type-1 of CD8-positive T cells [J]. World J Gastroenterol,2010, (16):618-624.
    66. Kassel R, Cruise MW, Iezzoni JC, et al. Chronically inflamed livers up-regulate expression of inhibitory B7 family members [J]. Hepatology,2009, (50) 1625-1637.
    67. Xie Z, Chen Y, Zhao S, et al. Intrahepatic PD-1/PD-L1 up-regulation closely correlates with inflammation and virus replication in patients with chronic HBV infection [J]. Immunol Invest,2009, (38):624-638.
    68. Evans A, Riva A, Cooksley H, et al. Programmed death 1 expression during antiviral treatment of chronic hepatitis B:Impact of hepatitis B e-antigen seroconversion [J]. Hepatology,2008, (48):759-769.
    69. Teng XY, Wang P, Zhou XG, et al. PD-1/PD-L1 expressions in liver tissues of patients with chronic HBV infection [J]. Zhonghua Gan Zang Bing Za Zhi,2011, (19):345-348.;
    70. Liu XY, Shi F, Zhao H, et al.Research of PD-1 expression in CD8+ T cell of peripheral blood with HBV-associated acute-on-chronic liver failure [J]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi,2010, (24):125-127.
    71. Chen J, Wang XM, Wu XJ, et al. Intrahepatic levels of PD-1/PD-L correlate with liver inflammation in chronic hepatitis B [J]. Inflamm Res,2011, (60):47-53.
    72. Xie Z, Chen Y, Zhao S, et al. Intrahepatic PD-1/PD-L1 up-regulation closely correlates with inflammation and virus replication in patients with chronic HBV infection [J]. Immunol Invest,2009, (38):624-638.
    73. Xia J, Xu L, Liu Y, et al. Relationship between PD-1 expression on peripheral T lymphcytes and HBeAg seroconversion after entecavir treatment in chronic hepatitis B patients [J]. Zhonghua GanZang Bing Za Zhi,2011, (19):93-97.
    74. Xie DY, Lin BL, Chen FJ, et al. Programmed death-1 (PD-1) and PD-L1 expression during antiviral treatment of chronic hepatitis B [J]. Zhonghua Gan Zang Bing Za Zhi,2010, (18):646-650.
    75. Evans A, Riva A, Cooksley H, et al. Programmed death 1 expression during antiviral treatment of chronic hepatitis B:Impact of hepatitis B e-antigen seroconversion [J]. Hepatology,2008, (48):759-769.
    76. Desmond CP, Gaudieri S, James IR,et al. Viral adaptation to host immune responses occurs in chronic hepatitis B virus (HBV) infection, and adaptation is greatest in HBV e antigen-negative disease [J]. J Virol,2012,86(2):1181-92.
    77. Zhou YL, Wang XC, Wu YT, et al. Relationship between HBeAg seroconversion with genotypes and HBV specific CTL in patients with chronic hepatitis B treated with Adefovir dipivoxil [J]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi,2011,25(3):220-223.
    78. Chang C, Enders G, Sprengel R, et al. Expression of the precore region of an avian hepatitis B virus is not required for viral replication [J]. J Virol,1987, (61):3322-3325.
    79. Schlicht HJ, Salfeld J, Schaller H., The duck hepatitisBvirus pre-C region encodes a signal sequence which is essential for synthesis and secretion of processed core proteins but not for virus formation [J]. J Virol,1987,61:3701-3709.
    80. Chen HS, Kew MC, Hornbuckle WE, et al. The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host [J]. J Virol,1992, (66:5682-5684.
    81. Chen MT, Billard J, Salberg M, et al. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen [J]. Proc. Natl. Acad. Sci.,2004, (41):14913-14918.
    82. Millich DR., Jones JE., Hughes J, et al, Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero [J]. Proc. Natl. Acad. Sci. USA, 1990,87 (17),6599-6603.
    83. Holtby I, Macarron B, Immunization of babies of women who screen positive for hepatitis B [J]. Commun. Dis. Public Health.,2004,7 (4):258-259.
    84. Peng GP, Luo BY, Li J, et al, Hepatitis B e-antigen Persistency is Associated with the Properties of HBV-Specific CD8 T Cells in CHB Patients [J], J Clin Immunol, 2011,(31):195-204。
    85. Kang EH, Kown TY, Oh GT, et al, The flavonoid ellagic acid from a medicinal herb inhibits host immune tolerance induced by the hepatitis B virus-e antigen [J], Antiviral Research,2006, (72):100-106.
    86.彭国平,孙雯,孙箴等,HBV感染患者外周血T细胞PD-1基因表达水平的变化与意义[J],浙江大学学报(医学版),2007,(36):553-560。
    87. Bird A P. CpG-rich islands and the function of DNA methylation [J]. Nature,1986, (321):209-213.
    88. Cottrell SE. Molecular diagnostic applications of DNA methylation technology [J]. Clin Biochem,2004, Jul,37(7):595-604.
    89.冯伟兴,王科俊,贺波等。基因启动子甲基化对转录因子结合的抑制作用分析方法[J]。生物化学与生物物理进展,2011,38(2):177-184。
    90.戴亚丽,张帆,叶静等。促甲状腺激素受体基因启动子区甲基化与乳头状甲状腺癌的关系研究[J],中国全科医学,2009,12(24):2194-2196.
    91. Mosher RA, Melnyk CW. siRNA s and DNA m ethylat ion:seedy epigenetics [J]. Trends Plant,2010,15 (4):204-210.
    92. Gibney ER, Nolan CM. Epigenetics and gene expression [J]. Heredity,2010,105 (1):4-13.
    93. Crews D. Epigenetics, brain, behavior, and the environment [J].Hormones(Athens), 2010,9(1):41-50.
    94. Bollati V, Baccarelli A. Environmental epigenetics [J]. Heredity,2010,105 (1) 105-112.
    95. Bhargava P. Epigenetics to proteomics:from yeast to brain [J]. Proteomics,2010, 10(4):749-770.
    96. Asadollahi R, Hyde CA, Zhong XY. Epigenetics of ovarian cancer:from the lab to the clinic [J]. Gynecol Oncol,2010,118(1):81-87.
    97. Aguilera O, Fernandez AF, Munoz A, et a.l Epigenetics and environment:a complex relationship [J], J Appl Physiol,2010,109(1):243-251.
    98. Gowher H, Jeltsch A. Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy [J], Cancer BiolTher,2004,3(11):1062-1068.
    99. Richardson B, Ray D, Yung R. Murine models of lupus induced byhypomethylated T cells [J], Methods Mol Med,2004, (102):285-294.
    100. Quddus J, Johnson KJ, Gavalchin J, et al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors issufficient to cause a lupus-like disease in syngeneic mice [J]. J Clin Invest,1993,92 (1):38-53.
    101. Mariana JK, Lu QJ, Wu Al, et al. Demethylation of Promoter Regulatory Elements Contributes to Perforin Overexpression in CD4+Lupus T Cells [J] Immunol,2004, (172):3652-3661.
    102. Lu Qj, Kaplan M, Ray D, et al. Demethylation of ITGAL (CD11a) Regulatory Sequences in Systemic Lupus Erythematosus [J]. Arthritis Rheum, 2002,46 (5):1282-1291.
    103.米向斌,邱贤文,谭国珍。氮杂胞苷对SLE患者外周血T淋巴细胞表达CD70的影响[J]。中国热带医学,2010,10(4):408-409。
    1. Rothstein DM, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance [J]. Immunol Rev,2003, (196):85-108.
    2. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited [J]. Annu Rev Immunol,2005, (23):515-548.
    3. Ishida Y, Agata Y, Shibahara K,et al. Induced expression of PD-1,a novel member of the immunoglobulin gene superfamily, upon programmed cell death [J]. EMBO J,1992, (11):3887-3895.
    4. Keir ME, Butte MJ, Freeman GJ, et al.PD-1 and its ligands in tolerance and immunity [J]. Annu Rev Immunol,2008, (26):677-704.
    5. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited [J]. Annu Rev Immunol,2005, (23):515-548.
    6. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance [J]. Trends Immunol,2006, (27):195-201.
    7. Chen L. Co- inhibitory molecules of the B7-CD28 family in the control of T-cell immunity[J]. Nat. Rev Immunol,2004, (4):336-347.
    8. Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC [J]. J Immunol,2002, (169):5538-5545.
    9. Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, costimulates T-cell proliferation and interleukin-10 secretion [J]. Nat. Med, 1999, (5):1365-1369.
    10. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation [J]. J. Exp. Med,2000, (192)1027-1034.
    11. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation [J]. Nat. Immunol,2001,2(2)61-68.
    12. Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation [J]. J. Immunol,2004, (173)945-954.
    13. Petrovas C, Casazza JP, Brenchley JM, et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection [J]. J. Exp. Med,2006, (203):2281-2292.
    14. Bennett F, Luxenberg D, Ling V, et al. Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokinedriven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses [J]. J. Immunol,2003, (170):711-718.
    15. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production [J].J. Immunol,2003, (170):1257-1266.
    16. Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression [J]. Nature, 2006, (443):350-354.
    17. Rodig N, Ryan T, Allen JA, et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ Tcell activation and cytolysis [J].Eur J. Immunol,2003, (33):3117-3126.
    18. Iwai Y, Okazaki T, Nishimura H, et al. Microanatomical localization of PD-1 in human tonsils [J]. Immunol. Lett,2005, (83):215-20.
    19. Mazanet MM, Hughes CC. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis [J]. J. Immunol,2002, (169):3581-3588.
    20. Eppihimer MJ, Gunn J, Freeman GJ, et al. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells [J]. Microcirculation,2002, (9):133-145.
    21. Schreiner B, Mitsdoerffer M, Kieseier BC, et al. Interferon-β enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation:relevance for the immune modulatory effect in multiple sclerosis [J]. J. Neuroimmunol,2004, (155):172-182.
    22. Lee SJ, Jang BC, Lee SW, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-y-induced upregulation of B7-H1 (CD274) [J]. FEBS Lett,2006, (580):755-762.
    23. Liu J, Hamrouni A, Wolowiec D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-y and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway [J]. Blood,2007, (110):296-304.
    24. Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma [J]. Nat. Med, 2007,(13):84-88.
    25. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Thl and Th2 cells [J]. Proc. Natl. Acad. Sci. USA,2003, (100):5336-5541.
    26. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity [J]. Immunol Rev,2010, (236):219-242.
    27. Kelly-Ann S, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta [J].FEBS Lett,2004, (574):37-41.
    28. Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses [J]. Eur. J. Immunol, 2003, (33):2706-2716.
    29. Latchman YE, Liang SC, Wu Y, et al, PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells [J]. Proc Natl Acad Sci U S A,2004, (29):10691-10696.
    30. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation [J]. Nat Immunol,2001, (3):261-268.
    31. Pfistershammer K, Klauser C, Pickl WF, et al. No evidence for dualismin function and receptors:PD-L2/B7-DC is an inhibitory regulator of human T cell activation [J]. Eur J Immunol,2006, (5):1104-1113.
    32. del Rio ML, Penuelas -Rivas G, Dominguez-Perles R, et al, Antibody mediated signaling through PD-1 costimulates T cells and enhances CD28-dependent proliferation [J]. Eur J Immunol,2005, (12):3545-3560.
    33. Shin T, Yoshimura K, Shin T, et al. In vivo costimulatory role of B7-DC in tuning T helper cell 1 and cytotoxic T lymphocyte responses [J]. J Exp Med, 2005, (10):1531-1541.
    34. Rietz C, Chen L. New B7 family members with positive and negative costimulatory function [J]. Am J Transplant,2004, (4):8-14.
    35. Cai G, Karni A, Oliveira EM, et al. PD-1 ligands, negative regulators for activation of naive, memory, and recently activated human CD4+T cells [J]. Cell Immunol,2004,230(2):89-98.
    36. Pfistershammer K, Klauser C, Pickl WF, et al. No evidence for dualismin function and receptors:PD-L2/B7-DC is an inhibitory regulator of human T cell activation [J]. Eur J Immunol,2006,36(5):1104-1113.
    37. Holets LM, Hunt JS, Petroff MG. Trophoblast CD274 (B7-H 1) is differentially expressed across gestation:influence of oxygen concentration [J]. Biol Report, 2006, (74):352-358.
    38. Chen g X, Dai H, Wan N, et al. Interact ion of programmed death-1 and program med death-1 ligand-1 contributes to testicular immune privilege [J] Transplantation,2009,87:1778-1786.;
    39. Ansari M J, Salama AD. Chitnis T, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice [J]. J Exp Med,2003, (198):63-69.
    40. Subudhi SK, Zhou P, Yerian LM, et al. Local ex pres sion of B7-H 1 prom ot es organ- specific autoimmunity and transplant rejection [J]. J Clin Invest,2004, (113):694-700.
    41. Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor deficient mice [J].Science,2001, (291):319-322.
    42. Wan B, Ni e H, Liu A, et al. Aberrant regulation of synovial T cell activation by soluble cost immulatory molecules in rheumatoid arthritis [J]. J Immunol,2006, (177):8844-8850.
    43. Muenst S, Hoeller S, Willi N, et al. Diagnostic and prognostic utility of PD-1 in B cell lymphomas [J]. Dis Markers,2010, (29):47-53.
    44. Lee J, Zhuang Y, Wei X, et al, Contributions of PD-1/PDL1 pathway to interact ion s of myeloid DCs with T cells in atherosclerosis [J]. J Mol Cell Cardiol,2009, (46):169-176.;
    45.赵欢,徐琳,魏向龙等.冠心病患者外周血T淋巴细胞上PD-1的表达及意义[J].实用医学杂志,2010,(26):1143-1146.
    46. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and auto-immunity [J]. Immunol Rev,2010, (236):219-242.
    47. Grosso JF, Goldberg MV, Getn et D, et al, Functionally distinct LAG-3 and PD-1 subset s on activated an d chronically stimulated CD8 T cells [J]. J Immunol, 2009, (182):6659-6669.
    48. Dinesh RK, Hahn BH, Singh RP. PD-1, gender, and autoimmunity [J]. Autoimm Rev,2010, (9):583-587.
    49. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection [J]. Nature,2006, (439):682-687.
    50. Maier H, Isogawa M, Freeman GJ, et al. PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+T lymphocytes in the liver [J]. J Immunol,2007, (178):2714-2720.
    51. Urbani S, Amadei B, Tola D, et al. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion [J]. J Virol, 2006, (80):11398-11403.
    52. Boettler T, Panther E, Bengsch B, et al. Expression of the interleukin-7 receptor alpha chain (CD127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection [J]. J Virol,2006, (80):3532-3540.
    53. Gu LL, Xu B, Zhang JY, et al. Dynamic expression of PD-1 in HBV-specific cytotoxic T lymphocytes correlates with memory T-cell development in acute hepatitis B patients [J]. Zhonghua Ganzangbing Zazhi:2008(16) 649-653.
    54. Zhang Z, Zhang JY, Wherry EJ, et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B [J]. Gastroenterology,2008, (134):1938-1949.
    55. Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver [J]. Immunity,2005, (23):53-63.
    56. Bertoletti A, Maini M, Williams R. Role of hepatitis B virus specific cytotoxic T cells in liver damage and viral control[J]. Antiviral Res,2003, (60):61-66.
    57. Boettler T, Panther E, Bengsch B, et al. Expression of the interleukin-7 receptor alpha chain (CD 127) on virus-specific CD8+ T cells identifies functionally and phenotypically defined memory T cells during acute resolving hepatitis B virus infection [J]. J Virol,2006, (80):3532-3540.
    58. Boni C, Fisicaro P, Valdatta C et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection [J]. J Virol,2007, (8):4215-4225.
    59. Barber DL, Wherry EJ, Masopust D et al. Restoring function in exhausted CD8 T cells during chronic viral infection [J]. Nature,2006, (439):682-687.
    60. Petrovas C, Casazza JP, Brenchley JM et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection [J]. J Exp Med,2006, (203):2281-2292.
    61. Day CL, Kaufmann DE, Kiepiela P et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression [J]. Nature, 2006, (443):350-354.
    62. Trautmann L, Janbazian L, Chomont N et al. Up-regulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction [J]. Nat Med,2006, (12):1198-1202.
    63. Fisicaro P, Valdatta C, Massari M et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B [J]. Gastroenterology,2010, (138):682-693.
    64. Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Thl and Th2 cells [J]. Proc Natl Acad Sci U S A:2003 (100) 5336-5341.
    65. Sohn HS, Yao S, Chen L, et al. Blocking of monocyte-associated B7-H1 (CD274) enhances HCV-specific T cell immunity in chronic hepatitis C infection [J]. J Leukoc Biol,2008, (83):755-764.
    66. Wong M, La Cava A, Singh RP, Hahn BH. Blockade of programmed death-1 in young (New Zealand black x New Zeal and white) F1 mice promotes the activity of suppressive CD8+T cells that protect from lupus-like disease [J]. J Immunol, 2010, (185):6563-6571.
    67. Ye P, Weng ZH, Zhang SL, et al. Programmed death-1 expression is associated with the disease status in hepatitis B virus infection [J]. World J Gastroenterol, 2008, (14):4551-4557.
    68. Zhang Z, Jin B, Zhang JY, et al. Dynamic decrease in PD-1 expression correlates with HBV-specific memory CD8 T-cell development in acute self-limited hepatitis B patients [J]. J Hepatol,2009, (50):1163-1173.
    69. Xu B, Zhang Z, Shi Y, et al. PD-1 up-regulation influenced apoptosis of HBV-specific CD8 T cells in patients with acute resolved hepatitis B [J]. Zhonghua Yixue Zazhi,2009, (89):1158-1161.
    70. Liang XS, Zhou Y, Li CZ, et al. Natural course of chronic hepatitis B is characterized by changing of programmed death type-1 of CD8-positive T cells [J]. World J Gastroenterol,2010, (16):618-624.
    71. Kassel R, Cruise MW, Iezzoni JC, et al. Chronically inflamed livers up-regulate expression of inhibitory B7 family members [J]. Hepatology,2009, (50): 1625-1637.
    72. Xie Z, Chen Y, Zhao S, et al. lntrahepatic PD-1/PD-L1 up-regulation closely correlates with inflammation and virus replication in patients with chronic HBV infection [J]. Immunol Invest,2009, (38):624-638.
    73. Evans A, Riva A, Cooksley H, et al. Programmed death 1 expression during antiviral treatment of chronic hepatitis B:Impact of hepatitis B e-antigen seroconversion [J]. Hepatology,2008, (48):759-769.
    74. Teng XY, Wang P, Zhou XG, et al. PD-1/PD-L1 expressions in liver tissues of patients with chronic HBV infection [J]. Zhonghua Gan Zang Bing Za Zhi,2011, (19):345-348.;
    75. Liu XY, Shi F, Zhao H, et al.Research of PD-1 expression in CD8+ T cell of peripheral blood with HBV-associated acute-on-chronic liver failure [J]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi,2010, (24):125-127.
    76. Chen J, Wang XM, Wu XJ, et al. Intrahepatic levels of PD-1/PD-L correlate with liver inflammation in chronic hepatitis B[J]. Inflamm Res,2011, (60):47-53.
    77. Xie Z, Chen Y, Zhao S, et al. Intrahepatic PD-1/PD-L1 up-regulation closely correlates with inflammation and virus replication in patients with chronic HBV infection [J]. Immunol Invest,2009, (38):624-638.
    78. Xia J, Xu L, Liu Y, et al. Relationship between PD-1 expression on peripheral T lymphcytes and HBeAg seroconversion after entecavir treatment in chronic hepatitis B patients [J]. Zhonghua GanZang Bing Za Zhi,2011, (19):93-97.
    79. Xie DY, Lin BL, Chen FJ, et al. Programmed death-1 (PD-1) and PD-L1 expression during antiviral treatment of chronic hepatitis B [J]. Zhonghua Gan Zang Bing Za Zhi,:2010, (18):646-650.
    80. Evans A, Riva A, Cooksley H, et al. Programmed death 1 expression during antiviral treatment of chronic hepatitis B:Impact of hepatitis B e-antigen seroconversion [J]. Hepatology,2008, (48):759-769.
    81. Maier H, Isogawa M, Freeman GJ, et al. PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+T lymphocytes in the liver [J]. J Immunol,2007, (178):2714-2720.
    82. Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver [J]. Immunity,2005, (23):53-63.
    83. Weng ZH, Ye P, Zhang SL. Enhancement of antiviral immunity in HBV mouse model by blocking PD-1/PD-L1 signaling pathway [J]. Zhonghua Ganzangbing Zazhi,2010, (18):263-266.
    84. Youngnak P, Kozono Y, Kozono H, et al. Differential binding properties of B7-H1 and B7-DC to programmed death-1 [J]. Biochem Biophys Res Commun, 2003,(307):672-677.
    85. Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B [J]. Gastroenterology,2010, (138):682-693.
    86. Martinic MM, von Herrath MG. Novel strategies to eliminate persistent viral infections [J]. Trends Immunol,2008, (29) 116-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700